EXPERSION
INPSC DEO PRELIMINARY EXAM [02.03.2019]
APTITUDR & MENTAL ABILITY SOLUTIONS
1. If the average of the values 9, 6, 7, 8, 5 and x is 8. Find the value of x.
A. 12
B. 13
C. 10
D. 9
Explanation:

$$\Rightarrow \frac{9+6+7+8+5+x}{6}=8$$

 $\Rightarrow 35+x=4+8$
 $\Rightarrow x=4+8-35=13$
2. Find the standard deviation of 40, 42 and 48. If each value is multiplied by 3, find the standard deviation of the new data.
A. $\frac{\sqrt{104}}{3}$
B. $\sqrt{132}$
C. $\sqrt{104}$
D. $\frac{\sqrt{104}}{2}$
Explanation:
 $Where, d = x - \overline{x}$
 $Wean(\overline{x}) = \frac{40+448+446}{16/9} = \frac{130}{3}$
 $\frac{3}{4} = \frac{4}{3} - \frac{130}{6} = -\frac{10}{3}$
 $\frac{100}{9} = \frac{10}{3}$
 $\frac{100}{9} = -\frac{10}{3}$
 $\frac{100}{9} = -\frac{10}{9}$
 $\frac{100}{9} = -\frac{10}{$

$$\begin{aligned} & \leq d^{3} = \frac{100 + 16 + 196}{9} = \frac{318}{9} = \frac{104}{3} \\ & = \sqrt{\frac{1094}{3}} = \sqrt{\frac{104}{9}} = \frac{\sqrt{104}}{3} \\ & \text{Multiply by 3} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{104}{3} = \sqrt{104} \\ & \text{New } = 3 \times \frac{100}{3} \times \frac{100}{3} \\ & \text{New } = 3 \times \frac{100}{3} \times \frac{100}{3} \\ & \text{New } = 3 \times \frac{100}{3} \\ & \text{New } = 3 \times \frac{100}{3} \\ & \text{New } = 3 \\ & \text{Narch } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{March } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{days } \\ & \text{March } = 3 \\ & \text{days } \\$$

Γ

- 6. A 220 m long train is running at a speed of 60 km/H. In how much time will it cross a platform of length 460 m?
 - A. 41.5 seconds C. 40.8 seconds Explanation:

B. 38.7 seconds D. 42.4 seconds

- $Time = \frac{Train Length + platform Length}{Train Speed}$ $= \frac{220 + 460 \text{ m}}{60 \times 5 \text{ m}[s]} = \frac{680}{5} \times 18$ $= \frac{204}{5} = 40.8 \text{ Seconds}$
- 7. The standard deviation of 10 observation is $4\sqrt{2}$. If each observation is multiplied by 3. Find the new standard deviation.
 - A. $\sqrt{2}$ B. $2\sqrt{3}$ C. $12\sqrt{2}$ D. $3\sqrt{2}$

Explanation:

• Standard deviation of a collection of data gets multiplied or divided by the quantity *k*, if each item is multiplied or divided by *k*.

(கொடுக்கப்பட்ட விவரத்திலுள்ள ஒவ்வொரு எண்ணையும் (மதிப்பு) ஒரு மாறிலி k ஆல் பெருக்க அல்லது வகுக்கக் கிடைக்கும் புதிய மதிப்புகளின் திட்ட விலக்கமானது, பழைய திட்டவிலக்கத்தை மாறிலி k ஆல் பெருக்க அல்லது வகுக்கக் கிடைக்கும் எண்ணாக இருக்கும்.)

New S.D =
$$4\sqrt{2} \times 3$$

(C) = $12\sqrt{2}$

8. A two digit number is such that the product of the digits is 12. When 36 is added to the number, they interchange their places. So which is the digit in unit place of given number?
A. 2
B. 3
C. 4
D. 6

$$x \times y = 12$$

possible value of (x, y) are $(2, 6)$ $(3, 4)$
 $(4, 3)$ $(6, 2)$ $xy + 36 = yx$
 $\Rightarrow 26 + 36 = 62$
Hence, Original Number = 26.
Unit digit (Joing 1918 Daugues) = 6.

ROSE : 912822 : : MICE: ? 9. A. 139322 **B. 14182422** C. 13182422 D. 149322 **Explanation:** Alphabetical order R = 18th from frest or 9th from Last 0 = 15th from first or 12th from Last S = 19th from firest or 8th from Last E = 5th from frost or 22nd from Last Simillarly MICE => 13-9-3-5 (From first) 14-18-24-22 (From Lar) · Ans: B. 14182422 A man bought an old bicycle for ₹1,250. He spent ₹ 250 on its repairs. He then sold it for ₹ 10. 1,400. Find his loss percentage. A. 6.67% B. 6.60% 6.68% D. 6.65% C. NTRE **Explanation**: Cost Price of the bicycle = ₹1,250 Repair Charges = ₹250 Total Cost Price = 1250 + 250 = ₹1,500 Selling Price = ₹1,400 C.P > S.P., there is a Loss Loss = Cost Price – Selling Price = 1500 - 1400= 100Loss = ₹100 Percentage of Loss = $\frac{Loss}{Cost Price} \times 100 = \frac{100}{1500} \times 100 = \frac{20}{3} = 6\frac{2}{3} \%$ Loss % = 6.67% Find the smallest whole number which is exactly divisible by $1\frac{2}{3}, 2\frac{1}{4}, 3\frac{1}{2}$ and $4\frac{1}{5}$ 11. A. 252 B. 154 C. 322 D. 454 **Explanation**:

$$\frac{4}{3}, \frac{9}{4}, \frac{7}{3}, \frac{21}{5}$$

$$L CM of Fractions = \frac{L CM of Numerator(4,9,7,31)}{44CF of denominator(3,4,2,5)}$$

$$= \frac{252}{1} = 252$$

Find the least number which increased by 3 is exactly divisible by 10, 12, 14, 16.
A. 1680 B. 1677 C. 1697 D. 1670
Explanation:

Required Number be
$$x$$
.
 $x + 3 = Lcm(10, 12, 14, 16)$
 $x + 3 = 1680$
 $x = 1677$

 The LCM of two number is 36 times that of their HCF. The product of the numbers is 3600. Find their HCF.

A. 10 B. 15 C. 8 D. 20 Explanation:

$$\begin{array}{c}
\boxed{1} = 36 \times H \\
\downarrow \ (M \times H \ c = product of fwo NOS) \\
36H \times H = 3600 \\
\hline H^{Q} = (00) \\
\hline H = (0)
\end{array}$$
4. Simplify: $\left(\frac{x^4 - x^2y^2}{y^4 - x^2y^2}\right) \div \left(\frac{x^2}{y^2}\right)$
A.1 B.0 C. -1 D. $\frac{x^2}{y^2}$
Explanation:

$$= \frac{\chi^{2}(\chi^{2}-y^{2})}{y^{2}(y^{2}-\chi^{2})} \times \frac{y^{2}}{\chi^{2}} = \frac{\chi^{2}-y^{2}}{\chi^{2}-\chi^{2}} = \frac{\chi^{2}-y^{2}}{-(\chi^{2}-y^{2})} = -1.$$

15. If A, B, C, D, E are Natural numbers and A + B = C, 2B = E, B + C = D, B + E = A **A. B**, **E**, **A**, **C**, **D** C. B, C, E, A, D **Explanation:** A = B = C, B = C, 2B = E, B + C = D, B + E = A B = E, B, C, A, D D = B, C, A, D B = E, B = C, A, D B = EA = B = C, B = E

Her,
$$D = 1$$
 \rightarrow $AD = 1$
then $E = 2$
 $B + E = A \Rightarrow 1 + 2 = A \rightarrow A = 3$
 $A + B = C \Rightarrow 3 + 1 = 4 \Rightarrow C = 4$
 $B + C = D \Rightarrow 1 + 4 = 5 \Rightarrow D = 5$
 $B = 1, E = 2, A = 3, (= 4, D = 5)$
 $Ans: A$

16. Simplify: $\left(\frac{\sqrt{900} + \sqrt{144}}{\sqrt{144}}\right) - \left(\frac{\sqrt{16}}{\sqrt[3]{8}}\right) + 2$ A. $\frac{21}{8}$ B. $\frac{21}{12}$ C. $\frac{21}{4}$ D. $\frac{21}{6}$ Explanation: $\frac{30 + 19}{12} - \frac{14}{2} + 9$ $\frac{49}{12} - 9 + 9 \Rightarrow \frac{91}{6}$.

A ribbon cut into 3 pieces in the ratio 3 : 2 : 7. If the total length of the ribbon is 24 m. Find the length of each piece respectively.
A 6 m 4 m 14 m B 14 m B 14 m 8 m

A certain sum of money amounts to Rs. 6,372 in 3 years at 6% on simple interest. Find the 23. principal. A. Rs. 5,000 B. Rs. 4,500 C. Rs. 5,400 D. Rs. 4,000 **Explanation:** P + S.I = Amount $p + \frac{p \times 3 \times 6}{100} = 6372$ $\frac{100p+18p}{100} = 6372$ $P = \frac{6372 \times 100}{118}$ $P = 54 \times 100 = 5400$ Vaideesh deposits ₹500 at the beginning of every month for 5 years in a post office. If the 24. rate of interest is 7.5%. Find the amount he will receive at the end of 5 years. A. ₹35718.75 B. ₹37518.75 C. ₹37581.75 D. ₹35817.75 **Explanation:** Solution Amount deposited every month, P = ₹ 500 Number of months, $n = 5 \times 12 = 60$ months Rate of interest, $r = 7\frac{1}{2}\% = \frac{15}{2}\%$ Total deposit made = $Pn = 500 \times 60$ =₹30,000 Period for recurring deposit, N = $\frac{1}{12} \left[\frac{n(n+1)}{2} \right]$ years $=\frac{1}{24} \times 60 \times 61 = \frac{305}{2}$ years Interest, I = $\frac{PNr}{100}$ $= 500 \times \frac{305}{2} \times \frac{15}{2 \times 100}$ = ₹ 5.718.75 Total amount due = $Pn + \frac{PNr}{100}$ = 30.000 + 5.718.75= ₹ 35,718,75

25. Fill in the blanks. If a, b, c, l, m are in A.P, then the value of a - 4b + 6c - 4l + m is = A. 1 B. 2 C. 3 **D**. 0 **Explanation:** a, b, c, l, m -> A.P. sequence 1, 2, 3, 4, 5 a-46+6c-4/+M 1 - 8 + 18 - 16 + 5 = 24 - 24 = 0.If A denotes ×, B denotes + , C denotes ÷ and D denotes - , then find the value of 26. 25D42C6B10A5 A. -52 B. -68 C. 52 **D.68 Explanation:** & 5 - 42 + 10×5 25-7+50 = 75-7=68 d. 900 27. Find the sum of the arithmetic series 5 + 11 + 17 +... + 95 C. 850 A. 750 **B. 800 Explanation:** Sn = D [at] $h = \begin{bmatrix} 1 - 0 \\ - 0 \end{bmatrix} + 1 = \begin{bmatrix} 95 - 5 \\ - 6 \end{bmatrix} + 1 = 15 + 1 = 16$ $S_{h} = \frac{16}{2} \left[5 + 95 \right]$ $= 8 \times 100 = 800$

If the sum of two numbers is 256 and their difference is 16. Then find those two numbers?
 A. 156, 100
 B. 110, 146
 C. 120, 136
 D. 118, 138
 Explanation:

$$x + y = 856$$

 $x - y = 16$
 $3x = 873 - 5x = 136$ $y = 130$

In a class of 20 students, 5 students have scored 76 marks each, 7 students have scored 77 marks each and 8 students have scored 78 marks each, then compute the mean of the A. 77.51
 B. 77.15
 C. 77.10
 D. 77.01
 Explanation:

$$(76 \times 5) + (77 + 7) + (78 \times 8)$$

 $380 + 539 + 684 = 1543$
Åværage = $\frac{1543}{20} = 77.15$

B0. The length of a string between a kite and a point on a ground is 90 m. If the string makes an angle θ with the level of ground such that $\tan \theta = \frac{15}{8}$, how high is the kite?

A. 79 m B. 80 m **C. 79.41 m** D. 80.4 m **Explanation:**

$$tan \theta = \frac{15}{8} - given$$

$$But$$

$$tan \theta = \frac{0 PP. side}{adj. side} = \frac{h}{b}$$

$$\frac{h}{b} = \frac{15}{8}$$

$$b = \frac{8}{5}h$$

15

By Pythagoras Thm,

$$l^{2} = h^{2} + b^{2}$$

$$90^{2} = h^{2} + \frac{8^{2}}{15^{2}} h^{2}$$

$$90^{2} = h^{2} \left(1 + \frac{8^{2}}{15^{2}}\right)$$

$$90^{2} = h^{2} \left(\frac{15^{2} + 8^{2}}{15^{2}}\right)$$

$$h^{2} = 90^{2} \times 15^{2}$$

$$h^{3} = 90 \times 15$$

$$h^{3} = 70 \times 15$$

$$h^{2} = 70 \times 15$$

Find the probability that a leap year selected at random will have 53 Fridays B1.

A. $\frac{1}{7}$

Explanation:

Now 52 weeks contain 52 Fridays and the remaining two days will be one of the following seven possibilities.

(Sun, Mon), (Mon, Tue), (Tue, Wed), (Wed, Thur), (Thur, Fri), (Fri, Sat) and (Sat, Sun). The probability of getting 53 Fridays in a leap year is same as the probability of getting a Friday in the above seven possibilities.

D. 0

Here *S* = (Sun,Mon),(Mon,Tue),(Tue,Wed),(Wed," Thur),(Thur,Fri),(Fri,Sat),(Sat,Sun),. Then n(S) = 7.

Let *A* be the event of getting one Friday in the remaining two days.

B. $\frac{2}{7}$ C. $\frac{3}{7}$

 $p(A) = \frac{n(A)}{n(S)} = \frac{2}{7}$

82. The average age of a family consist Father, Mother and a Child is 20. If after seven years the age of child will be 11. What was the average age when one day before the child is born?

A. 24	B. 20	C. 18	D. 16
Explanation:			

B3. 20% of 25% of 20 is equal to A.1 B. 10 C. 20 D. 25 Explanation: $\frac{20}{100} \times \frac{25}{100} \times 20$ $\frac{1}{5} \times \frac{1}{4} \times 20 = 1.$

B4. Divya secured 46 marks out of 50 in Tamil, 27 marks out of 30 in English, 36 marks out of 40 in Maths and 54 marks out of 60 in Science. In which subject she get more marks?
 A. Tamil
 B. English
 C. Maths
 D. Science
 Explanation:

$$Tamil = \frac{46}{50} \times 100 = 92\%$$

$$Tamil = \frac{46}{50} \times 100 = 92\%$$

$$English = \frac{27}{50} \times 100 = 90\%$$

$$Maths = \frac{36}{30} \times 100 = 90\%$$

$$Sume = \frac{54}{40} \times 100 = 90\%$$

35. Find the LCM of the following x³ + y³, (x³ - y³), x⁴ + x³ y² + y⁴
A, x³ + y³ = (B, x² - y⁶ C, x² - y³ D, x⁶ + y⁶
Explanation:
x³ + y³ = (x + y) (x² + y² - xy)
x³ - y³ = (x - y) (x² + y² + xy)
and x⁴ + x²y² + y⁴ = [(x⁴ + y⁴) + x²y²] = [(x² + y²)² - 2x²y² + x²y²] = (x² + y²)² - x³y²
= (x² + y² - xy) (x² + y² + xy)
So, LCM of these terms = (x - y) (x + y) (x² + y² - xy) (x² + y² + xy)
= (x - y) (x² + y² + xy) (x + y) (x² + y² - xy)
= (x³ - y³) (x³ + y³)
= x⁶ - y⁶ [As a² - b² = (a + b) (a - b)]
36. The HCF of 0.90, 13.5 and 15 is
A. 0.3 B. 0.9 c. 0.5 d. 0.15
Explanation:

$$\frac{q}{10}$$
 $\frac{135}{10}$ $\frac{15}{1}$
H (F = $\frac{H(CF \text{ of } (G, 135, 15)}{L \cdot C \text{ ho } o^{\frac{1}{2}}(10, 10, 5)} = \frac{3}{10}$
= 0.3
37. Find the LICF (or) GCD of the following : (x³ - x² + x - 1), (x⁴ - 1)
A, (x - 1)(x² - 1) B, (x + 1)(x² - 1)
C, (x - 1)(x² + 1) D, (x + 1)(x² - 1)
(x³ + (x) - 1) = x⁴ - 1
(x³ + (x) + (x - 1)) = (x⁴ - 1)
(x³ - 0⁴ + x - 1) = x³(x - 0) + 1((x - 1))
 $\frac{3}{2} - 0^{4} + x - 1 = x3(x - 0) + 1((x - 1))$
H₁ (t = $\frac{3}{2}(x^{\frac{3}{2}} + 1)((x - 1)$

38.	Simplify: $\sqrt{36a^4(b-c)^{16}} \div 2a(b-c)^2$ A. $18a^3(b-c)^8$ B. $3a(b-c)^4$ C. $3a(b-c)^2$ D. $3a(b-c)^6$ Explanation: $\frac{ba^3(b-c)^8}{2a(b-c)^8} =$ Ans: $3a(b-c)^6$
39.	Simplify: $2\frac{2}{3} - 3\frac{1}{6} + 6\frac{3}{4}$ A. $6\frac{1}{4}$ B. $6\frac{1}{2}$ C. $6\frac{4}{3}$ D. $5\frac{3}{4}$ Explanation:
	$\frac{\vartheta}{3} - \frac{19}{6} + \frac{37}{4}$
	$\frac{38 - 38 + 81}{12} = \frac{75}{12} = \frac{25}{4} = 6\frac{1}{4}$ If $\frac{a}{b} = \frac{3}{4}; \frac{b}{c} = \frac{5}{7}$ then a: b: c is A. 15: 20: 28 B. 12: 20: 21
4 0.	If $\frac{a}{b} = \frac{3}{4}; \frac{b}{c} = \frac{5}{7}$ then a: b: c is A. 15 : 20 : 28 B. 12 : 20 : 21 C. 3 : 9 : 7 D. 6 : 8 : 9 Explanation:
	a b c
	3 : 4
	15:20:35
4 1.	A hemispherical bowl of radius 60 cm is filled with soap paste. If this paste is made into cylindrical soap cakes each of radius 6 cm and height 2 cm, how many cakes do we get? A. 1800 B. 1825 C. 2100 d. 2000 Explanation:

42. A brick measures 20 cm x 10 cm x 7.5 cm. How many bricks will be required for a wall 20 m x 2 m x 0.75 m? C. 20,000 D. 25,000

A. 10,000 B. 15,000 **Explanation:**

 \cap

43. The total surface area of a solid right circular cylinder is 231 cm². Its curved surface area is two thirds of the total surface area. Find the radius and height of the cylinder.

A.
$$r = 3.5 \text{ cm}$$
, $h = 7 \text{ cm}$ B. $r = 3.2 \text{ cm}$, $h = 7 \text{ cm}$ C. $r = 3.5 \text{ cm}$, $h = 6 \text{ cm}$ D. $r = 3.2 \text{ cm}$, $h = 6 \text{ cm}$ Explanation:Solution: Given that total surface area= 231 cm²

Also given that curved surface area $=\frac{2}{3}$ of total surface area $2\pi rh = \frac{2}{3} \times 231(::T.S.A = 231)$ $2\pi rh = \frac{2 \times 231}{3} = 2 \times 77 = 154 \, cm^2$ But total surface area = 231 (i.e.) $2\pi r(h+r) = 231$ $2\pi rh + 2\pi r^2 = 231$ $154 + 2\pi r^2 = 231$ = 231 - 154 = 77 $2\pi r^2$ $2\pi r^2$ $2 \times \frac{22}{7} \times r^2$ = 77 $\mathbf{r}^2 \qquad = \frac{77 \times 7}{2 \times 22}$ $\mathbf{r}^2 = \frac{7}{2} \times \frac{7}{2}$

r = $\frac{7}{2} = 3.5cm$

Thus radius = 3.5 cm

Let us find height of the cylinder Curved surface area $= 154 \text{ cm}^2$ i.e. $2\pi rh$ = 154 $2 \times \frac{22}{7} \times \frac{7}{2} \times h$ = 154 $=\frac{154}{22}$ = 7 cmThus the height of the cylinder is 7 cm 44. The ratio between the base radius and the height of a solid right circular cylinder is 2.5. If its curved surface are is $\frac{3960}{7}$ sq.cm. Find the height and radius A. h = 15 cm r = 6 cmB. h = 6 cm r = 15 cmC. h = 14 cm r = 5 cmD. h = 5 cm r = 14 cm**Explanation:** Solution Let r and h be the radius and height of the right circular cylinder respectively. Given that $r : h = 2 : 5 \implies \frac{r}{h} = \frac{2}{5}$. Thus, $r = \frac{2}{5}h$ Now, the curved surface area, $CSA = 2\pi rh$ $\implies 2 \times \frac{22}{7} \times \frac{2}{5} \times h \times h = \frac{3960}{7}$ $h^2 = \frac{3960 \times 7 \times 5}{2 \times 22 \times 2 \times 7} = 225$ $h = 15 \implies r = \frac{2}{5}h = 6.$ Thus, Hence, the height of the cylinder is 15 cm and the radius is 6 cm. A cone and a cylinder have the same base area and the same curved surface area. If the 45. height of the cylinder is 2.5 m and radius of the cone is 3 m, then find the volume of the cone. C. $36\pi m^{3}$ D. $7.5\pi m^3$ A. $15\pi m^3$ **B** $12\pi m^3$ **Explanation**:

1 6.	Find the difference between simple Interest and compound interest for a sum of Rs.8,000
	lent at 10% p.a in 2 years
	A. Rs.70 B. Rs.80 C. Rs.60 D. Rs.90
	Explanation:
	$P = D'iff \times \left(\frac{100}{R}\right)^2$
	$8000 = Diff \chi (\frac{100}{10})^2$
	$8000 = D(++) \times (\frac{100}{10})$
	$Diff = \frac{8000}{100} = 80Rs$
47.	Two unbiased dice are rolled once. Find the probability of getting a doublet
	A. $\frac{1}{2}$ B. $\frac{2}{3}$ C. $\frac{1}{6}$ D. 1
	Solution: $\binom{2}{3} \binom{6}{n(S)} = 36$
	Let A be the event of getting a doublet.
	Then A = $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$
	$\therefore n(A) = 6$
	$\therefore P(A) = \frac{n(A)}{n(S)} = \frac{6}{36} = \frac{1}{6}$
	n (S) 36 6
10	The late of the la
48.	Find the odd man out A. Centre B. Radius C. Chord d. Diameter
	Explanation:
	Parts of a Circle
	The fixed point is called the centre of the circle.
	The constant distance between the fixed point and
	The constant distance between the fixed point and the moving point is called the radius of the circle.
	i.e. The radius is a line segment with one end point at the centre and the other end on the circle. It is denoted Diameter
	hv 'r'
	A line segment joining any two points on the circle
	is called a chord.
	Diameter is a chord passing through the centre of the circle. It is denoted by d' .
	The diameter is the longest chord. It is twice the radius.(i.e. $d = 2r$)
	The diameter divides the circle into two equal parts. Each equal part is a
	semicircle.
11	

வட்டத்தின் பாகங்கள்

நிலையான புள்ளி வட்டத்தின் <mark>மையம்</mark> எனப்படும். நிலையான புள்ளிக்கும், நகரும் புள்ளிக்கும் இடையே உள்ள மாறாத தூரம் <mark>ஆரம்</mark> எனப்படும்.

அதாவது வட்ட மையத்தை ஒரு முனையாகவும் வட்டத்தின் மேலுள்ள ஏதேனும் ஒரு புள்ளியை மற்றொரு முனையாகவும் கொண்ட கோட்டுத்துண்டு ஆரம் ஆகும். ஆரம் '*r*' எனக் குறிக்கப்படும்.

வட்டத்தின் மேலுள்ள ஏதேனும் இரு புள்ளிகளை சேர்க்கும் கோட்டுத்துண்டு நாண் எனப்படும்.

TRE

வட்டத்தின் மையப்புள்ளி வழியாகச் செல்லும் நாண் <u>விட்டம்</u> எனப்படும். விட்டம் '*d*' எனக் குறிக்கப்படும்.

மிக நீளமான நாண் விட்டமாகும். (அதாவது d=2r)

வட்டத்தை இரு சமபாகங்களாக விட்டம் பிரிக்கிறது. ஒவ்வொரு பாகமும் அரைவட்டம் எனப்படும்.

49. Find the value of
$$\sqrt{75 + \sqrt{33 + \sqrt{4 + \sqrt{25}}}}$$

A. 9 B. 10 C. 12 D. 13
Explanation:
Take from End
 $\sqrt{85} = 5$ $\sqrt{4 + 5} = \sqrt{9} = 3$
 $\sqrt{33 + 3} = \sqrt{36} = 6$ $\sqrt{75 + \sqrt{81}} = 9$

WWW.APPOLOTRAINING.COM PH: 044-24339436, 42867555