MENSURATION - 3D ASSIGNMENT SOLUTION

1. The radius of solid sphere and solid hemisphere is same. Then the ratio of curved surface area of solid sphere, total surface area of the solid hemisphere and curved surface area of solid hemisphere is
ஒரே ஆரயுடைய திண்ம கோளத்தின் மொத்தபரப்பு (வளைபரப்பு), திண்ம அரைக்கோளத்தின் மொத்த புறப்பரப்பு மற்றுய் திண்ம அரைக்கோளத்தின் வளைபரப்புகளுக்கு உள்ள விகிதம்

Solution:

$$
4 \pi r^{2}: 3 \pi r^{2}: 2 \pi r^{2}
$$

$4: 3: 2$
2. A 4 cm . cube is cut into 1 cm . cubes. The total surface area of all the small cube is
4 செ.மீ உடைய கன சதுரமாளது 1 செ.மீ உடைய சிறிய கன சதுரங்களாக வெட்டப்படுகிறது எனில் சிறிய கன சதுரங்களின் மொத்த பரப்பு யாது?

Solution:

Given that side of a big cube $=4 \mathrm{~cm}$
Volume of a big cube $=4 \times 4 \times 4=64 \mathrm{~cm}^{3}$.
Each side of a small cube $=1 \mathrm{~cm}$
Volume of a small cube $=1 \times 1 \times 1=1 \mathrm{~cm}^{3}$
Total Surface Area of small cube $=6 \times 1 \times 1=6 \mathrm{~cm}^{2}$
Number of new cubes $=64 / 1=64$
\therefore Total Surface Area of all small cubes $=64 \times 6=384 \mathrm{~cm}^{2}$
3. A wooden box of 2 cm thickness has inner measurements 6 cm long 2 cm breath and 1 cm height. The volume of the box is
2 செ.மீ தடிமன் கொண்ட உள் அளவு 6 செ.மீ நீளம் 2 செ.மீ அகலம் மற்றும் 1 செ.மீ உயரம் உள்ள மரப்பெட்டியில் மரத்தின் கன அளவானது Explanation:

Volume of Internal box $=6 \times 2 \times 1=12 \mathrm{~cm}^{3}$
Volume of External box $=(6+4) \times(2+4) \times(1+4) \Rightarrow 10 \times 6 \times 5=300 \mathrm{~cm}^{3}$
Volume of box $=300-12=288 \mathrm{~cm}^{3}$
4. An iron right circular cone of diameter 8 cm and height 12 cm is melted and recast into spherical lead shots each of radius 4 mm . How many lead shots can be made?
8 செ.மீ விட்டமும் 12 செ.மீ உயரமும் கொண்ட ஒரு நோ் வட்ட திண்ம இரும்புக் கூம்பாளது உருக்கப்பட்டு 4 மி.மீ ஆரமுள்ள திண்மக் கோள வடிவ குண்டுகளாக வாா்க்கப்பட்டால் கிடைக்கும் கோள வடிவ குண்டுகளின் எண்ணிக்கை எவ்வளவு?

Solution:

$$
\text { No.of spheres }=\frac{\text { Volume of Cone }}{\text { Volume of Sphere }} \Rightarrow \frac{\frac{1}{3} \pi \times 4 \times 4 \times 12}{\frac{4}{3} \pi \times \frac{4}{10} \times \frac{4}{10} \times \frac{4}{10}}=750
$$

5. The radii of two circular ends of a frustum shaped bucket are 15 cm and 8 cm . If its depth is 63 cm , find the capacity of the bucket in litres ஒரு இடைக்கண்ட வடிவிலான வாளியின் மேற்புற மற்றும் அடிப்பு ஆரங்கள் ழுறையே 15செ.மீ மற்றும் 8 செ.மீ மேலும் ஆழம் 63 செ.மீ எனில், அதன் கொள்ளளவை லிட்டரில் காண்க.

Solution

Capacity of Bucket $=\frac{1}{3} \pi h\left[R^{2}+r^{2}+R r\right] \quad \mathrm{R}=15, \mathrm{r}=8, \mathrm{~h}=63$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 63\left[15^{2}+8^{2}+15 \times 8\right] \\
& =\frac{1}{3} \times \frac{22}{7} \times 63[225+64+120] \\
& =22 \times 3 \times 409=26994 \mathrm{~cm}^{3} \\
& \\
& =26.994 \text { litres }
\end{aligned}
$$

6. The radii of two right circular cylinders are in the ratio of $3: 2$ and their heights are in the ratio $5: 3$. Find the ratio of their curved surface areas. இரண்ு நேர்வட்ட உருளைகளின் ஆர்ஙகளின் விகிதம் 3 : 2 என்க. மேலும் அவற்றின் உயரங்களின் விகிதம் 5 : 3 எனில் அவற்றின் வளைபரப்புகளின் விகிதம் காண்க.

Solution:

$$
\begin{aligned}
\mathrm{r}_{1}: \mathrm{r}_{2}=3: 2 & \mathrm{~h}_{1}: \mathrm{h}_{2}: 5: 3 \\
2 \pi r_{1} \mathrm{~h}_{1} & : 2 \pi \mathrm{r}_{2} \mathrm{~h}_{2} \\
3 \times 5 & : 2 \times 3 \\
5 & :
\end{aligned}
$$

7. A hemisphere and a cone have equal bases. If their heights are also equal, than the ratio of their curved surfaces will be
ஒரு அரைக்கோளமும், கூம்பும் ஒேே அடிப்பக்கத்ததை கொண்டுள்ளன. அவற்றின் உயரழும் சமம் எனில் அவற்றிற் வளைபரப்பி்் விகிதம் என்ன?

Solution:

Let the radius of each be R. Height of
hemisphere, $\mathrm{h}=\mathrm{R}$.
So, height of cone $=$ height of hemisphere $=\mathrm{R}$
Slant height of cone $=\sqrt{R^{2}+R^{2}}=\sqrt{2} R$
$\frac{\text { Curved surface area of hemisphere }}{\text { Curved surface area of cone }}=\frac{2 \pi R^{2}}{\pi R \times \sqrt{2} R}=\sqrt{2}: 1$
8. A rectangular piece of paper has length $14 \pi \mathrm{~cm}$ and breadth $10 / \pi \mathrm{cm}$. A cylinder is formed by one rolling of the paper along its length. Then volume of the cylinder is
ஒரு செவ்வக வடிவ தாளின் நீளம் 14π செ.மீ அகலம் $\frac{10}{\pi}$ செ.மீ தாளானது நீளத்தின் வழியே ஒரு முறை சுருட்டப்படுவதன் மூலம் ஒரு உருளை உருவாக்கப்பட்டால் அவ்உருளையின் கன அளவு யாது?

Solution

Since the circumference formed by rolling the paper is equal to the length, therefore.

Circumference=length of paper

$$
\begin{aligned}
2 \pi r & =14 \pi \\
r & =7 \mathrm{~cm}
\end{aligned}
$$

breadth $=$ height $=\frac{10}{\pi}$

Volume of cylinder $=\pi r^{2} h=\pi \times 7 \times 7 \times 10 / \pi=490 \mathrm{~cm}^{3}$
9. A lead pencil is in the shape of right circular cylinder. The pencil is 28 cm long and its radius is 3 mm . If the lead is of radius 1 mm , then find the volume of the wood used in the pencil.

Solution:

ஒரு பென்சிலானது ஒரு நேர்வட்ட உருளை வடிவில் உள்ளது. பென்சிலின் நீளம் 28 செ.மீ மற்றும் அதன் ஆரம் 3 மி.மீ. பென்சிலினுள் அமைந்த மையின்
(கிரா.:.பைட்) ன் ஆரம் 1 மி.மீ எனில், பென்சில் தயாாிக்க பயன்படுத்தப்பட்ட மரப்பலகையின் கன அளவைக் காண்க.

Solution:

Given that length of the pencil, h
Radius of the pencil (outer radius), R
Radius of the lead (inner radius), $\mathrm{r} \quad=1 \mathrm{~mm}$

$$
=\frac{1}{10} \mathrm{~cm}
$$

Volume of the wood used = volume of hollow cylinder

$$
=\pi h(R+r)(R-r)
$$

$$
=\frac{22}{7} \times 28\left(\frac{3}{10}+\frac{1}{10}\right)\left(\frac{3}{10}-\frac{1}{10}\right)
$$

$$
=22 \times 4\left(\frac{3+1}{10}\right)\left(\frac{3-1}{10}\right)
$$

$$
=88\left(\frac{4}{10}\right)\left(\frac{2}{10}\right)
$$

$$
=\frac{88 \times 8}{100}=\frac{704}{100}=7.04 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
& =\sqrt{306.25} \\
& =17.5 \mathrm{~m}
\end{aligned}
$$

\therefore Total surface area of the tent $=$ curved surface area of cylinder + curved surface area of cone

$$
\begin{aligned}
& =2 \pi r h+\pi r l \\
& =\pi r(2 h+l) \\
& =\frac{22}{7} \times 14 \times[2 \times 3+17.5] \\
& =22 \times 2 \times[6+17.5] \\
& =44 \times 23.5 \\
& =1034 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore Thus the total surface area of the tent is $1034 \mathrm{~m}^{2}$
11. A solid sphere of diameter 6 cm is dropped into a right circular cylindrical vessel with diameter 12 cm , which is partly filled with water. If the sphere is completely submerged in water, how much does the water level in the cylindrical vessel increase?
சிறிதளவுடி, தண்ணீi் நிரப்பப்பட்ட 12 செ.மீ விட்டழுள்ள உருளை வடிவப் பாத்திரத்தில் 6 செ.மீ. விட்டமுள்ள ஒரு திண்மக் கோளத்றை முழுவதுமாக மூழ்கச் சசய்தால், உருளை வாவப் பாத்திரத்தில் உயா்்த நீ் மட்டத்தின் உயரத்தைக் காண்க.

Solution:

Solid sphere
Diameter of the sphere, $2 r_{1} \quad=6 \mathrm{~cm}$

$$
\therefore r_{1}
$$

$$
=3 \mathrm{~cm}
$$

Cylindrical vessel
Diameter of the cylindrical vessel $2 r_{2} \quad=12 \mathrm{~cm}$

$$
\therefore r_{2}=6 \mathrm{~cm}
$$

Let h be the height of water raised in the cylindrical vessel.
Volume of water raised = Volume of the solid sphere

$$
\begin{aligned}
\pi_{1}^{2} h & =\frac{4}{3} \pi r_{2}^{3} \\
6 \times 6 \times h & =\frac{4}{3} \times 3 \times 3 \times 3 \\
\therefore h & =\frac{4 \times 3 \times 3}{6 \times 6} \\
& =\frac{36}{36} \\
h & =1 \mathrm{~cm}
\end{aligned}
$$

Thus, the water raised in the cylindrical vessel is 1 cm
12. Water is flowing at the rate of $15 \mathrm{~km} / \mathrm{hr}$ through a cylindrical pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. In how many hours will the water level in the tank raise by 21 cm ? 50 நீளம் 44மீ அகலமுள்ள செவ்வக தொட்டிலில் 14 சச.மீ விட்டமுள்ள உருளை வடிவ குழாயின் வழியாக 15 கி.மீ/மணி வேகத்தில் தண்ணீi விழுகின்றது. 21 செ.மீ. அளவு நீாமட்டம் உயர வேண்டுமானால் ஆகும் கால அளவு.

Solution:

$$
\begin{aligned}
\text { Speed of water }= & 15 \mathrm{~km} / \mathrm{hr} \\
& =1500 \mathrm{~m} / \mathrm{hr}
\end{aligned}
$$

Diameter of the pipe $2 \mathrm{r}=14 \mathrm{~cm}$
Thus,

$$
\mathrm{r}=\frac{7}{100} m
$$

Let h be the water level to be raised.
Thus, $\quad \mathrm{h}=21 \mathrm{~cm}=\frac{21}{100} \mathrm{~m}$

Now, the volume of water discharged $=$ Cross section area of the pipe \times Time \times speed
Volume of water discharged in one hour $=\pi \mathrm{r}^{2} \times 1 \times 15000$

$$
=\frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} \times 15000 \mathrm{cu} . \mathrm{m}
$$

Volume of required quantity of water in the tank is.

$$
l b h=50 \times 44 \times \frac{21}{100}
$$

Assume that T hours are needed to get the required quantity of water.
Volume of water discharged in $=$ Required quantity of water
T hours in the tank.

$$
\frac{22}{7} \times\left(\frac{7}{100}\right)^{2} \times T \times 15000=50 \times 44 \times \frac{21}{100}
$$

Thus,
$\mathrm{T}=2$ hours
Hence, it will take 2 hours to raise the required water level.
13. A wall is to be constructed with length 60 m , breadth 3 m and height 5 m . How many bricks are required to construct a wall with length 30 cm , breadth 15 cm and height 20 cm ?
நீளம் 60 அீ அகலம் 3 மீ உயரம் 5 மீ உடைய சுவா் எழுப்ப நீளம் 30 சச.மீ அகலம் 15 செ.மீ உயரம் 20 செ.மீ உடைய செங்கற்கள் எத்தனை தேவை?

Solution

$$
=\frac{6000 \mathrm{~cm} \times 300 \mathrm{~cm} \times 500 \mathrm{~cm}}{30 \mathrm{~cm} \times 15 \mathrm{~cm} \times 20 \mathrm{~cm}}=1,00,000 \text { bricks }
$$

14. The internal and external diameters of a hollow hemispherical vessel are 20 cm and 28 cm respectively. Find the cost to paint the vessel all over at ₹ 0.14 per cm ${ }^{2}$.

உள்ளீடற்ற ஓர் அரைக்கோள வடிவக் கிண்ணத்திற்கு ஒரு சதுர செ.மீ-க்கு வா்ணம் பூச 0.14 வீதம் செலவாகும். அதன் உட்புற மற்றும் வெளிப்புற விட்டங்கள் முறையே 20 செ.மீ மற்றும் 28 செ.மீ எனில், அதனை முழுமையாக வர்ணம் பூச எவ்வளவு செலவாகும்?

solution:

External diameter of vessel $=28 \mathrm{~cm}$
External radius of vessel, $\mathrm{R}=14 \mathrm{~cm}$
Internal diameter of vessel $=20 \mathrm{~cm}$
Internal radius of vessel, $\mathrm{r}=10 \mathrm{~cm}$
Area to be painted = Total surface Area

$$
\begin{aligned}
& =\text { External SA }+ \text { Internal SA }+ \text { Area of ring } \\
& =2 \pi \mathrm{R}^{2}+2 \mathrm{r}^{2}+\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \\
& =2 \pi\left[\mathrm{R}^{2}+\mathrm{r}^{2}\right]+\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \\
& =2 \times \frac{22}{7}\left(14^{2}+10^{2}\right)+\frac{22}{7}\left(14^{2}-10^{2}\right) \\
& =2 \times \frac{22}{7} \times(196+100)+\frac{22}{7}(196-100) \\
& =2 \times \frac{22}{7} \times 296+\frac{22}{7} \times 96 \\
& =\frac{22}{7}(592+96) \\
& =\frac{22}{7} \times 688 \mathrm{~cm}^{2}=\frac{15136}{7}
\end{aligned}
$$

15. A right angled $\triangle \mathrm{ABC}$ with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm is revolved about the fixed side of 12 cm . Find the volume of the solid generated.
5 செ.மீ, 12 செ.மீ மற்றுு்ம் 13 செ.மீ பக்க அளவுகள் கொண்ட ஒரு செங்கோண $\triangle \mathrm{ABC}$ ஆனது 12 செ.மீ நீளமுள்ள அதன் ஒரு பக்கத்தை அச்சாகக் கொண்டு சுழற்றபப்படும்போது உருவாகும் கூம்பின் கன அளவைக் கண்டுபிடி.

Solution:

Solid so obtained is a cone with $\mathrm{r}=5 \& \mathrm{~h}=12$

$$
\begin{gathered}
\text { Volume }=\frac{1}{3} \pi r^{2} h=\frac{\pi}{3} \times 25 \times 12= \\
100 \pi \mathrm{~cm}^{2}
\end{gathered}
$$

