

GROUP I MAIN - 2021
POST PRELIMINARY TEST - 2
PAPER - I - UNIT - III GENERAL APTITUDE \& MENTAL ABILITY (SOLUTION)

பிரிவு - ஆ
SECTION - B

குறிப்பு : i. ஒவ்வொரு வினாவிற்கும் 150 சொற்களுக்கு மிகாமல் விடையளிக்கவும்.
Answer not exceeding 150 words each
ii. ஒவ்வொரு வினாவிற்கும் பத்து மதிப்பெண்ககள்.

Each question carries ten marks.
iii. கொடுக்கப்பட்டுள்ள ஆ囚 விணாக்களில் எவையேனம் நாா்கு வினாக்களுக்கு மட்டும் விணையளிக்கவம் Answer any four questions out of Six questions.

$$
(4 \times 10=40)
$$

19. If the numerator of a fraction is increased by 225%. Denominator of the fraction is decreased by 20% it becomes $\frac{13}{4}$. Find the original fraction.
ஒரு பின்னத்தின் தொகுதி 225\% அதிகாி்கப்படுவதாலும் மற்றும் பகுதி 20\% குறைவதாலும் கிடைக்கும் புதிய பி்னம் $\frac{13}{4}$ எனில் உண்மையான பி்னம் ศฮ்ன?
solution:
Let the numerator is 100 x
Denominator is 100 y
Numerator increased by 225%

$$
\begin{aligned}
& 100 \mathrm{x}+\left(\frac{225}{100} \times 100 x\right) \\
& =100 \mathrm{x}+225 \mathrm{x}
\end{aligned}
$$

Numerator $=325 \mathrm{x}$

Denominator $=\left(100 y-\left(\frac{20}{100} \times 100 y\right)\right)$
$=100 \mathrm{y}-20 \mathrm{y}$
Denominator $=80 \mathrm{y}$

$$
\begin{aligned}
& \frac{325 x}{80 y}=\frac{13}{4} \\
& \frac{x}{y}=\frac{13 \times 80}{4 \times 325}
\end{aligned}
$$

Original fraction

$$
\frac{x}{y}=\frac{4}{5}
$$

20. (A)The area of a trapezium is $102 \mathrm{sq} . \mathrm{cm}$ and its height is 12 cm . If one of its parallel sides is 8 cm . Find the length of the other side.
ஒரு சரிவகத்தின் பரப்பளவு 102 ச.ிச.மீ, சசங்குத்துத் தொலைவு 12 செ.மீ. சாிவகத்தின் இணைப்பக்கங்களில் ஒரு பக்கத்தின் நீளம் 8 செ.மீ எனில் மற்றறாரு பக்கத்தின் நீளமென்ன?

Solution:

$$
\begin{aligned}
& \text { Given Area }=102 \mathrm{~cm}^{2}, \mathrm{~h}=12 \mathrm{~cm}, \mathrm{a}=8 \mathrm{~cm} \\
& \text { Area of a trapezium }=\left(\frac{1}{2} h(a+b)\right) \\
& \frac{1}{2} h(a+b)=102 \\
& \frac{1}{2} \times 12 \times(8+b)=102 \\
& 6(8+\mathrm{b})=102 \\
& 8+\mathrm{b}=17
\end{aligned} \quad \mathrm{~b}=17-8=9 .
$$

length of the other side $=9 \mathrm{~cm}$
(B) Find the LCM of $\left(2 x^{2}-3 x y\right)^{2},(4 x-6 y)^{3},\left(8 x^{3}-27 y^{3}\right)$

மீ.சி.ம காண்க. $\left(2 x^{2}-3 x y\right)^{2},(4 x-6 y)^{3},\left(8 x^{3}-27 y^{3}\right)$
Solution:

$$
\begin{gathered}
\left(2 x^{2}-3 x y\right)^{2}=(x(2 x-3 y))^{2} \\
=x^{2}(2 x-3 y)^{2} \\
(4 \mathrm{x}-6 \mathrm{y})^{3}=(2(2 \mathrm{x}-3 \mathrm{y}))^{3} \\
=2^{3}(2 \mathrm{x}-3 \mathrm{y})^{3} \\
8 \mathrm{x}^{3}-27 \mathrm{y}^{3}=(2 \mathrm{x})^{3}-(3 \mathrm{y})^{3} \\
=(2 \mathrm{x}-3 \mathrm{y})\left(4 \mathrm{x}^{2}+6 \mathrm{xy}+9 \mathrm{y}^{2}\right) \\
\mathrm{LCM}=2^{3} \mathrm{x}^{2}(2 \mathrm{x}-3 \mathrm{y})^{3}\left(4 \mathrm{x}^{2}+6 \mathrm{xy}+9 \mathrm{y}^{2}\right) \\
=2^{3} \mathrm{x}^{2}(2 \mathrm{x}-3 \mathrm{y})^{3}\left(4 \mathrm{x}^{2}+6 \mathrm{xy}+9 \mathrm{y}^{2}\right)
\end{gathered}
$$

21. The LCM of two number is 630 and thier HCF is 9 . If the sum of the numbers is 153 , then the difference of the two numbers is.
இரு எண்களின் மீ.ிி.ம 630. இவைகளின் மீ.பெ.கா 9. இவ்வெண்களின் கூடுதல் 153 எனில் இவ்வெண்களின் வித்தியாசம் காண்க.

solution:

Let the numbers be a and b given,

$$
\begin{aligned}
& \operatorname{LCM}(a, b)=630 \\
& \operatorname{HCF}(a, b)=9 \\
& a+b=153
\end{aligned}
$$

We know that,

$$
\operatorname{LCM}(a, b) \times \operatorname{HCF}(a, b)=a \times b
$$

putting the values we get.
$\mathrm{a} \times \mathrm{b}=630 \times 9 ; \mathrm{ab}=5670$
Given that $\mathrm{a}+\mathrm{b}=153$;

$$
a=153-b
$$

substituting the value of an equation
$(153-b)(b)=5670$
$153 b-b^{2}=5670$
$-b^{2}+153 b-5670=0$
$b^{2}-153 b+5670=0$
After Factorisation we got the value.
The two numbers a and b are 90 and 63.
difference $=90-63=27$
22. A land is in the shape of rhombus. The perimeter of the land is 160 m and one of the diagonal is 48 m . Find the area of the land.
ஒரு நிலமானது சாய்சதுர வடிவில் உள்ளது. நிலத்தின் சாற்றளவு 160 மீ மற்றுு் அதன் ஒரு மூலைவிட்டத்தின் அளவு 48 மீ எனில் அந்த நிலத்தின் பரப்பைக் காண்க.

Solution:

Perimeter of the rhombus $=160 \mathrm{~m}$

$$
\begin{aligned}
& 4 \times \text { side }=160 \\
& \text { side }=\frac{160}{4}=40
\end{aligned}
$$

sides of $\triangle A B C$ are $40 \mathrm{~m}, 40 \mathrm{~m}, 48 \mathrm{~m}$

$$
s=\frac{a+b+c}{2}=\frac{48+40+40}{2}=\frac{128}{2}=64 \mathrm{~m}
$$

area of the triangle $=\sqrt{s(s-a)(s-b)(s-c}$

$$
\begin{aligned}
& =\sqrt{64(64-48)(64-40)(64-40)} \\
& =\sqrt{64 \times 16 \times 24 \times 24} \\
& =\sqrt{8 \times 8 \times 4 \times 4 \times 24 \times 24}
\end{aligned}
$$

$$
=8 \times 4 \times 24=768 \mathrm{~m}^{2}
$$

Area of the land $=2 \times$ area of triangle

$$
=2 \times 768=1536 \mathrm{~m}^{2}
$$

23. (A) The area of a triangle whose vertices are $(1,2),(-3,4)$ and $(-5,-6)$ is. $(1,2),(-3,4)$ மற்றும் $(-5,-6)$ ஆகியவற்றை முனைகளாகக் கொண்ட முக்கோணத்தின் பரப்புகாண்.

Solution:

Plot the points in a rough diagram and take them in oder.
Let the vertices be A $(1,2), \mathrm{B}(-3,4)$ and $\mathrm{C}(-5,-6)$
Now the area of $\triangle \mathrm{ABC}$ is
$=\frac{1}{2}\left\{\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}\right)-\left(x_{2} y_{1}+x_{3} y_{2}+x_{1} y_{3}\right)\right\}$

use $: \frac{1}{2}\left\{\begin{array}{llll}1 & -3 & -5 & -1 \\ 2 & -6 & -6 & -2\end{array}\right\}$
$=\frac{1}{2}\{(4+18-10)-(-6-20-6)\}$
$=\frac{1}{2}\{12+32)=22$ sq. units
(B) During Diwali sale the price of shirt decreased from Rs. 900 to Rs.500. What is the percentage of decrease.
தீபாவளி தள்ளுபடி விற்பனையின் போது ஒரு சட்டை விலை ரூ 900 இலிருந்து ரூ 500 ஆக குறைந்தது எனில், குறைவின் சதவீதம் காண்க?

solution:

original value $=900$
new Value $=500$
Decreased value = original value - New value

$$
=900-500
$$

Decreased value $=400$

$$
\text { percentage of decrease }=\frac{\text { value of decrease }}{\text { original value }} \times 100
$$

$$
=\frac{400}{900} \times 100
$$

Decreased percentage $=44 \frac{4}{9} \%$
24. Find the area of card board wasted if a sector of Maximum possible size is cut out from a square card board of size 24 cm . ($\pi=\frac{22}{7}$)
24 செ.மீ நீளமுள்ள சதுர அட்டையிலிருந்து ஒரு மிகப்பெரிய வட்டக்கோணப்பகுதி வெட்டிஎடுக்கப்பட்டால் மீதமுள்ள அட்டையின் பரப்பு காண்க. $\left(\pi=\frac{22}{7}\right)$

Solution:

The area of the square card $=a^{2}$

$$
\begin{aligned}
& =24 \times 24 \\
& =576 \mathrm{~cm}^{2}
\end{aligned}
$$

The area of the sector of maximum possible size

$$
\begin{aligned}
& =\frac{\theta}{360^{\circ}} \times \pi r^{2} \\
& =\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 24 \times 24 \\
& =\frac{22 \times 6 \times 24}{7}=\frac{132 \times 24}{7} \\
& =\frac{3168}{7}=452.57 \mathrm{~m}^{2}
\end{aligned}
$$

The area of the cardboard mark $=576-452.57=123.43 \mathrm{~m}^{2}$

> பிரிவு - இ
> SECTION - C

குறிப்பு : i. ஒவ்வொரு வினாவிற்கும் 250 சொற்களுக்கு மிகாமல் விடையளிக்கவும்.
Answer not exceeding 250 words each.
ii. ஒவ்வொரு வினாவிற்கும் பதினைந்து மதிப்பபண்கள் Each question carries fifteen marks.
iii. கொடுக்கப்பட்டுள்ள ஆறு வினாக்களில் எவையேனும் நான்கு வினாக்களுக்கு மட்டும் விமையளிக்கவும்.
Answer any four questions out of Six questions.

$$
(4 \times 15=60)
$$

32. A rectangular field is of dimension $20 \mathrm{~m} \times 15 \mathrm{~m}$. Two paths run parallel to the sides of the rectangle through the centre of the field. The width of the longer path is 2 m and that of the shorter path is 1 m . Find

CHENNAI
(i) the area of the paths
(ii) the area of the remaining portion of the field
(iii) the cost of constructing the roads at the rate of ₹ 10 per sq.m.

ஒரு செவ்வக நிலத்தின் பரிமாணங்கள் 20 மீ $\times 15$ மீ. அதன் மையம் வழியாகவும், இரு பக்கங்களுக்கு இணையாகவும் இருக்குமாறு இரண்டு பாதைகள் உள்ளன. நீளமாக உள்ள பாதையின் அகலம் 2 மீ மற்றும் குறைந்த நீளமுள்ள பாதையின் அகலம் 1 மீ எனில், கீழ்க்கண்டவற்றைக் காண்க.
(i) பாதைகளிண் பரப்பளவு
(ii) நிலத்தின் மீதமுள்ள பகுதியின் பரப்பளவு
(iii) ஒரு ச.மீ-க்கு ₹ 10 வீதம் பாதையில் சாலை அமைக்க ஆகும் மமாத்தச் செலவு
Solution:

(i) Longer path
$l=20 \mathrm{~m} ; \mathrm{b}=2 \mathrm{~m}$
The area of the Longer path $=l \times \mathrm{b}$

$$
=20 \times 2=40 \mathrm{~m}^{2}
$$

Shorter path

$$
l=15 \mathrm{~m}, \mathrm{~b}=1 \mathrm{~m}
$$

The area of the shorter path $=l \times \mathrm{b}$

$$
=15 \times 1=15 \mathrm{~m}^{2}
$$

Area of middle portion $=2 \mathrm{~m} \times 1 \mathrm{~m}=2 \mathrm{~m}^{2}$
Total area of the paths $=40 \mathrm{~m}^{2}+15 \mathrm{~m}^{2}-2 \mathrm{~m}^{2}$

$$
=53 \mathrm{~m}^{2}
$$

(ii) The area of the rectangular field $=\mathrm{L} \times \mathrm{B}$

$$
=20 \times 15=300 \mathrm{~m}^{2}
$$

The area of the remaining portion of the field $=$ Area of field Area of two parts $=300-53=247 \mathrm{~m}^{2}$
(iii) The cost of constructing the roads per sq. $\mathrm{m}=\mathrm{F} 10$ The total cost of constructing the roads for 53 sq. $\mathrm{m}=₹ 10 \times 53$

$$
=₹ 530
$$

33. (A)In an election two candidates 75% of the voters cast their votes, out of which 2% of the votes were declared invalid. A candidate got 9261 votes which were 75% of the total valid votes. Find the total number of votes enrolled in that election.
ஒரு தோ்தலில் இரு வேட்பாளா்கள் போட்டியிட்டனா. 75\% வாக்குகளே பதிவாகியுள்ளன. அதில் 2% செல்லாத வாக்குகள். A என்ற வேட்பாளர் 9261 வாக்குகள் பெற்றாா். இது மொத்த செல்லக்கூடிய வாக்குகளில் 75\% ஆகும் எனில் மொத்த பதிவான வாக்குகளின் எண்ணிக்கை?
solution

$$
\begin{aligned}
& \text { Let total votes }=100 \mathrm{x} \\
& \text { Total } 75 \% \text { cast their votes }=\left(\frac{75}{100} \times 100 x\right) \\
& \qquad=75 \mathrm{x}
\end{aligned}
$$

out of $75 \times 2 \%$ invalid $=\frac{\not 2}{10 \sigma_{A_{2}}} \times 75^{3}$

$$
\text { Invalid }=1.5 x
$$

Candidate A gets 75% of valid votes $=73.5 \mathrm{x} \times \frac{75}{100}$

$$
\begin{aligned}
& \frac{73.5 x}{100} \times \frac{75^{3}}{100_{4}}=9261 \\
& 73.5 x \times \underline{\beta}=2987 \times 4 \times 100 \\
& \mathrm{x}=\frac{3087^{42} \times 4 \times 100}{73.5} \\
& \text { Total votes } \mathrm{x}=16800
\end{aligned}
$$

(B) LCM and GCD of two polynomials are $x^{6}-1$ and $x+1$ respectively. if one of the polynomial $x^{3}+1$ then the other polynomial is.
இரு பல்லுறுப்புக் கோவைகளிண் மீ.சி.ம மற்றும் மீ.पபா.வ ஆகியன முறையே x^{6} 1 மற்றும் $x+1$ ஆகும். ஒரு கோவை $x^{3}+1$ எனில் மற்றறாரு கோவை எது? solution:

Given GCD $=x+1$ and $\operatorname{LCM}=x^{6}-1$
Let $f(x)=x^{3}+1$
we know that LCM \& GCD $=f(x) \times g(x)$

$$
\begin{aligned}
\Rightarrow g(x) & =\frac{L C M \times G C D}{f(x)}=\frac{\left(x^{6}-1\right)(x+1)}{x^{3}+1} \\
& =\frac{\left(x^{3}+1\right)\left(x^{3}-1\right)(x+1)}{x^{3}+1}=\left(x^{3}-1\right)(x+1)
\end{aligned}
$$

Hence, $g(x)=\left(x^{3}-1\right)(x+1)$
34. (A) Four horses are tethered with ropes measuring 7 m each to four corners
of a rectangular grass land $21 \mathrm{~m} \times 24 \mathrm{~m}$ in dimension.
find
i. The maximum area that can be grazed by the horses.
ii. the area that remains ungrazed.

நான்கு குதிரைகள் 21 மீ $\times 24$ மீ பாிமாணங்களை உடைய ஒரு செவ்வகவடிவ புல் தறையில் 7 மீ நீளமுள்ள கயிற்ற்ற்ல் நான்கு மூலைகளிலும் கட்டப்பட்டுள்ளன. எனில்
i. அதிகபட்சமாக அக்குதிறைகள் மேயக் கூடிய பரப்பு என்ன?
ii. மேயமுடியாத இடத்தின் பரப்பு என்ன?

solution:

Area of one horse that can be grazed

$$
\begin{aligned}
& =\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7 \\
& =\frac{1}{4} \times 22 \times 7=\frac{77}{2}
\end{aligned}
$$

The maximum area that can be grazed by 4

$$
\text { horses in total area }=\frac{77}{2} \times 4
$$

$$
=77 \times 2=154 \mathrm{~m}^{2}
$$

ii. the area that remains ungrazed.

Area of rectangular grass land $=21 \times 24=504 \mathrm{~m}^{2}$
The area that remain ungrazed $=504-154=350 \mathrm{~m}^{2}$
(B) A dealer allows a discount of 10% and still gains 10% what is the cost price of the book which is marked at Rs. 880?
ஒரு புத்தகத்தின் விலையில் 10% தள்ளுபடி செய்தாலும் ஒரு வியாபாாிக்கு 10% இலாபம் கிடைக்கிறது. அப்புத்தகத்தின் குறித்த விலை ரூ 880 எனில், அதன் அடக்க விலையை காண்க.

Solution:

Marked price $=₹ 880$
Discount $\%=\frac{\text { Discount }}{M . P} \times 100$

$$
\begin{array}{r}
\text { Discount }=\frac{1 \varnothing \times 88 \varnothing}{1 \not 0} \\
\text { Discount }=₹ 88
\end{array}
$$

$$
\text { S.P }=(\text { M.P. }- \text { Discount })=880-88
$$

$$
\mathrm{SP}=₹ 792
$$

$$
\text { C.P }=\frac{S P}{(100+\operatorname{Pr} \text { ofit\%)}} \times 100
$$

$$
=\frac{792}{110} \times 100
$$

$\mathrm{CP}=$ ₹
720
35. On selling a T.V at 5% gain and a fridge at 10% gain, a shopkeeper gains Rs. 2000. But if he sells the T.V. at 10% gain and the fridge at 5% loss he gains Rs. 1500, on the transaction. Find the actual price of the T.V. and the fridge.

ஒரு தொலைக்காட்சி பெட்டியை 5\% இலாபத்திற்கும், ஒரு குளி்்சாதனப் பெட்டியை 10% இலாபத்திற்கும் விற்பதால் கடைக்காரருக்கு நிகர இலாபம் ரூ 2000 கிடைக்கிறது. ஆனால் அவா் ஒரு தொலைக்காட்சி பெட்டியை 10% இலாபத்திற்கும். ஒரு குளிiசாததப்பெட்டியை 5\% நஷ்டத்திற்கும் விற்பதால் அவாின் நிகர இலாபம் ரூ 1500 கிடைக்கிறது எனில், தொலைக்காட்சி பெட்டி மற்றும் குளிர்சாதனப் பெட்டியின் சரியான விலைகளைக் காண்க.

solution

Let the cost of T.V be x and the cost of fridge by y
Gain on T.V $=5 \%$ of $x=\frac{5 x}{100}$
Gain of Fridge $=10 \%$ of $y=\frac{10 y}{100}$
From $1^{\text {st }}$ condition

$$
\frac{5 x}{100}+\frac{10 y}{100}=2000
$$

$5 x+10 y=200000$
$x+2 y=40,000$
Gain on T.V

$$
=10 \% \text { of } \mathrm{x}=\frac{10 x}{100}
$$

Loss on fridge $=5 \%$ of $\mathrm{y}=\frac{5 y}{100}$
Form the second condition

$$
\begin{align*}
& \frac{10 x}{100}-\frac{5 y}{100}=1500 \\
& 10 x-5 y=150000 \\
& 2 x-y=30,000 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { solve }(1) \&(2) \\
& 2 x+4 y=80000 \\
& 2 x-y=30000 \\
& (-)(+) \quad(-)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5 y=50000}{y=10,000} \\
& \text { substitute } y=10000 \text { in (1) } \\
& \quad x+2 \times 10000=40000 \\
& x=40000-20000 \\
& x=20,000
\end{aligned}
$$

$$
\text { price of T.V }=20,000
$$

$$
\text { price of fridge }=10,000
$$

36. (A) The area of the biggest circle cut out from the square of a units?
a அலகு பக்கமுள்ள மிகப்பொிய சதுரத்திலிருந்து வெட்டி எடுக்கப்படும் மிகப்பொிய வட்டத்தின் பரப்பு என்ன?

Solution:

Area of the circle $=\pi \mathrm{r}^{2}$
diameter of the circle $=$ side of the square $d=a$

$$
\operatorname{Radius}(\mathrm{R})=\frac{a}{2}
$$

$$
\begin{aligned}
\text { Area of the circle } & =\frac{22}{7} \times \frac{a}{2} \times \frac{a}{2} \\
& =\frac{11 a^{2}}{14} \text { sq. units }
\end{aligned}
$$

(B) The least number which when divided by $12,15,20,54$ leaves in each case a reminder of 8 is
$12,15,20,54$ ஆகிய எண்களால் வகுபடும் போது மீதி 8 ஐ தரக்கூடிய மிகச்சிறிய எண் என்ன?
solution:
LCM of 12, 15, 20, 54

2|12,15, 20, 54
$26,15,10,27$
3|3,15,5,27
$5\lfloor 1,5,5,9$
9 $1,1,1,9$
1,1,1,1
$\mathrm{LCM}=9 \times 5 \times 3 \times 4=540$
Then the number is $=540+8=548$

