Appesto

MENTAL ABILITY TEST 2

10 Marks

1. A man sold two gas stoves Rs. 8400 each. He sold one at a gain of 20% and other at a loss of 20%. Find his gain or loss \% in the whole transaction.
ஒரு மனிதன் இரு எரிவாயு அடுப்புகளை ஒவ்வொன்றும் ரூ 8400 என்ற விலையில் விற்கிறாா். ஒன்றை விற்பதன் மூலம் அவா் 20% இலாபமும், மற்றறான்றை விற்பதன் மூலம் 20% நஷ்டமும் அடைகிறாா் எனில் மொத்தமாக இரண்டையும் விற்பதன் மூலம் அவா் அடையும் இலாப (அல்லது) நஷ்ட சதவீதம் எவ்வளவு?
Solution:
Case I

- Selling price = Rs. 8400
- Gain $\%=20 \%$
- \quad Cost price $=$??

$$
\mathrm{CP}=\frac{100}{(100+\operatorname{Pr} o \mathrm{fit} \%)} \times S P
$$

$$
\rightarrow C P=\frac{100}{(100+20 \%)} \times 8400
$$

$$
\rightarrow C P=\frac{100}{120} \times 8400
$$

$$
\rightarrow C P=\frac{840000}{120}
$$

$$
\rightarrow C P=7000
$$

Cost Price of the first stove is Rs. 7000.

Case II

Here

- Selling price = Rs. 8400
- Loss \% = 20\%
- Cost price = ??

$$
\mathrm{CP}=\frac{100}{(100-\text { loss } \%)} \times S P
$$

$\rightarrow \mathrm{CP}==\frac{100}{(100-20 \%)} \times 8400$
$\rightarrow \mathrm{CP}=\frac{100}{80} \times 8400$
$\rightarrow \mathrm{CP}=\frac{840000}{80}$
$\rightarrow \mathrm{CP}=10500$
Cost Price of the second stove $=$ Rs. 10,500
Total Loss or Gain \%:
Total Cost Price $=7000+10500$
$\rightarrow 175000$
Total selling price $=$
$\rightarrow 8400+8400$
$\rightarrow 16800$
$17,500>16800$
$\mathrm{CP}>\mathrm{SP}$
It is a Loss!
Loss $=$ Cost Price - Selling price

$$
\begin{aligned}
& =17500-16800=700 \\
& \text { Loss = Rs. } 700
\end{aligned}
$$

Loss\%
Loss \% $=\frac{C P-S P}{C P} \times 100$
$\operatorname{Loss} \%=\frac{700}{17500} \times 100$
$\operatorname{Loss} \%=\frac{70000}{17500}$
Loss\% = 4%
2. A bag contains 10 white, 5 black, 3 green and 2 red balls. One ball is drawn at random. Find the probability that the ball drawn is white or black or green.
ஒரு பையில் 10 வவள்ளை, 5 கருப்பு, 3 பச்சை மற்றும் 2 சிவப்பு நிறப் பந்துகள் உள்ளன. சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்படும் ஒரு பந்து, வெள்ளை அல்லது கருப்பு அல்லது பச்சை நறறமாக இருப்பதற்கான நிகழ்தகவிளைக் காண்்.

Solution:

Let S be the sample space.
$\mathrm{n}(\mathrm{S})=20$.
Let W, B and G be the events of selecting a white, black and green ball respectively.
Probability of getting a white ball, $\mathrm{P}(\mathrm{W})=\frac{n(W)}{n(S)}=\frac{10}{20}$
Probability of getting a black ball $\mathrm{P}(\mathrm{B})=\frac{n(B)}{n(S)}=\frac{5}{20}$
Probability of getting a green ball, $\mathrm{P}(\mathrm{G})=\frac{n(G)}{n(S)}=\frac{3}{20}$
Probability of getting a white or black or green ball,

$$
\mathrm{P}(\mathrm{~W} \cup \mathrm{~B} \cup \mathrm{G})=\mathrm{P}(\mathrm{~W})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{G}) \quad \therefore \mathrm{W}, \mathrm{~B} \text { and } G \text { are mutually exclusive. }
$$

$$
\frac{10}{20}+\frac{5}{20}+\frac{3}{20}=\frac{9}{10}
$$

$\left(\right.$ Note: $\left.P(W \cup B \cup G)=P(R)=1-P(R)=1-\frac{2}{20}=\frac{9}{10}\right)$
3. (A) The LCM of two co-prime numbers is 5005 . If one of the numbers is 65 , then find the other number.

இரு சார்பகா எண்களின் மீ.சி.ம 5005. ஓர் எண் 65 எனில், மற்றோா் எண் என்ன?
Solution: We know that, the product of the two numbers $=\mathrm{LCM} \times \mathrm{HCF}$
As the HCF of co-primes is 1 ,
$65 \times($ the other number $)=5005 \times 1$
The other number $=5005 \div 65=77$
(B) The difference between a number and its two third is 30 more than one -fifth of the number. Find the number.

ஒரு எண்ணிற்கும், அதன் மூன்றில் இரண்டு மடங்கிற்கும் உள்ள வித்தியாசமானது, அதன் ஐந்தில் ஒரு மடங்கை விட 30 அதிகம் எனில், அந்த எண்ணைக் காண்க.

Solution:

$$
\begin{aligned}
& X-2 x / 3=30+x / 5 \\
& X / 3=30+x / 5 \\
& X / 3-x / 5=30 \\
& 2 x / 15=30 \\
& 2 x=450 \\
& x=225
\end{aligned}
$$

4. Find the simple interest and the amount due on ₹ 7,500 at 8% per annum for 1 year 6 months.
₹7,500 க்கு 8% வட்டி வீதம் ஒரு வருடம் 6 மாதங்களுக்கான தனிவட்டியையும் தொகையையும் காண்க.

solution:

$$
\begin{aligned}
& \mathrm{P}=₹ 7,500 \\
& \mathrm{n}=1 \mathrm{yr} 6 \text { months } \\
& =1 \frac{6}{12} \mathrm{yrs} \\
& =1 \frac{1}{2}=\frac{3}{2} \mathrm{yrs} \\
& \mathrm{r}=8 \% \\
& \mathrm{I}=\frac{p n r}{100} \\
& =\frac{7500 \times \frac{3}{2} \times 8}{100} \\
& =\frac{7500 \times 3 \times 8}{2 \times 100} \\
& =900
\end{aligned}
$$

$$
\begin{aligned}
& I=₹ 900 \\
& A=P+I \\
& =7500+900 \\
& =₹ 8,400 \\
& \text { Interest = ₹900, Amount }=₹ 8,400
\end{aligned}
$$

5. The king, Queen and Jack of the suit spade are removed from a deck of 52 cards. One card is selected from the remaining cards. find the probability of getting
(i) a diamond
(ii) a queen
(iii) a spade
(iv) a heart card bearing the number 5.

52 சீட்டுகள் கொண்ட ஒரு சீட்டுக் கட்டில் ஸ்பேடு சீட்டுகளிலிருந்து இராசா, இராணி மற்றும் மந்திரி சீட்டுகள் நீக்கப்படுகின்றன. மீதமுள்ள சீட்டுகளிலிருந்து ஒரு சீட்டு எடுக்கப்படுகிறது. அது
(i) ஒரு டைமண்ட்
(ii) ஓா் இராணி
(iii) ஒரு ஸ்பேடு
(iv) 5 என்ற எண் கொண்ட ஹா்்ட் சீட்டு ஆகியனவாக இடுப்பதற்கான நிகழ்தகவுகளைக் காண்க.

Solution:

Suits of playing cards		Heart \square	Clavor	Diamond
$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & . ⿹ \zh26 \\ & .0 \\ & x \\ & 1 \end{aligned}$	A	3 A	A	A
	2	2	2	2
	3	3	3	3
	4	4	4	4
	5	5	5	5
	6	6	6	6
	7	7	7	7
	8	8	8	8
	9	9	9	9
	10	10	10	10
	J	J	J	J
	Q	Q	Q	Q
	K	K	K	K
Total number of cards in each suit	13	13	13	13
Remaining cards after removing some of Them	10	13	13	13

After removing king. Queen and Jack of spade the remaining number of cards.

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~S})=10+13+13+13 \\
& \mathrm{n}(\mathrm{~S})=49
\end{aligned}
$$

i. Let A be the event of selecting a card from diamond.

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~A})=13 \\
& \mathrm{P}(\mathrm{~A})=\frac{n(A)}{n(S)}=\frac{13}{49}
\end{aligned}
$$

Probability of getting a diamond card $=\frac{13}{49}$
ii. Let ' B ' be the event of getting a queen.

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~B})=3 \\
& \mathrm{P}(\mathrm{~B})=\frac{n(B)}{n(S)}=\frac{3}{49}
\end{aligned}
$$

Probability of getting a queen $=\frac{3}{49}$
iii. Let ' C ' be the event of getting a spade

$$
\begin{aligned}
& \mathrm{n}(\mathrm{C})=10 \\
& \mathrm{P}(\mathrm{C})=\frac{n(C)}{n(S)}=\frac{10}{49}
\end{aligned}
$$

Probability of getting a spade $=\frac{10}{49}$
iv. Let D be the event of getting 5 of heart.

$$
\begin{aligned}
& \mathrm{n}(\mathrm{D})=1 \\
& \mathrm{P}(\mathrm{D})=\frac{n(D)}{n(S)}=\frac{1}{49}
\end{aligned}
$$

Probability of getting 5 of heart $=\frac{1}{49}$
6. (A) Find the rate of interest if the difference between C.I and S.I on ₹ 8000 compounded annually for 2 years is ₹20.
₹ 8000 க்கு, 2 ஆண்டுகளுக்கு கிடைத்த தனிவட்டிக்கும் கூட்டுவட்டிக்கும் இடையேயுள்ள வித்தியாசம் ₹ 20 எனில், வட்டி வீதத்தைக் காண்க.

Solution:

$$
\left.\begin{array}{l}
\text { Difference (d) }(2 \text { years })=\frac{p r^{2}}{100^{2}} \\
20=\frac{8000 \times r^{2}}{10 \emptyset \times 190} \\
20 \times 10=8 \mathrm{r}^{2}
\end{array}\right] \begin{aligned}
& \mathrm{r}^{2}=25 \\
& \hline \mathrm{r}=5 \% \\
&
\end{aligned}
$$

(B) The Marked price of a toy is Rs. 1,200. The shop keeper gave a discount of 15%. what is the selling price of the toy?

ஒரு பொம்மையின் குறித்தவிலை ரூ 1200 கடைக்கார்் 15% தள்ளுபிி விலையில் கொடுத்தா்் எனில், பபாம்மையின் விற்பனை விலை என்ன?

Marked price $=1200$
Discount $=15 \%$
Selling price $=$?
Discount $=15 \%$ discount of Marked price

$$
=\frac{15}{100} \times 1200
$$

Discount $=180$ Rs.

$$
\begin{gathered}
\text { Selling Price }=\text { Marked price }- \text { selling price } \\
=1200-180 \\
=1020 \text { Rs. } \\
\text { Selling price }=1020 \text { Rs. }
\end{gathered}
$$

15 Marks
7. The probability that a new car will get an award for its design is 0.25 , the probability that it will get an award for efficient use of fuel is 0.35 and the probability that it will get both the awards is 0.15 . Find the probability that
(i) it will get at least one of the two awards
(ii) it will get only one of the awards.

ஒரு புதிய மகிழ்வுந்து (car) அதனுடைய வடிவமைப்பிற்காக விருது பெறும்நிகழ்தகவு 0.25 என்க. சிறந்த முறையலல் எரிபொருள் பயன்பாட்டிற்கான விருது पபறும் நிகழ்தகவு 0.35 மற்றும் இரு விருதுகளும் பெறுவதற்கான நிகழ்தகவு 0.15 எனில், அம்மகிழ்வுந்து
i. குறைந்தது ஏதாவது ஒரு விருது பெறுதல்
ii. ஒரே ஒரு விருது மட்டும் பபறுதல் ஆகிய நிகழ்ச்சிகளுக்கான நிகழ்தகவுகளைக் காண்க. Solution:

Let the probability of winning the award for design be $\mathrm{P}(\mathrm{A})$ and that for efficient use of fuel be $P(B)$
$\mathrm{P}(\mathrm{A})=0.25$
$\mathrm{P}(\mathrm{B})=0.35$
$P(A \cap B)=0.15$
i. Probability that it will get at least one of the two awards

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
&=0.25+0.35-0.15 \\
&=0.45
\end{aligned}
$$

ii. Probability of getting only one $=P(A)+P(B)-2 P(A \cap B)$

$$
\begin{aligned}
& =0.25+0.35-2(0.15) \\
& =0.3
\end{aligned}
$$

8. (A) The income of a person is increased by 10% and then decreased by 10%. Find the change in his income.

ஒரு நபாின் வருமானம் 10% அதிகாிக்கப்பட்டு பிறகு 10% குறைக்கப்படுகிறது. எனில், அவருடைய வருமானத்தில் ஏற்படும் மாற்றத்தைக் காண்க.

Solution

Let his income be ₹ x.
After 10% increase, income is $₹ \mathrm{x}+\frac{10}{100} \times x=\frac{110}{100}$ (or) $\frac{11}{10} x$
Now, after 10% decrease, income is $₹ \frac{11 x}{10}-\frac{10}{100}\left(\frac{11 x}{10}\right)$

> i.e

$$
\frac{11 x}{10}-\frac{11 x}{100}=\frac{110 x-11 x}{100}=R s . \frac{99 x}{100}
$$

Net change in his income $=\times-\quad \frac{99 x}{100}=\frac{x}{100}$
Percentage change $=\frac{\frac{x}{100}}{x} \times 100=1 \%$
That is, income is reduced by 1%.
(B) The LCM of two numbers is 6 times thier HCF. If the HCF is 12 and one of the numbers is 36 . find the other number?
இரு எண்களின் மீ.சி.ம ஆனது மீ.பப.கா-வின் 6 மடங்காகும். மீ.ดப.கா. 12 மற்றும் ஓா் எண் 36. எனில் மற்றறாரு எண்ணைக் காண்க.
Solution:
$\mathrm{HCF}=12$
Product of two numbers $=\mathrm{LCM} \times \mathrm{HCF}$
$36 \times$ other number $=72 \times 12$
other number $=(72 \times 12) / 36$
other number $=24$
9. (A) The population of a town is increasing at the rate of 6% p.a. It was 238765 in the year 2018. Find the population in the year 2016 and 2020.

ஒரு நகரத்தின் மக்கள் தொகை ஆண்டுக்கு 6\% அதிகாிக்கிறது. 2018 ஆம் ஆண்டு மக்கள்தொகை 238765 ஆக இருந்தது எனில், 2016 மற்றும் 2020 ஆம் ஆண்டுகளில் மக்கள்தொகையைக் காண்க.

Solution:

Let the population in 2016 be ' P '.

$$
\text { Then, } \begin{aligned}
\mathrm{A} & =\mathrm{P}\left(1+\frac{r}{100}\right)^{n} \\
= & 238765=\mathrm{P}\left(1+\frac{6}{100}\right)^{2}=P\left(\frac{53}{50}\right)^{2} \\
= & \mathrm{P}=238765 \times \frac{50}{53} \times \frac{50}{53} \\
\mathrm{P} & =212500
\end{aligned}
$$

Let the population in 2020 be ' A '

Then, $\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n}$

$$
\begin{aligned}
& A=238765\left(1+\frac{6}{100}\right)^{2} \\
& =238765 \times \frac{53}{50} \times \frac{53}{50} \\
& =95.506 \times 53 \times 53 \\
& =268276
\end{aligned}
$$

The population in the year 2016 is 212500 and that in the year 2020 is 268276.
(B) Find the probability that
(i) a leap year selected at random will have 53 Fridays
(ii) a leap year selected at random will have only 52 Fridays
(iii) a non-leap year selected at random will have 53 Fridays.

பின்வருவனவற்றறற்கான நிகழ்தகவினைக் காண்க.
i. சமவாய்ப்பு முறையலல் தோ்்தெடுக்கப்படும் நநட்டாண்டில் 53 வெள்ளிக் கிழமைகள் இருத்தல்
ii. சமவாய்ப்பு முறையில் தே்ந்தெடுக்கப்படும் நெட்டாண்டில் 52 வெள்ளிக் கிழமைகள் மட்டுமே இருத்தல்.
iii. சமவாய்ப்பு முறையில் தோ்்ததடுக்கப்படும் சாதாரண வருடத்தில் (Non-leap year) 53 வெள்ளிக்கிழமைகள் இருத்தல்
(i) Number of days in a leap year $=366$ days. i.e., 52 weeks and 2 days.

Now 52 weeks contain 52 Fridays and the remaining two days will be one of the following seven possibilities.
(Sun, Mon), (Mon, Tue), (Tue, Wed), (Wed, Thur), (Thur, Fri), (Fri, Sat) and (Sat, Sun).
The probability of getting 53 Fridays in a leap year is same as the probability of getting a Friday in the above seven possibilities.
Here $S=($ Sun, Mon), (Mon, Tue), (Tue, Wed), (Wed," Thur), (Thur, Fri), (Fri, Sat), (Sat, Sun),.

Then $n(S)=7$.
Let A be the event of getting one Friday in the remaining two days.

$$
\begin{array}{ll}
\mathrm{A}=\{(\text { Thur, Fri }),(\text { Fri, Sat })\} & \text { Then } \mathrm{n}(\mathrm{~A})=2 \\
\mathrm{P}(\mathrm{~A})=\frac{n(A)}{n(S)}=\frac{2}{7} &
\end{array}
$$

ii. To get only 52 Fridays in a leap year, there must be no Friday in the reamining two days.
$B=\{($ sun, Mon $),($ Mon, Tue) $)$ (Tue, Wed), (Wed, Thur), (Sat, Sun) $\}$

$$
\mathrm{n}(\mathrm{~B})=5 .
$$

Now, $\mathrm{P}(\mathrm{B})=\frac{n(B)}{n(S)}=\frac{5}{7}$
Note that A and B are complementary events.
iii. Number of days in a non leap year $=365$ days. i.e., 52 weeks and 1 day.

To get 53 Fridays in a non leap year, there must be a Friday in the seven possibilities: Sun, Mon, Tue, Wed, Thur, Fri and Sat.
Here, $S=\{$ Sun, Mon, Tue, Wed, Thur, Fri and Sat $\}$

$$
\mathrm{n}(\mathrm{~S})=7
$$

Let C be the event of getting a Friday in the remaining one day. Then

$$
\begin{aligned}
& \mathrm{C}=\{\mathrm{Fri}\} \Rightarrow n(C)=1 \\
& P(C)=\frac{n(C)}{n(S)}=\frac{1}{7}
\end{aligned}
$$

10. Two cards are drawn with replacement from a well shuffled deck of 52
cards. Find the Probability distribution, mean and variance for the number of aces. நன்றாகக் கலைக்கப்பட்ட 52 சீட்டுக்களடங்கிய சீட்டுக்கட்டிலிருந்து இரு சீட்டுகள் திரும்ப வைக்கும் முறையில் எடுக்கப்படுகின்றன ஏஸ் (ace) சீட்டுகளிண் எண்ணிக்கைக்கு நிகழ்தகவு பரவல், சராசரி மற்றும்பரவற்படி காண்க.

Solution:

Let X denote the number of aces drawn in drawing two cards with replacement.
X can take the values 0,1 and 2 .
Let $P(S)=P($ getting aces $)=\frac{4}{52} \Rightarrow P(F)$
$=\mathrm{P}($ not getting aces $)=\frac{48}{52}$
$\mathrm{P}(\mathrm{X}=0)=\mathrm{P}($ no ace $)=\mathrm{P}(\mathrm{FF})=\mathrm{P}(\mathrm{F})$
$P(F)=\frac{48}{52} \cdot \frac{48}{52}=\frac{144}{169}$
$\mathrm{P}(\mathrm{X}=1)=($ one ace $)=\mathrm{P}(\mathrm{SF}$ or FS$)=\mathrm{P}(\mathrm{S}) \cdot \mathrm{P}(\mathrm{F})+\mathrm{P}(\mathrm{F}) \mathrm{P}(\mathrm{S})$
$=2 \mathrm{P}(\mathrm{S}) \cdot \mathrm{P}(\mathrm{F})=2 \times \frac{4}{52} \times \frac{48}{52}=\frac{24}{169}$
$\mathrm{P}(\mathrm{X}=2)=($ two aces $)=\mathrm{P}(\mathrm{SS})=\mathrm{P}(\mathrm{S})$
$\mathrm{P}(\mathrm{S})=\frac{4}{52} \cdot \frac{4}{52}=\frac{1}{169}$

Probability distribution

X	0	1	2
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$\frac{144}{169}$	$\frac{24}{169}$	$\frac{1}{169}$

$$
\begin{aligned}
\text { Mean } & =E[x]=\sum_{-\infty}^{\infty} x_{i} p_{i}=(0)\left(\frac{144}{169}\right)+(1)\left(\frac{24}{169}\right)+(2)\left(\frac{1}{169}\right) \\
& \text { (1) }\left(\frac{24}{169}\right)+(2)\left(\frac{1}{169}\right) \\
& =\frac{24+2}{169}=\frac{26}{169}=\frac{2}{13}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{x}^{2}\right)= & \sum_{x=0}^{2} x_{i}^{2} p_{i}=\left(0^{2}\right)\left(\frac{144}{169}\right)+\left(1^{2}\right)\left(\frac{24}{169}\right)+\left(2^{2}\right)\left(\frac{1}{169}\right) \\
& =\frac{24+4}{169}=\frac{28}{169}
\end{aligned}
$$

Variance $(X)=E\left(x^{2}\right)-(E(x))^{2}$

$$
=\frac{28}{169}-\left(\frac{2}{13}\right)^{2}=\frac{28}{169}-\frac{4}{169}=\frac{24}{169}
$$

11. Find the H.C.F and L.C.M of $2 / 3,8 / 9,16 / 81$ and $10 / 27$ $2 / 3,8 / 9,16 / 81,10 / 27$ மீ.ดப.கா. மற்றும் மீ.சி.ம காண்க.
Solution:
H.C.F. of Given fraction

$$
=\frac{\text { H.C.F.of } 2,8,16,10}{\text { L.C.M.of } 3,9,81,27}=\frac{2}{81}
$$

L.C.M of given fractions

$$
\frac{\text { L.C. Mof } 2,8,16,10}{\text { H.C.F.of } 3,9,81,27}=\frac{80}{3}
$$

12. (A) If A is an event of a random experiment such that $\mathrm{P}(\mathrm{A}): \mathrm{P}(\bar{A})=17: 15$ and $\mathrm{n}(\mathrm{S})=$ 640 then find (i) $\mathrm{P}(\bar{A})$ (ii) $\mathrm{n}(\mathrm{A})$.
ஒரு சமவாய்ப்புச் சோதனையில் ஒரு நிகழ்ச்சி A என்க. இங்கு $\mathrm{P}(\mathrm{A}): \mathrm{P}(\bar{A})=17: 15$ மற்றும் $\mathrm{n}(\mathrm{S})=640$ எனில், (i) $\mathrm{P}(\bar{A})$ (ii) $\mathrm{n}(\mathrm{A})$-ஐக் காண்க.
Solution:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A}): \mathrm{P}(\bar{A})=17: 15 \\
& \text { i. } \mathrm{P}(\mathrm{~A})=\frac{17}{32}, P(\bar{A})=\frac{15}{32} \\
& \text { ii. } \mathrm{P}(\mathrm{~A})=\frac{17}{32}=\frac{n(A)}{n(S)} \\
& \therefore \mathrm{n}(\mathrm{~A})=17 \times 20 \mathrm{n}(\mathrm{~A})=340
\end{aligned}
$$

(B) State the axioms of probability.

நிகழ்தகவின் விதிகளை கூறுக..
Axioms of probability:
Let S be a finite sample space, let $P(S)$ be the class of events, and let P be a real valued function defined on $P(S)$. Then is called probability function of the event A, when the following axioms are hold:
[P_{1}] For any event A. $1 \geq \mathrm{P}(\mathrm{A}) \geq 0 \quad$ (Non-negativity axiom)
[P_{2}] For any two mutually exclusive events

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

(Additivity axiom)
$\left[\mathrm{P}_{3}\right]$ For the certain event $\quad P(S)=1$
(Normalization axiom)
(C) The sum of two numbers is 55 and their difference is 7 . Find the numbers. இரு எண்களின் கூடுதல் 55. அவற்றின் வித்தியாசம் 7 எனில், அந்த எண்களளக் காண்க. Solution:

Let the two numbers be x and y, where $x>y$
By the given data, $x+y=55$

$$
\begin{equation*}
x-y=7 \tag{1}
\end{equation*}
$$

Equation (2) becomes, $x=7+y$
substituting x in (1) we get, $7+y+y=55$

$$
\begin{align*}
& \Rightarrow 2 y=55-7=48 \tag{3}\\
& y=\frac{48}{2}=24
\end{align*}
$$

Substituting $y=24$ in (3) we get, $x=7+24=31$.
The required two numbers are 31 and 24 .

