CHENNAI

APPDLD

WALK - IN - TEST - 2

1. Answer the following questions.

பின்வரும் வினாக்களுக்கு விடையளி.
A. A student instead of multiplying a number by $\frac{8}{9}$, divided it by $\frac{8}{9}$ by mistake. If the difference between the answers got by him is 34 , find the number.
ஒரு மாணவர், ஓர் எண்ணை $\frac{8}{9}$ ஆல் பெருக்குவதற்குப் பதிலாக, தவறுதலாக $\frac{8}{9}$ ஆல் வகுத்து விட்டார். அவருக்குக் கிடைத்த விடைக்கும், சரியான விடைக்கும் உள்ள வித்தியாசம் 34 எனில், அந்த எண்ணைக் காண்க.

Solution:

Let x be the required number.
The student had to find $\frac{8 x}{9}$ but,

$$
\begin{aligned}
& \text { he had found } \frac{x}{\frac{x}{9}} \text {, that is } \frac{9 x}{8} \\
& \text { Now, } \begin{array}{r}
\frac{9 x}{8}-\frac{8 x}{9}=34 \\
\frac{81 x-64 x}{72}=34 \Rightarrow \frac{17 x}{72}=34 \\
x=\frac{34 \times 72}{17}=144
\end{array}
\end{aligned}
$$

B. An equilateral triangle is described on the diagonal of a square. What is the ratio of the area of the triangle to that of the square?
ஒரு சதுதத்தின் மூலை விட்டத்தின் மீது ஒரு சமபக்க முக்கோணம் வெையப்பட்டுள்ளது. சதுத்துடன், முக்கோண பரப்பளவின் விகிதம் யாது?

Solution:

area of a square $=a^{2}$ sq.units
length of the diagonal $=\sqrt{2} \times a$ units
length of the diagonal $=$ Side of the equilateral triangle $=\sqrt{2} \times a$ units
area of an equilateral triangle $=\frac{\sqrt{3}}{4} \times a^{2}$

$$
\begin{array}{r}
=\frac{\sqrt{3}}{4} \times(\sqrt{2} \times a)^{2} \\
\text { required ratio }=\frac{\sqrt{3}}{4} \times(\sqrt{2} \times a)^{2}: a^{2}=\sqrt{3}: 2
\end{array}
$$

2. Answer the following questions.

பின்வரும் வினாக்களுக்கு விடையளி.
A. A two digit number is seven times the sum of its digits. The number formed by reversing the digits is 18 less than the given number. Find the given number.
ஒரு ஈரிலக்க எண்ணின் மதிப்பு அதன் இலக்கங்களின் கூடுதல் போல் 7 மடங்கு உள்ளது. இலக்கங்களை இடமாறுதல் செய்ய கிடைக்கும் எண் கொடுக்கப்பட்ட எண்ணைவிட 18 குறைவு எனில், அவ்வெண்ணைக் காண்க.

Solution:

Let the ten's digit be x and the unit's digit be y
Then, number $=10 x+y$
$\therefore 10 \mathrm{x}+\mathrm{y}=7(\mathrm{x}+\mathrm{y})$
$3 x=6 y$
$x=2 y$
Number formed by reversing the digits $=10 y+x$
$\therefore(10 \mathrm{x}+\mathrm{y})-(10 \mathrm{y}+\mathrm{x})=18$
$\Rightarrow 9 x-9 y=18$
$x-y=2$
$2 y-y=2$
$y=2$
So, $x=2 y=4$
Hence,
\therefore Required number
$=10 x+y$
$=40+2$
$=42$
B. A heap of paddy is in the form of a cone whose diameter is 4.2 m and height is 2.8 m . If the heap is to be covered exactly by a canvas to protect it from rain, then find the area of the canvas needed.
நேர்வட்ட கூம்பு வடிவில் குவிக்கப்பட்ட நெற்குவியலின் விட்டம் 4.2 மீ மற்றும் அதன் உயரம் 2.8 மீ. என்க. இந்நநற்குவியலை மழையிலிருந்து பாதுகாக்க கித்தான் துணியால் மிகச் சரியாக மூடப்படுகிறது எனில், தேவையான கித்தான் துணியின் பரப்றபக் காண்க.

Solution:

Height is 2.8 m and diameter is $4.2 \mathrm{~m} ; \mathrm{r}=2.1 \mathrm{~m}$
Calculation of slant height, $l=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& =\sqrt{2.1^{2}+2.8^{2}} \mathrm{~m} \\
& =\sqrt{4.41+7.84} \mathrm{~m} \\
& =\sqrt{12.25} \mathrm{~m} \\
& =3.5 \mathrm{~m}
\end{aligned}
$$

all curved sides
To cover the heap of paddy completely we need to cover it from as well as from top as well as to bottom.

Lateral surface area of the cone $=\pi r l$ sq.units

$$
\begin{aligned}
& =\pi \times 2.1 \times 3.5 \mathrm{~m}^{2} \\
& =7.35 \pi \mathrm{~m}^{2} \\
& =23.079 \mathrm{~m}^{2} \\
& =23.1 \mathrm{~m}^{2} \text { (approximately). }
\end{aligned}
$$

3. The sum of the numerator and denominator of a fraction is 12 . If the denominator is increased by 3 , the fraction becomes $\frac{1}{2}$. Find the fraction.
ஒரு பின்னத்தின் பகுதி மற்றும் தொகுதியின் கூடுதல் 12 . அப்பின்னத்தின் பகுதியுடன் 3ஐக் கூட்டினால் அதன் மதிப்பு $\frac{1}{2}$ ஆதும் எனில், அப்பின்னத்தைக் காண்க.

Solution:

Let the required fraction be $\frac{x}{y}$. Then,

$$
\begin{align*}
& x+y=12 \ldots \ldots .(1) \\
& \text { And, } \frac{x}{y+3}=\frac{1}{2} \\
& 2 x-y=3 \ldots \ldots .(2) \\
& \text { On adding (1) and (2), we get, } \\
& x=5 \\
& \text { On putting } x=5 \text { in equation (1), we get, } \\
& y=7
\end{align*}
$$

Therefore, the required fraction is $\frac{5}{7}$.
4. The perimeter of a triangular plot is 600 m . If the sides are in the ratio 5:12:13, then find the area of the plot.
ஒரு முக்கோண வடிவிலான மளையின் சுற்றூளவு 600மீ. அதன் பக்கங்கள் 5:12:13 என்ற விகிதத்தில் உள்ளன எனில் அந்த மனையின் பரப்பளவைக் காண்க.

Solution:

Let the side of the triangle a, b and c be $5 x, 12 x$ and $13 x$
Perimeter of a triangular plot $=600 \mathrm{~m}$

$$
\begin{aligned}
& 5 x+12 x+13 x=600 \\
& 30 x=600 \\
& \Rightarrow x=\frac{600}{30} \\
& x=20 \\
& a=5 x=5 \times 20=100 \mathrm{~m} \\
& b=12 x=12 \times 20=240 \mathrm{~m} \\
& c=13 x=13 \times 20=260 \mathrm{~m} \\
& s=\frac{600}{2}=300 \\
& s-a=300-100=200 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{s}-\mathrm{b}=300-240=60 \mathrm{~m} \\
& \mathrm{~s}-\mathrm{c}=300-260=40 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{3 \times 2 \times 6 \times 4 \times 100 \times 100 \times 100} \\
& =\sqrt{3 \times 2 \times 2 \times 3 \times 2^{2} \times 10^{6}} \\
& =10^{3} \times 3 \times 2 \times 2 \mathrm{~m}^{2} \\
& =1000 \times 12 \mathrm{~m}^{2} \\
& =12000 \mathrm{~m}^{2}
\end{aligned}
$$

Area of triangular plot $=12000$ sq. m
5. The length, breadth and height of a hall are $25 \mathrm{~m}, 15 \mathrm{~m}$ and 5 m respectively. Find the cost of renovating its floor and four walls at the rate of ₹ 80 per m^{2}.
ஓர் அறையின் நீளம், அகலம் மற்றும் உயரம் முறையே 25 மீ, 15 மீ மற்றும் 5 மீ ஆகும். அறையின் தரை மற்றும் நான்கு சுவர்களையும் புதுப்பிக்க 1 சதுர மீட்டருக்கு ₹ 80 வீதம் செலவு ஆகும் எனில், மொத்தச் செலவைக் காண்க.

Solution:

Here, length $(l)=25 \mathrm{~m}$, breadth $(\mathrm{b})=15 \mathrm{~m}$, height $(\mathrm{h})=5 \mathrm{~m}$.
Area of four walls $=$ LSA of cuboid

$$
\begin{aligned}
& =2(l+b) \times h \\
& =2(25+15) \times 5 \\
& =80 \times 5=400 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the floor $=l \times b$

$$
=25 \times 15=375 \mathrm{~m}^{2}
$$

Total renovating area of the hall

$$
\begin{aligned}
& =(\text { Area of four walls }+ \text { Area of the floor }) \\
& =(400+375)=775 \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, cost of renovating at the rate of $₹ 80$ per $\mathrm{m}^{2}=80 \times 775$
= ₹ 62,000.

15 - Marks
6. Answer the following questions.

பின்வரும் வினாக்களுக்கு விடையளி.
ul. The sum of the two positive numbers is 21 and their difference is 5 . Find the numbers. இரு மிகை எண்களின் கூடுதல் 21 அவ்விரு எண்களுக்கு இடையே உள்ள வேறுபாடு 5 எனில் அவ்வெண்களைக் காண்க.

Solution:

$$
\begin{aligned}
& x+y=21 \rightarrow y=21-x \\
& x-y=5 \\
& x-(21-x)=5 \\
& 2 x-21=5 \\
& 2 x=26 \\
& x=13 ; y=8
\end{aligned}
$$

The numbers are 13,8 .
B. A verandah of width 3 m is constructed along the outside of a room of length 9 m and width 7 m . Find (a) the area of the verandah (b) the cost of cementing the floor of the verandah at the rate of ₹ 15 per sq.m.
9 மீ நீளமும், 7 மீ அகலமும் உள்ள ஓர் அறைக்கு வெளியே, 3 மீ சீரான அகலமுள்ள ஒரு தாழ்வாரம் (verandah) உள்ளது. (அ) தாழ்வாரத்தின் பரப்பளவு காண்க. (ஆ) அந்தத் தாழ்வாரப் பகுதிக்கு ச.மீ-்்கு ₹ 15 வீதம் சிமெண்ட் பூச ஆகும் செலவைக் காண்க.

Solution:

$$
\begin{aligned}
& \text { Here, } \begin{aligned}
& l=9 \mathrm{~m}, \mathrm{~b}=7 \mathrm{~m} \\
& \text { Area of the Room }=l \times \mathrm{b} \\
&=9 \times 7 \\
&=63 \mathrm{~m}^{2}
\end{aligned} \\
& \begin{aligned}
\mathrm{L}=l+2 \mathrm{w}= & 9+2(3)=9+6=15 \mathrm{~m} \\
\mathrm{~B}=\mathrm{b}+2 \mathrm{w} & =7+2(3)=7+6=13 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Area of the room including verandah $=\mathrm{L} \times \mathrm{B}$

$$
=15 \times 13=195 \mathrm{~m}^{2}
$$

The area of the verandah =Area of the room including verandah -Area of the room

$$
\begin{aligned}
& =195-63 \\
& =132 \mathrm{~m}^{2}
\end{aligned}
$$

The cost of cementing the floor for 1sq. $\mathrm{m}=₹ 15$
Therfore, the cost of cementing the floor of the verandah $=132 \times 15=$ ₹ 1980.
7. Answer the following questions.

பின்வரும் வினாக்களுக்கு விடையளி.
A. A play-top is in the form of a hemisphere surmounted on a cone. The diameter of the hemisphere is 3.6 cm . The total height of the play-top is 4.2 cm . Find its total surface area.
ஒரு விளையாட்டு பம்பரமானது (Top) கூம்பின் மீது அரைக்கோளம் இணைந்த வடிவில் உள்ளது. அரைக்கோளத்தின் விட்டம் 3.6 செ.மீ மற்றும் பம்பரத்தின் மொத்த உயரம் 4.2 செ.மீ எனில், அதன் மொத்தப் புறப்பரப்பைக் காண்க.

Solution:

diameter of hemisphere $=3.6 \mathrm{~cm}$; $\mathrm{r}=\frac{3.6}{2} \mathrm{~cm}$
diameter of cone $=3.6 \mathrm{~cm} ; \quad r=\frac{3.6}{2} \mathrm{~cm}$
total height $=4.2 \mathrm{~cm}$
height of cone $=4.2-\frac{3.6}{2}=2.4 \mathrm{~cm}$
slant height $l=\sqrt{h^{2}+r^{2}}$

$$
\begin{aligned}
& =\sqrt{(2.4)^{2}+(1.8)^{2}} \\
l & =3 \mathrm{~cm} \\
\mathrm{TSA} & =\mathrm{CSA} \text { of hemisphere }+\mathrm{CSA} \text { of cone } \\
& =2 \pi \mathrm{r}^{2}+\pi \mathrm{r} l
\end{aligned}
$$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{3.6}{2} \times \frac{3.6}{2}+\frac{22}{7} \times \frac{3.6}{2} \times 3 \\
& =37.33 \mathrm{~cm}^{2}
\end{aligned}
$$

B. A square and a parallelogram have the same area. If the side of the square is 48 m and the height of the parallelogram is 18 m , find the length of the base of the parallelogram.
48 மீ பக்க அளவு கொண்ட ஒரு சதுரமும், 18 மீ உயரம் கொண்ட ஒரு இணைகரமும் சமப் பரப்பளவைக் கொண்டவை எனில், இணைகரத்தின் அடிப்பக்க அளவைக் காண்க.

Solution:

side of square $=48 \mathrm{~m}$
Area of square=area of parallelogram
now,
area of square $=($ side \times side $)$ sq.unit
$=(48 \times 48) \mathrm{sq} \cdot \mathrm{m}=2304 \mathrm{sq} \cdot \mathrm{m}$
hence, area of parallelogram $=2304$ sq.m
area of parallelogram $=b \times h$ sq.unit
$2304=\mathrm{b} \times 18$
hence $b=\frac{2304}{18}=128 \mathrm{~m}$
8. There are 12 pieces of five, ten and twenty rupee currencies whose total value is ₹ 105 . But when first 2 sorts are interchanged in their numbers its value will be increased by ₹ 20 . Find the number of currencies in each sort.
ஐந்து, பத்து மற்றும் இருபது ரூபாய் நோட்டுகளின் மொத்த மதிப்பு ₹ 105 மற்றும் மொத்த நோட்டுகளின் எண்ணிக்கை 12. முதல் இரண்டு வகை நோட்டுகளின் எண்ணிக்கையை இடமாற்ற்் செய்தால் முந்தைய மதிப்பை விட ₹ 20 அதிகரிக்கிறது எனில், எத்தனை ஐந்து, பத்து மற்றும் இருபது ரூபாய் நோட்டுகள் உள்ளன.

Solution:

Let the number of ₹ 5 currencies be " x "
Let the number of ₹ 10 currencies be " y "
and the number of ₹ 20 currencies be " z "
By the given first condition
$x+y+z=12$
By the given second condition
$5 x+10 y+20 z=105$
$x+2 y+4 z=21(\div 5)$
By the given third condition
$10 x+5 y+20 z=105+20$
$10 x+5 y+20 z=125$
$2 x+y+4 z=25$
(1) $\times 4 \Rightarrow 4 x+4 y+4 z=48$
(2) $\times 1 \Rightarrow x+2 y+4 z=21$
(1) $-2 \Rightarrow \frac{(-)(-) \quad(-) \quad(-)}{\Rightarrow 3 x+2 y+0 \quad=27}$

$$
\begin{equation*}
3 x+2 y=27 \tag{4}
\end{equation*}
$$

Subtracting (2) and (3)
(2) $\Rightarrow x+2 y+4 z=21$
(3) $\Rightarrow \quad 2 x+y+4 z=25$
$\frac{(-)(-)(-)(-)}{-x+y+0=-4}$
$x-y=4$
(4) $\times 1 \Rightarrow 3 x+2 y=27$
(5) $\times 2 \Rightarrow 2 x-2 y=8$
$(4)+(5) \Rightarrow 5 x+0=35$

$$
x=\frac{35}{5}=7
$$

Substituting the value of $x=7$ in (5)
$7-y=4 \Rightarrow-y=4-7$
$-y=-3 \Rightarrow y=3$
Substituting the value of $x=7, y=3$ in (1)
$7+3+z=12$
$\mathrm{z}=12-10=2$
$x=7, y=3, z=2$
Number of currencies in ₹ $5=7$
Number of currencies in ₹ $10=3$
Number of currencies in ₹ $20=2$
9. Answer the following questions.

பின்வரும் வினாக்களுக்கு விடையளி.
A. A school ground is in the shape of a circle with radius 103 m . Four tracks each of 3 m wide has to be constructed inside the ground for the purpose of track events. Find the cost of constructing the track at the rate of ₹ 50 per sq.m.
ஒரு பள்ளியின் விளையாட்டுத் திடல் 103 மீ ஆரமுள்ள வட்ட வடிவில் உள்ளது. அத்திடலுக்குள் ஒவ்வொன்றும் 3மீ அகலமுள்ள நான்கு ஓடுதளங்கள் (track) அமைக்கப்படுகின்றன. ஒரு ச.மீ-க்கு ₹ 50 வீதம், அந்த ஓடுதளப் பாதைகளை வடிவமைக்க ஆகும் மொத்தச் செலவைக் கணக்கிடுக.

Solution:

Inner radius $(r)=103-(4 \times 3)$
Inner radius (r) $=91 \mathrm{~m}$
Outer radius (R) $=103 \mathrm{~m}$
Area of circular path $=\pi\left(R^{2}-r^{2}\right)$ sq units
$=\frac{22}{7}\left((103)^{2}-(91)^{2}\right)$
$=\frac{22}{7} \times(10609-8281)$

$=\frac{22}{7} \times 2328$
$=7316.5714 \mathrm{sq} \mathrm{m}$
Cost of constructing the track is $=₹ 50$ per sq.m
\therefore total cost $=7316.5714 \times 50$

$$
\begin{aligned}
& =₹ 365828.57 . \\
& =₹ 365829 \text { (approximately). }
\end{aligned}
$$

B. A sweet is in the shape of rhombus whose diagonals are given as 4 cm and 5 cm . The surface of the sweet should be covered by an aluminum foil. Find the cost of aluminum foil used for 400 such sweets at the rate of ₹ 7 per $100 \mathrm{sq} . \mathrm{cm}$.
ஓர் இனிப்பு வகை சாய்சதுர வடிவில் உள்ளது. அதன் மூலை விட்டங்கள் முறையே, 4 செ.மீ மற்றுு் 5 செ.மீ. இனிப்பின் மேற்பரப்பு முழுவதும் மமல்லிய அலுமினியத் தகட்டால் மூடப்பட வேண்டும். 100 ச.செ.மீக்கு ₹ 7 வீதம் மொத்தம் 400 இனிப்புகளை அலுமினியத் தகட்டால் மூட எவ்வளவு செலவாகும்?

Solution:

Diagonals $\mathrm{d}_{1}=4 \mathrm{~cm}$ and $\mathrm{d}_{2}=5 \mathrm{~cm}$
Area of one rhombus shaped sweet $=\frac{1}{2}\left(d_{1} \times d_{2}\right)$ sq. units

$$
=\frac{1}{2} \times 4 \times 5 \mathrm{~cm}^{2}=10 \mathrm{~cm}^{2}
$$

Aluminum foil used to cover 1 sweet $=10 \mathrm{~cm}^{2}$
\therefore Aluminum foil used to cover 400 sweets $=400 \times 10=4000 \mathrm{~cm}^{2}$
Cost of Aluminum foil for $100 \mathrm{~cm}^{2}=₹ 7$
\therefore Cost of Aluminum foil for $4000 \mathrm{~cm}^{2}=\frac{4000}{100} \times 7=₹ 280$
\therefore Cost of Aluminum foil used $=₹ 280$
10. Answer the following questions.

பின்வரும் வினாக்களுக்கு விடையளி.
A. A cyclindrical tank of diameter 35 cm is full of water. If 11 litres of water is drawn off, find the drop in the water-level in the tank.
35 செ.மீ விட்டமுள்ள ஒரு உருளை வடிவதண்ணij தொட்டி முழுவதும் தண்ணi் உள்ளது. தொட்டியிலிருந்து 11 லிட்டர் தண்ணi் எடுக்கப்பட்டுவிட்டது. எனில், தொட்டியினுள் நீர்மட்டத்தில் ஏற்படும் வீழ்ச்சியைக் கண்டுபிடி.

Solution:

diameter $=35 \mathrm{~cm}$.
radius $=r=\frac{\text { diameter }}{2}=\frac{35}{2} \mathrm{~cm}$
Initially the height of the water level in the cylindrical tank $=$ ' h '
11 litres of water is drawn from the tank
Level of water in the tank becomes $=$ ' k '(assumption)

The decrease in water, that is ' $h-k^{\prime}$.
1 litres $=1000 \mathrm{~cm}^{3}$.

Volume of water in the cylindrical initially = Volume of water left in the tank + Volume of water drawn (11 litres $=11000 \mathrm{~cm}^{3}$)

$$
\begin{aligned}
& \pi r^{2} h=\pi r^{2} k+11000 \\
& \Rightarrow \pi r^{2} h-\pi r^{2} k=11000 \\
& \Rightarrow \pi r^{2}(h-k)=11000 \\
& \Rightarrow(h-k)=\frac{11000}{\pi r^{2}}
\end{aligned}
$$

Substituting the values: $\pi=\frac{22}{7}$ and $r=\frac{35}{2}$, we get,

$$
\begin{aligned}
&(\mathrm{h}-\mathrm{k})=\frac{11000}{\frac{22}{7} \times\left(\frac{35}{2}\right)^{2}} \\
& \Rightarrow(\mathrm{~h}-\mathrm{k})=\frac{11000}{\frac{22}{7} \times\left(\frac{35}{2}\right) \times\left(\frac{35}{2}\right)} \\
& \Rightarrow(\mathrm{h}-\mathrm{k}) \frac{11000 \times 7 \times 2 \times 2}{22 \times 35 \times 35} \\
&(\mathrm{~h}-\mathrm{k})=\frac{80}{7} \mathrm{~cm} \\
&(\mathrm{~h}-\mathrm{k})=11 \frac{3}{7} \mathrm{~cm} .
\end{aligned}
$$

B. From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm , a conical cavity of the same height and base is hollowed out. Find the total surface area of the remaining solid.
2.4 செ.மீ உயரமுள்ள ஒரு திண்ம உருளையின் விட்டம் 1.4 செ.மீ ஆகும். உருளையினள் அதே ஆரமுள்ள கூம்பு வாிவ்க் குழிவு உருளையின் உயரத்திற்கு ஏற்படுத்தப்படுகிறது எனில், மீதமுள்ள திண்மத்தின் மொத்தப் புறப்பரப்பு காண்க.

Solution:

Let h and r be the height and radius of the cone and cylinder.
Let l be the slant height of the cone.
Given that, $\mathrm{h}=2.4 \mathrm{c} . \mathrm{m}$ and $\mathrm{d}=1.4 \mathrm{~cm} ; \mathrm{r}=0.7 \mathrm{~cm}$
Here,
total surface area of the remaining solid $=$ C.S.A of the cylinder +
 C.S.A. of the cone + area of the bottom

$$
=2 \pi r h+\pi r l+\pi r^{2} \text { sq.units }
$$

Now,

$$
l=\sqrt{r^{2}+h^{2}}=\sqrt{0.49+5.76}=\sqrt{6.25}=2.5 \mathrm{~cm}
$$

$$
l=2.5 \mathrm{~cm}
$$

Area of the remaining solid $=2 \pi r h+\pi r l+\pi r^{2}$ sq.units

$$
\begin{aligned}
& =\pi r(2 h+l+r) \\
& =\frac{22}{7} \times 0.7 \times[(2 \times 2.4)+2.5+0.7] \\
& =17.6
\end{aligned}
$$

Therefore, total surface area of the remaining solid is $17.6 \mathrm{~cm}^{2}$

