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INTRODUCTION

The term work is used in diverse contexts in daily life. It refers to
both physical as well as mental work. In fact, any activity can generally
be called as work. But in Physics, the term work is treated as a physical
quantity with a precise definition. Work is said to be done by the force
when the force applied on a body displaces it. To do work, energy is
required. In simple words, energy is defined as the ability to do work.
Hence, work and energy are equivalents and have same dimension.
Energy, in Physics exists in different forms such as mechanical,
electrical, thermal, nuclear and so on. Many machines consume one form
of energy and deliver energy in a different form. In this chapter we deal
mainly with mechanical energy and its two types namely kinetic energy
and potential energy. The next quantity in this sequence of discussion is
the rate of work done or the rate of energy delivered. The rate of work
done is called power. A powerful strike in cricket refers to a hit on the
ball at a fast rate. This chapter aims at developing a good understanding
of these three physical quantities namely work, energy and power and
their physical significance.

WORK
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Let us consider a force ( F ), acting on a body which moves it by a

displacement in some direction (dr)

The expression for work done (w) by the force on the body is
mathematically written as,

W=F .dr

Here, the productF .dr is a scalar product (or dot product). The
scalar product of two vectors is a scalar. Thus, work done is a scalar
quantity. It has only magnitude and no direction. In SI system, unit of
work done is N m (or) joule (J). Its dimensional formula is [ML?T-2].

The equation (4.1) is,

W=F dr coséf

which can be realised using ( as ab ab cosd) where, 0 is the
angle between applied force and the displacement of the body.

The work done by the force depends on the force (F), displacement
(dr) and the angle (0) between them Work done is zero in the following
cases.

When the force is zero (F = 0). For example, a body moving on a
horizontal smooth frictionless surface will continue to do so as no force
(not even friction) is acting along the plane. (This is an ideal situation.)

When the displacement is zero (dr = 0). For example, when force
is applied on a rigid wall it does not produce any displacement. Hence,
the work done is zero

When the force and displacement are perpendicular (8 = 900) to
each other. when a body moves on a horizontal direction, the
gravitational force (mg) does no work on the body, since it acts at right
angles to the displacement as shown in Figure 4.3(b). In circular motion
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the centripetal force does not do work on the object moving on a circle as
it is always perpendicular to the displacement.

For a given force (F) and displacement (dr), the angle (0) between
them decides the value of work done as consolidated.

There are many examples for the negative work done by a force. In
a football game, the goalkeeper catches the ball coming towards him by
applying a force such that the force is applied in a direction opposite to
that of the motion of the ball till it comes to rest in his hands. During the
time of applying the force, he does a negative work on the ball. We will
discuss many more situations of negative work further in this unit.

A box is pulled with a force of 25 N to produce a displacement of
15 m. If the angle between the force and displacement is 300, find the
work done by the force.

% Force, F=25N
% Displacement, dr =15 m
% Angle between F and dr, 6 = 30°
Angle (H) cost Work
0 =0 | Positive, Maximum
@ B=8 *(acne) 1 ¢ osb<| Positive
H=0 *(nhk ah e i Lern
0 *<B8 -4 Megative
a=8 - | megative, ivaximum

Work done, W= Fdr cos&

3

W= 25><15><cos30=25><15><7

W=324.76]
Work done by a constant force

When a constant force F acts on a body, the small work done (dW)
by the force in producing a small displacement dr is given by the
relation,
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dW= (F coséf) dr

The total work done in producing a displacement from initial
position r; to final position rr is,

w=["dw
W=Irf (F cos@)dr =(F cos H)Irf dr
= (F cosO)(r;, —1,)

The graphical representation of the work done by a constant force .
The area under the graph shows the work done by the constant force.

An object of mass 2 kg falls from a height of 5 m to the ground. What is
the work done by the gravitational force on the object? (Neglect air
resistance; Take g = 10 m s2)

In this case the force acting on the object is downward

gravitational force mg. This is a constant force. Work done by
gravitational force is

W =rjfd?

1

A\ =(cos<9]d7j = (mg.cos 0)(r, —1,)

1

The object also moves downward which is in the direction of
gravitational force F =mg as shown in figure. Hence, the angle between

them is 0 = 0°; cos 0 =1 and the displacement, (’f [ 1) =5m.

W=mg(’”f_’”1)
W=2xg¢x5=¢

The work done by the gravitational force on the object is positive.
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An object of mass m=1 kg is sliding from top to bottom in the
frictionless inclined plane of inclination angle 6 =30° and the length of
inclined plane is 10 m as shown in the figure. Calculate the work done
by gravitational force and normal force on the object. Assume
acceleration due to gravity, g =10 m s-2

We calculated in the previous chapter that the acceleration
experienced by the object in the inclined plane as g sinf . According to
Newton’s second law, the force acting on the mass along the inclined
plane F = mg sinf. Note that this force is constant throughout the motion
of the mass. The work done by the parallel component of gravitational
force (mg sin0) is given by

W=Fdr= Fdrcos¢

where ¢ is the angle between the force (mg sin 0) and the direction
of motion (dr). In this case, force (mg sin 0) and the displacement (dr)
are in the same direction. Hence @ = and cos ¢ =1

W =F dr = (mg sinb) ( dr)
( dr = length of the inclined place)

W=1 x 10 xsin (30°) x IOZIOOX%ZSOJ

The component mg cosb and the normal force N are perpendicular
to the direction of motion of the object, so they do not perform any
work.

If an object of mass 2 kg is thrown up from the ground reaches a
height of 5 m and falls back to the Earth (neglect the air resistance).
Calculate

1. The work done by gravity when the object reaches 5 m height

2. The work done by gravity when the object comes back to Earth

3. Total work done by gravity both in upward and downward
motion and mention the physical significance of the result.
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When the object goes up, the displacement points in the upward
direction whereas the gravitational force acting on the object points in
downward direction. Therefore, the angle between gravitational force
and displacement of the object is 180°.

The work done by gravitational force in the upward motion.
Given that Ar =5m and F =mg

W,, =FAr cos@ = mgAr cos130°
W, =2x10x5x(=1) =100 joule.

[cos180” =—1]

When the object falls back, both the gravitational force and
displacement of the object are in the same direction. This implies that the
angle between gravitational force and displacement of the object is 0°.

W,,.. = FArcos(’
W,

oun = 2x10x5x (1) =100 joule
[cos 07 =1]

The total work done by gravity in the entire trip (upward and
downward motion).

Wtotal = Wup + Wd

=—100 joule +100 joule =0

own

It implies that the gravity does not transfer any energy to the
object. When the object is thrown upwards, the energy is transferred to
the object by the external agency, which means that the object gains
some energy. As soon as it comes back and hits the Earth, the energy
gained by the object is transferred to the surface of the Earth (i.e.,
dissipated to the Earth).

A weight lifter lifts a mass of 250 kg with a force 5000 N to the
height of 5 m.
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1. What is the workdone by the weight lifter?
2. What is the workdone by the gravity?
3. What is the net workdone on the object?

When the weight lifter lifts the mass, force and displacement are in
the same direction, which means that the angle between them 6=0°.
Therefore, the work done by the weight lifter,

Wit = Fo,icos@ = F, h(cos0")

=5000x5x (1) =25,000 joule = 25kJ

When the weight lifter lifts the mass, the gravity acts downwards
which means that the force and displacement are in opposite direction.

Therefore, the angle between them € =180°

Wiy = F,icos @ = mgh(cos180°)

=250x10x5x(=1)
=—12,500 joule = —-12.5kJ

The net work done (or total work done) on the object

Wnet = W

weight lifter

+ W

gravity

=25kJ —12.5kJ =+12.5kJ

Work done by a variable force
When the component of a variable force F acts on a body, the small

work done (dW) by the force in producing a small displacement dr is
given by the relation

dW=F cos 0 dr
[F cos 0 is the component of the variable force F]
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where, F and 0 are variables. The total work done for a
displacement from initial position 1; to final position r¢ is given by the
relation,

A graphical representation of the work done by a variable force.
The area under the graph is the work done by the variable force.

A variable force F = k x? acts on a particle which is initially at rest.
Calculate the work done by the force during the displacement of the
particle from x = 0 m to x =4 m. (Assume the constant k =1 N m?)

Work done,

't 4 64
W = IF(x)dx=ij2dx:—Nm
X; 0 3

Energy is defined as the capacity to do work. In other words, work
done is the manifestation of energy. That is why work and energy have
the same dimension (ML?T-2)

The important aspect of energy is that for an isolated system, the
sum of all forms of energy i.e., the total energy remains the same in any
process irrespective of whatever internal changes may take place. This
means that the energy disappearing in one form reappears in another
form. This is known as the law of conservation of energy. In this chapter
we shall take up only the mechanical energy for discussion.

In a broader sense, mechanical energy is classified into two types

1. Kinetic energy
2. Potential energy

The energy possessed by a body due to its motion is called kinetic

energy. The energy possessed by the body by virtue of its position is
called potential energy.
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The SI unit of energy is the same as that of work done i.e., N m (or)
joule (J). The dimension of energy is also the same as that of work done.
It is given by [ML2T-2]. The other units of energy and their SI equivalent
values.

SI equivalent of other units of energy

Unit Equivalent in joule
1 erg (CGS unit) 107]

1 electron volt (eV) 1.6x1019]

1 calorie (cal) 4186 ]

1 kilowatt hour (kWh) 3.6x1060 ]

Kinetic energy

Kinetic energy is the energy possessed by a body by virtue of its
motion. All moving objects have kinetic energy. A body that is in motion
has the ability to do work. For example a hammer kept at rest on a nail
does not push the nail into the wood. Whereas the same hammer when
it strikes the nail, draws the nail into the wood. Kinetic energy is
measured by the amount of work that the body can perform before it
comes to rest. The amount of work done by a moving body depends
both on the mass of the body and the magnitude of its velocity. A body
which is not in motion does not have kinetic energy.

Work-Kinetic Energy Theorem
Work and energy are equivalents. This is true in the case of kinetic
energy also. To prove this, let us consider a body of mass m at rest on a

frictionless horizontal surface.

The work (W) done by the constant force (F) for a displacement (s)
in the same\ direction is,

W=Fs
The constant force is given by the equation,

F=ma

9| Page APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187




V2=u2+2as
V2 —u?
2s

a =
Substituting for a in equation
2 2
P m[V —u j
2s
2 2
W=m A S |-m| s
2s 2s

W=lmv2 —lmu2
2 2

1
The term (5 mvzj in the above equation is the kinetic energy of

the body of mass (m) moving with velocity (v).

KE=+ my?
2

Kinetic energy of the body is always positive. From equations

AKE=l my? — lmu2
2 2

Thus, W=AKE

The expression on the right hand side (RHS) of equation (4.12) is
the change in kinetic energy (AKE) of the body.

This implies that the work done by the force on the body changes
the kinetic energy of the body. This is called work-kinetic energy

theorem.

The work-kinetic energy theorem implies the following.
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1. If the work done by the force on the body is positive then its
kinetic energy increases.

2. If the work done by the force on the body is negative then its
kinetic energy decreases.

3. If there is no work done by the force on the body then there is no
change in its kinetic energy, which means that the body has moved
at constant speed provided its mass remains constant.

Relation between Momentum and Kinetic Energy

Consider an object of mass m moving with a velocity v. Then its

: 1,
linear momentum is P=MV and its kinetic energy, KE= 5 my-,

KE:%WZVZ = %m(;;)

Multiplying both the numerator and denominator of equation

I )
2
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ge)
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3

2

KE= P
2m

where ‘P‘ is the magnitude of the momentum. The magnitude of

the linear momentum can be obtained by

‘p‘ =p=,/2m(KE)
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Note that if kinetic energy and mass are given, only the magnitude
of the momentum can be calculated but not the direction of momentum.
It is because the kinetic energy and mass are scalars.

Two objects of masses 2 kg and 4 kg are moving with the same
momentum of 20 kg m s1.

1. Will they have same kinetic energy?
2. Will they have same speed?

2

The kinetic energy of the mass is given by KE= §_m

For the object of mass 2 kg, kinetic energy is

2
1:(20) _409 W,
2x2 4

For the object of mass 4 kg, kinetic energy is

! :(20)2 _ 400 _
2 2x4 8

Note that KE, #KE, i.e, even though both are having the same
momentum, the kinetic energy of both masses is not the same. The
kinetic energy of the heavier object has lesser kinetic energy than smaller
mass. It is because the kinetic energy is inversely proportional to the

mass (KEO! ;) for a given momentum.

As the momentum, p = mv, the two objects will not have same
speed.

Potential Energy

The potential energy of a body is associated with its position and
configuration with respect to its surroundings. This is because the
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various forces acting on the body also depends on position and
configuration.

“Potential energy of an object at a point P is defined as the amount
of work done by an external force in moving the object at constant
velocity from the point O (initial location) to the point P (final location).
At initial point O potential energy can be taken as zero.

Mathematically, potential energy is defined as U:j 15a d r

where the limit of integration ranges from initial location point O
to final location point P.

We have various types of potential energies. Each type is
associated with a particular force.

1. The energy possessed by the body due to gravitational force gives
rise to gravitational potential energy

2. The energy due to spring force and other similar forces give rise to
elastic potential energy.

3. The energy due to electrostatic force on charges gives rise to
electrostatic potential energy.

We will learn more about conservative forces in the section. Now,
we continue to discuss more about gravitational potential energy and
elastic potential energy.

Potential energy near the surface of the Earth
The gravitational potential energy (U) at some height & is equal to
the amount of work required to take the object from ground to that

height h with constant velocity.

Let us consider a body of mass m being moved from ground to the
height h against the gravitational force.

The gravitational force F, acting on the body is, F, = —mgj (as the

force is in y direction, unit vector j is used). Here, negative sign implies
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that the force is acting vertically downwards. In order to move the body
without acceleration (or with constant velocity), an external applied
force F, equal in magnitude but opposite to that of gravitational force F,

has to be applied on the body i.e., F, = F, . This implies that = Fa =+mgj .
The positive sign implies that the applied force is in vertically upward

direction. Hence, when the body is lifted up its velocity remains
unchanged and thus its kinetic energy also remains constant.

The gravitational potential energy (U) at some height & is equal to
the amount of work required to take the object from the ground to that
height h.

U = [Fra = [[F]|a7|cose
0

Since the displacement and the applied force are in the same
upward direction, the angle between them, ¢=0°. Hence, cos0°=1 and

F |=mg and ‘dr":dr_

a

U =mg}dr
0

U =mg [r]z =mgh

Note that the potential energy stored in the object is defined
through work done by the external force which is positive. Physically
this implies that the agency which is applying the external force is
transferring the energy to the object which is then stored as potential
energy. If the object is allowed to fall from a height / then the stored
potential energy is converted into kinetic energy.

An object of mass 2 kg is taken to a height 5 m from the ground _g
_10ms-2.

1. Calculate the potential energy stored in the object.
2. Where does this potential energy come from?
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3. What external force must act to bring the mass to that height?
4. What is the net force that acts on the object while the object is
taken to the height "h’?

The potential energy U =mg h = 2x10x5 = 100 ] Here the positive
sign implies that the energy is stored on the mass

This potential energy is transferred from external agency which
applies the force on the mass.

The external applied force Fal which takes the object to the height 5
mis F, =—F,

g -

F=~(-mj)=mi

N

where, J represents unit vector along vertical upward direction.

From the definition of potential energy, the object must be moved
at constant velocity. So the net force acting on the object is zero.

F,+F, =0
Elastic Potential Energy

When a spring is elongated, it develops a restoring force. The
potential energy possessed by a spring due to a deforming force which
stretches or compresses the spring is termed as elastic potential energy.
The work done by the applied force against the restoring force of the
spring is stored as the elastic potential energy in the spring.

Consider a spring-mass system. Let us assume a mass, m lying on

a smooth horizontal. Here, x = 0 is the equilibrium position. One end of
the spring is attached to a rigid wall and the other end to the mass.
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As long as the spring remains in equilibrium position, its potential

energy is zero. Now an external force F,, is applied so that it is stretched
by a distance (x) in the direction of the force.

There is a restoring force called spring force Fs. developed in the

spring which tries to bring the mass back to its original position. This
applied force and the spring force are equal in magnitude but opposite

in direction ie., F,=-F, According Hooke’s law, the restoring force
developed in the spring is

The negative sign in the above expression implies that the spring
force is always opposite to that of displacement x and k is the force

constant. Therefore applied force is F, =+kx. The positive sign implies

that the applied force is in the direction of displacement x. The spring
force is an example of variable force as it depends on the displacement

x . Let the spring be stretched to a small distance
dx.The work done by the applied force on the spring to stretch it by a

displacement x is stored as elastic potential energy.
U= IEd; = ”EHCZ;‘COSH
0
= J. F dxcos®
0

The applied force F, and the displacement dr (i.e., here dx ) are in

the same direction. As, the initial position is taken as the equilibrium
position or mean position, x=0 is the lower limit of integration.

U=jkxdx
0

xz i
U =/{_}
2 ]
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U=lkx2
2

If the initial position is not zero, and if the mass is changed from
position x; to x¢, then the elastic potential energy is

1
U:Ek( f

Force-displacement graph for a spring

Since the restoring spring force and displacement are linearly
related as F = - k x, and are opposite in direction, the graph between F
and x is a straight line with dwelling only in the second and fourth
quadrant as shown in Figure 4.10. Th e elastic potential energy can be
easily calculated by drawing a F - x graph. Th e shaded area (triangle) is
the work done by the spring force.

Area = % (base)(height)= % x () x (kx)

= —fx?
2

Potential energy-displacement graph for a spring

A compressed or extended spring will transfer its stored potential
energy into kinetic energy of the mass attached to the spring.

In a frictionless environment, the energy gets transferred from

kinetic to potential and potential to kinetic repeatedly such that the total
energy of the system remains constant. At the mean position,

AKE =AU

Let the two springs A and B be such that ka>ks. On which spring will
more work has to be done if they are stretched by the same force?

F=K,x, =Kyx,
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Xy =k—,XB =k_
A B

The work done on the springs are stored as potential energy in the
springs.

ka>kg implies that Ugp>U, . Thus, more work is done on B than A.

A body of mass m is attached to the spring which is elongated to
25 cm by an applied force from its equilibrium position.

. Calculate the potential energy stored in the spring-mass system?

. What is the work done by the spring force in this elongation?

. Suppose the spring is compressed to the same 25 cm, calculate the
potential energy stored and also the work done by the spring force
during compression. (The spring constant, k = 0.1 N m™).

The spring constant, k = 0.1 N m-!
The displacement, x =25 cm = 0.25 m

The potential energy stored in the spring is given by
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= : i (), ] [u__]_:" ={}.{N}31]
}
The work done W, by the spring force F, is given by,
W _‘{F. AT = H— L.az.!-in.b. i)

The spring force F, acts in the negative x direction while elongation acts
in th positive x direction.

W, = [(—kx)dx= BRATE

v ] -I
W =—=x0.1x(0.25] =-0.0031]
¥ p.

=

Note that the potential energy is defined through the work done
by the external agency. The positive sign in the potential energy implies
that the energy is transferred from the agency to the object. But the work
done by the restoring force in this case is negative since restoring force is
in the opposite direction to the displacement direction.

During compression also the potential energy stored in the object
is the same.

U= %kxz =0.0031J

Work done by the restoring spring force during compression is given by

W, = [E.d7 = [(kxi).(~dxi)

In the case of compression, the restoring spring force acts towards
positive x-axis and displacement is along negative x direction.
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HMENNA

W, = [(—kx)dx=——kx* =-0.0031]

Conservative and nonconservative forces
Conservative force

A force is said to be a conservative force if the work done by or
against the force in moving the body depends only on the initial and
final positions of the body and not on the nature of the path followed
between the initial and final positions. Let us consider an object at point
A on the Earth. It can be taken to another point B at a height /1 above the
surface of the Earth by three paths.

Whatever may be the path, the work done against the gravitational
force is the same as long as the initial and final positions are the same.
This is the reason why gravitational force is a conservative force.
Conservative force is equal to the negative gradient of the potential
energy. In one dimensional case, Examples for conservative forces are
elastic spring force, electrostatic force, magnetic force, gravitational
force, etc.

SN0 Conservative forces Non-conservative forces
Waork done Is independent of the path Work done depends upon the path
Work done in a round trip is zero Work done in o round trip 15 not zero
[olal energy remains constant Eneryy s dissipated as heat energy
Work donc is completely recoverable Waork doneis not ci impletely recoverable
Farce is the negative gradient ol Mo such relation exists

polential energy

Non-conservative force

A force is said to be non-conservative if the work done by or
against the force in moving a body depends upon the path between the
initial and final positions. This means that the value of work done is
different in different paths.
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1. Frictional forces are non-conservative forces as the work done
against friction depends on the length of the path moved by the
body.

. The force due to air resistance, viscous force are also non-
conservative forces as the work done by or against these forces
depends upon the velocity of motion.

Compute the work done by the gravitational force for the following
cases

l:nr‘n ||'- = 'I”."-Ii |]: '|.'|'I'i_!|

Displacement vector d r=dxi +dyj

7Y

(As the displacement is in two dimension; unit vectors i and Jare
used)

Since the motion is only vertical, horizontal displacement
component dx is zero. Hence, work done by the force along path 1 (of
distance h).

W i = 1.}- dr = ||: —nugﬁl}.liuf}'] ]

4 !

=—mg |dy =—mgh
Total work done for path 2 is
il i 0 i
W..s 2 = JFdT = [FdF + |F.d7 + [F.d7

5 A I 1
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|-."-'.r'J' = [[~mgi) | dlx i|=0

_.r.l': {dr = |.| —r.'.'_ﬁ'.! | iuh |

E "-'I_.!a.' I.J'.' == H.'_L'nl.'

JI ilf = |r "'"-"L'-T] { ~dx || =}

Therefore, the total work done by the force along the path 2 is

Wy, = [Fdi = —mgh

1

Note that the work done by the conservative force is independent
of the path.

Consider an object of mass 2 kg moved by an external force 20 N
in a surface having coefficient of kinetic friction 0.9 to a distance 10 m.

What is the work done by the external force and kinetic friction ?
Comment on the result. (Assume g = 10 ms)

m=2kg, d=10m, Foy = 20 N, px = 0.9. When an object is in motion on
the horizontal surface, it experiences two forces.

1. External force, Fe,; =20 N
2. Kinetic friction

fo=p,mg =09%(2)x10=18N

The work done by the external force Wex = F d x20x10 x200]
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The work done by the force of kinetic friction Wi =f = (-18)x10 =
—180 J. Here the negative sign implies that the force of kinetic friction is
opposite to the direction of displacement.

The total work done on the object Wiota=WextW 1« =200 ] 180 ] =
207.

Since the friction is a non-conservative force, out of 200 J given by
the external force, the 180 J is lost and it can not be recovered.

Law of conservation of energy

When an object is thrown upwards its kinetic energy goes on
decreasing and consequently its potential energy keeps increasing
(neglecting air resistance). When it reaches the highest point its energy is
completely potential. Similarly, when the object falls back from a height
its kinetic energy increases whereas its potential energy decreases. When
it touches the ground its energy is completely kinetic. At the
intermediate points the energy is both kinetic and potential When the
body reaches the ground the kinetic energy is completely dissipated into
some other form of energy like sound, heat, light and deformation of the
body etc.

In this example the energy transformation takes place at every
point. The sum of kinetic energy and potential energy i.e., the total
mechanical energy always remains constant, implying that the total
energy is conserved. This is stated as the law of conservation of energy.

The law of conservation of energy states that energy can neither be
created nor destroyed. It may be transformed from one form to another
but the total energy of an isolated system remains constant.

illustrates that, if an object starts from rest at height h, the total
energy is purely potential energy (U=mgh) and the kinetic energy (KE)
is zero at h. When the object falls at some distance y, the potential
energy and the kinetic energy are not zero whereas, the total energy
remains same as measured at height h. When the object is about to touch
the ground, the potential energy is zero and total energy is purely
kinetic.
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An object of mass 1 kg is falling from the height 7 = 10 m. Calculate

. The total energy of an object at 1 =10 m

. Potential energy of the object whenitisath =4 m

. Kinetic energy of the object when itisath =4 m

. What will be the speed of the object when it hits the ground?
(Assume g =10 ms™?)

The gravitational force is a conservative force. So the total energy

remains constant throughout the motion. At & =10 m, the total energy E
is entirely potential energy.

E=U=mgh=1x10x10=1{K ]
The potential energy of the object at h =4 m is
U=mgh=1x10x4=40]

Since the total energy is constant throughout the motion, the
kinetic energy at h=4m must be KE = E —U =100 — 40 = 60]

Alternatively, the kinetic energy could also be found from velocity
of the object at 4 m. At the height 4 m, the object has fallen through a
height of 6 m.

The velocity after falling 6 m is calculated from the equation of
motion,

v=42gh = y2x10x6 =120 m s,

'l.". =

) . . e |
[he Kinetic energy is KEk=—mv" = - x|

5 | .|
; ]:}“ —. I"-[]l
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When the object is just about to hit the ground, the total energy is
completely kinetic and the potential energy, U=0.

E = l-;l-.—.—:lm'.“' =100 ]

(5

[ 2 |3 —_—
v=, | —KE=,/[=x100=200=14.12m s
Vm Y1

A body of mass 100 kg is lifted to a height 10 m from the ground in
two different ways as shown in the figure. What is the work done by the
gravity in both the cases? Why is it easier to take the object through a
ramp?

m=100kg, h=10m
Along path (1):

The minimum force F1 required to move the object to the height of
10 m should be equal to the gravitational force, F; =mg =100x10 =1000 N

The distance moved along path (1) is, h=10 m
W=F h=1000x10=10,000]

Along path (2):

In the case of the ramp, the minimum force F; that we apply on the
object to take it up is not equal to myg, it is rather equal to mg sing . (mg
sing <mg) .

Here, angle 6 = 30°
Therefore, F» = mg sinf = 100 x 10 x sin300 = 100 x 10 x 0.5 =500N
Hence, (mg sind <myg).

]
| = = 20m
s1n )
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The work done on the object along path (2) is, W = F, 1 = 500 x 20 =
10,000 J

Since the gravitational force is a conservative force, the work done
by gravity on the object is independent of the path taken.

In both the paths the work done by the gravitational force is 10,000
J

Along path (1): more force needs to be applied against gravity to cover
lesser distance .

Along path (2): lesser force needs to be applied against the gravity to
cover more distance.

As the force needs to be applied along the ramp is less, it is easier
to move the object along the ramp.

An object of mass m is projected from the ground with initial
speed vo. Find the speed at height h.

Since the gravitational force is conservative; the total energy is
conserved throughout the motion.

Initial Final

Kinetic | _ .
=mv —my’
Y ?

—_— a—

energy
Potential () mgh
energy

Total 1 ) | 11 .
my, +0=—mv; [—=mv" + mgh
y 3 3 L

e (=] "

energy

Final values of potential energy, kinetic energy and total energy
are measured a the height h.
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By law of conservation of energy, the initial and final total energies
are the same.

| _— .
—mv, =—mv- + mgh
3 L :

=y ¥, —2gh

Note that in section similar result is obtained using kinematic
equation based on calculus method. However, calculation through
energy conservation method is much easier than calculus method.

An object of mass 2 kg attached to a spring is moved to a distance
x=10 m from its equilibrium position. The spring constant k=1 N m and
assume that the surface is frictionless.

1. When the mass crosses the equilibrium position, what is the speed
of the mass?

2. What is the force that acts on the object when the mass crosses the
equilibrium position and extremum position x = £10 m.

Since the spring force is a conservative force, the total energy is
constant. At x=10 m, the total energy is purely potential.

<(1)=(10) =501

When the mass crosses the equilibrium position (x=0) , the
potential energy

'L::_i.:-j:-[li'l]_l.] |

The entire energy is purely kinetic energy at this position.
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The speed

T.07 ms"

Since the restoring spring force is F = - kx, when the object crosses
the equilibrium position, it experiences no force. Note that at
equilibrium position, the object moves very fast. When the object is at x
= +10 m (elongation), the force F = — k x

F =-(1) (10) = = 10 N. Here the negative sign implies that the
force is towards equilibrium i.e., towards negative x-axis and when the
object is at x = — 10m (compression), it experiences a forces F = — (1) (-
10) = +10 N. Here the positive sign implies that the force points towards
positive x-axis.

The object comes to momentary rest at x = +10m even though it
experiences a maximum force at both these points.

Motion in a vertical circle

Imagine that a body of mass (m) attached to one end of a massless
and inextensible string executes circular motion in a vertical plane with
the other end of the string fixed. The length of the string becomes the

radius (7) of the circular path

Let us discuss the motion of the body by taking the free body

diagram (FBD) at a position where the position vector () makes an
angle 0 with the vertically downward direction and the instantaneous
velocity.

There are two forces acting on the mass.

1. Gravitational force which acts downward

28 | P age APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187




APP®S L[]

2. Tension along the string.

Applying Newton’s second law on the mass, In the tangential
direction,

mgsiné =ma,

fdy )
mgsing = |11| —
\ L

dv
where, a =- 1—111 tangential retardation
clt

In the radial direction,

[ - mgcosd=ma,

my"
[ = mig COSH = m—

%

where, 3 =— is the centripetal
|

acceleration,

The circle can be divided into four sections A, B, C, D for better
understanding of the motion. The four important facts to be understood
from the two equations are as follows:

1. The mass is having tangential acceleration (g sin 0) for all values of
0 (except 0 = 00), it is clear that this vertical cirular motion is not a
uniform circular motion.

. From the equations (4.28) and (4.29) it is understood that as the
magnitude of velocity is not a constant in the course of motion, the
tension in the string is also not constant
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. _ _ my
[he equation (4 290 T = mg cosb +
. r

J11g|1|1gllla that in sections A and D

™
i b ik

of the circle, | fof : < < 1 : cosf

is positive |, the term mg cosb is always

greater than zero. Hence the tension cannot vanish even when the
velocity vanishes.

. _— mv-
18 LI O .20 ), = M COsErn
|he equation (4.29) [ —myg cosd

5
turther hly,hi:ghh that in sections B

o
b

and C ot the circle, I tor Ij

cosh is ucu_-:;11i'n':'|. the second term

is always greater than zero. Hence velocity cannot vanish, even
when the tension vanishes.

These points are to be kept in mind while solving problems related
to motion in vertical circle.

To start with let us consider only two positions, say the lowest
point 1 and the highest point 2 as shown in Figure 4.15 for further

analysis. Let the velocity of the body at the lowest point 1 beVvi, at the

highest point 2 be v2and v at any other point. The direction of velocity is
tangential to the circular path at all points. Let 7:be the tension in the
string at the lowest point and T.be the tension at the highest point and
T be the tension at any other point. Tension at each point acts towards
the center. The tensions and velocities at these two points can be found
by applying the law of conservation of energy.
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mv,
L —mg=—ov
r

mv:
[ = +mg
;

At the highest point 2, both the gravitational force mg® on the
body and the tension T>act downwards, i.e. towards the center again.

. iy
L+ mg -
' r

. Ik
[, = =—=—mg
r

S e [ mv
I[-T, = +mg—| ——mg
r L

I!II:'I._'I mm :
+ mg ~ + mg

The term [V12 —Vj]can be found easily by applying law of
conservation of energy.

Total Energy at point 1(E;) is same as the total energy at a point 2 (E»)

E1=E2

Potential Energy at point 1, U;=0 (by taking reference as point 1)

Kinetic Energy at point 1,
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Total Energy at point 1,

I y - -4
U+ —mv, =—mv,
1 1

E =U +KE

Similarly, Potential Energy at point 2, U, =mg (2r)
Kinetic Energy at point 2,

|
KE, ==mv;

Total Energy at point 2,

|
E.=U. +KE. = Z Mg r+—mv,;

=

From the law of conservation of energy given in equation

..I - ..I
Iy = LTTIEET ¢ R
5 & 4 :

After rearranging,

%m{ Vi, =V, :| = 2mgr

i -vi=dgr

Substituting equation
R ]
=1 :—[ kg:'] +lmgp
kN -

Therefore, the difference in tension is

32| Page APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187




APPES L0

I-T,=6mg

The body must have a minimum speed at point 2 otherwise, the
string will slack before reaching point 2 and the body will not loop the
circle. To find this minimum speed let us take the tension T, = 0 in
equation

v,
= — 1My

The body must have a speed at point 2, v, 2\/g_r to stay in the
circular path.

To have this minimum speed (Vz = \E ) at point 2, the body must

have minimum speed also at point 1.

By making use of equation (4.36) we can find the minimum speed
at point 1.

Vi —V, =4g

Substituting equation
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The body must have a speed at point 1, v, 24/5gr to stay in the
circular path.

It is clear that the minimum speed at the lowest point 1 should be

\/g times more than the minimum speed at the highest point 2, so that
the body loops without leaving the circle.

Water in a bucket tied with rope is whirled around in a vertical
circle of radius 0.5 m. Calculate the minimum velocity at the lowest
point so that the water does not spill from it in the course of motion. (g =
10 ms)

Radius of circler =0.5 m

The required speed at the highest point

| r — - _
- -.,Iinl_l,".' =+/10x0.5=+/5 ms . The :-|.'H.':.'l.'|

=

at lowest pomt v, = .,ﬁ,"._ﬂl,'-' - ‘--."I-WI
I-_ -
e = 2 MmMs

POWER
Definition of Power

Power is a measure of how fast or slow a work is done. Power is
defined as the rate of work done or energy delivered.
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work donel W |

time taken(t)

Power { [:'i =

W

P=—

i

Average power

The average power (P.,) is defined as the ratio of the total work
done to the total time taken.

B total work done

total time taken

Instantaneous power

The instantaneous power (Pinst) is defined as the power delivered
at an instant (as time interval approaches zero),

dW
dt

Unit of Power

Power is a scalar quantity. Its dimension is [ML?T-3]. The SI unit of
power is watt (W), named after the inventor of the steam engine James
Watt. One watt is defined as the power when one joule of work is done
in one second,(1 W=1] s1).

The higher units are kilowatt(kW), megawatt(MW), and
Gigawatt(GW).
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1kW = 1000 W = 10" watt
1MW = 10" watt
1GW = 10" watt

For motors, engines and some automobiles an old unit of power
still commercially in use which is called as the horse-power (hp). We
have a conversion for horse-power (hp) into watt (W) which is,

| h['l =746 W

All electrical goods come with a definite power rating in watt
printed on them. A 100 watt bulb consumes 100 joule of electrical energy
in one second. The energy measured in joule in terms of power in watt
and time in second is written as, 1 ] =1 W s. When electrical appliances
are put in use for long hours, they consume a large amount of energy.
Measuring the electrical energy in a small unit watt. second (W s) leads
to handling large numerical values. Hence, electrical energy is measured
in the unit called kilowatt hour (kWh).

| electrical unit=1kWh =1 x (10° W)
* (3600 5)
1 electrical unit = 3600x<10° W s

1 electrical unit = 3.6x10% ]
1 kWh =3.6x10°]

Electricity bills are generated in units of kWh for electrical energy
consumption. 1 unit of electrical energy is 1 kWh. (Note: kWh is unit of
energy and not of power.)

Calculate the energy consumed in electrical units when a 75 W fan
is used for 8 hours daily for one month (30 days).
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Power, P=75W

% Time of usage, t = 8 hour x 30 days =240 hours
% Electrical energy consumed is the product of power and time of
usage.

Electrical energy = power x time of usage =P X t

=75 watt = 240 hour

= 1 8000 watt hour
=18 kilowatt hour = 18kWh
| electrical unit =1 kWh

Electrical energy = 18 unit

Incandescent lamps glow for 1000 hours. CFL lamps glow for 6000
hours. But LED lamps glow for 50000 hrs (almost 25 years at 5.5 hour

per day).

Relation between power and velocity
The work done by a force F for a displacement dr is

W= [F df

Left hand side of the equation (4.40) can be written as

W= J.l.'l'il."-' — -1- d:‘:: dt
(

- dr - -
Since, velocity is V= Z;d r=vdt. Right hand side of the equation

(4.40) can be written as
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di
[ dW
J dt

—dt = HI 1}!.11

_E.7 idr—.n

This relation is true for any arbitrary value of dt. This implies that
the term within the bracket must be equal to zero, i.e.,

dW
dt

1.i1'r"'.
dl

A vehicle of mass 1250 kg is driven with an acceleration 0.2 ms?
along a straight level road against an external resistive force 500 N.
Calculate the power delivered by the vehicle’s engine if the velocity of
the vehicle is 30 ms™.

The vehicle’s engine has to do work against resistive force and

make vechile to move with an acceleration. Therefore, power delivered
by the vehicle engine is
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P = (resistive force + mass x
acceleration) (velocity)

P=F v=(F_..+F¥

TERIRLIV

F—Emf—[hﬂmrumﬁ

= (500 N + (1250 kg) x (0.2 ms™))
(30 ms ") =225kW

COLLISIONS

Collision is a common phenomenon that happens around us every
now and then. For example, carom, billiards, marbles, etc.,. Collisions
can happen between two bodies with or without physical contacts.

Linear momentum is conserved in all collision processes. When
two bodies collide, the mutual impulsive forces acting between them
during the collision time (At) produces a change in their respective
momenta. That is, the first body exerts a force Fi.on the second body.
From Newton's third law, the second body exerts a force F. on the first
body. This causes a change in momentum A p, and A p, of the first body

and second body respectively. Now, the relations could be written as,

Ap. = F_Al

I 12
Ap, = ]-"5:_1[
Adding equation

Ap, +Ap, = F;:j'r ¥ ]__-_'u—""T _{ F, + F.'I ) At
According to Newton’s third law, Fio=—Fy

Ap, + _"'..}'1__ =2\
A(, +52) =0
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Dividing both sides by At and taking limit A t—0, we get

Alp,+p,) 4d(p,+p:)

iy —AET - Ra]  REY T Ea
At—0 Af el

The above expression implies that the total linear momentum is a

conserved quantity. Note: The momentum is a vector quantity. Hence,

vector addition has to be followed to find the total momentum of the

individual bodies in collision.

()

Types of collections

In any collision process, the total linear momentum and total
energy are always conserved whereas the total kinetic energy need not
be conserved always. Some part of the initial kinetic energy is
transformed to other forms of energy. This is because, the impact of
collisions and deformation occurring due to collisions may in general,
produce heat, sound, light etc. By taking these effects into account, we
classify the types of collisions as follows:

1. Elastic collision
2. Inelastic collision

Elastic collision
In a collision, the total initial kinetic energy of the bodies (before
collision) is equal to the total final kinetic energy of the bodies (after

collision) then, it is called as elastic collision. i.e.,

Total kinetic energy before collision = Total kinetic energy after
collision

Inelastic collision
In a collision, the total initial kinetic energy of the bodies (before

collision) is not equal to the total final kinetic energy of the bodies (after
collision) then, it is called as inelastic collision. i.e.,
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Total kinetic energy before collision # Total kinetic energy after
collision

| |I'€'II| |.II 'I'.Ili'\:llll.. M I..I!I- |

{ Totad kinelic enerygy
before collisiom
logs in PHere
| during collision e
Even though kinetic energy is not conserved but the total energy is

conserved. This is because the total energy contains the kinetic energy
term and also a term AQ, which includes all the losses that take place
during collision. Note that loss in kinetic energy during collision is
transformed to another form of energy like sound, thermal, etc. Further,
if the two colliding bodies stick together after collision such collisions
are known as completely inelastic collision or perfectly inelastic
collision. Such a collision is found very often. For example when a clay
putty is thrown on a moving vehicle, the clay putty (or Bubblegum)
sticks to the moving vehicle and they move together with the same
velocity.

Elastic collisions in one dimension
Consider two elastic bodies of masses m; and m, moving in a

straight line (along positive x direction) on a frictionless horizontal
surface.

Mass Initial velocity Final velocity

Mass m i, v

Mass . ) \

In order to have collision, we assume that the mass m; moves
faster than mass m» i.e., u; >up. For elastic collision, the total linear
momentum and kinetic energies of the two bodies before and after
collision must remain the same.

41 | P a ge APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187




| APPES 10|

SHANNA

Elastic Collision Inelastic Caollision
Tatal momentum is conseryed lotal moamentum 1 conserved

lotal kinetic energy is conserved Total kinetic energy is not conserved

Farces involved are conservative torces  Forces  mvalved  are  non-conservatife
forces
Mechamcal enerey s not dissipated Mechanical energy 1s dissipated mto hes

hight, sound et

Momentum of Momentum of Total linear momentu
IMAss J'HI Mii&%s .l'lll:l

Before collision P, =mu P M 1L,
EEN L 4 0T A
After collision L = - ¥
’ o =N, Py =,V i =Pt Pr
LR

From the law of conservation of linear momentum,

Total momentum before collision (p;) = Total momentum after
collision (py)

mu, +mu, =myv, + m\yv,

Or m(u—-v }j=m,(v,—u,)
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Kinetic energy of Kinetic energy of

Total kinetic energy
mass m, mass i,

KE =KE +KEl

Before 1 |
collision J‘ﬂ'l =—Tmu |".!' =—T, U, . i 1
- - RE, =—myl; +—m,u,

A e | |
corl listin KE, = =1, ¥ KE .- = —m, ¥

Total kinetic energy before collision KE; = Total kinetic energy after
collision KE;

| o s .1 -
— 1T} ll-——['l'.l.|l|: — LY. Y.
% 171 3 i - 5 1 9 a i

— — _— =

After simplifying and rearranging the terms,
m, (u; —v; }=m,(v, —u,

Using the formula a? -b?=(a+b)(a-b) we can rewrite the above equation
as

m [y, + v, -V, ) =m v, )Y,

m, [u; |. LF H '-H__ V. :| 111_,|: "-'_. -__u, :l[ Vv 3

m, (u,-v,) m, (¥, =, )

1'_" Rearranging, (4.50)

Equation (4.50) can be rewritten as
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u, —u, ==(v,

This means that for any elastic head on collision, the relative speed
of the two elastic bodies after the collision has the same magnitude as
before collision but in opposite direction. Further note that this result is
independent of mass.

Rewriting the above equation for v; and v,

vV, =V, +U,— U,

Vy=u, ¥, —U,

To find the final velocities vi and va:

Substituting equation (4.52) in equation (4.47) gives the velocity of
mg as

m,(u,—=v, J=m,|u+v,—u,—u,)

m(u,=v, J=m,{u +v -2u,)

|
m.u, —m,V, =m,u, +m,v, —2m,u,
mu —mu +2mou, =myv, + m,)
—_— - 1 o= — g
(m,—m,)u, +2mu, =(m,+m,)v,

m-m,| [ 2m,
or v, = /——n +| —— |u,
.m 4+m \m.+m,:,

5 )

Similarly, by substituting (4.51) in equation (4.47) or substituting
equation (4.53) in equation (4.52), we get the final velocity of m, as
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2m. | [ m, —-m, |
v, =] o +| = u,
| m, +m., | | m, +m., |

When bodies has the same mass i.e., m; = my,

[ 2m., |
= ¥.={0) u, +| — |11._
' 1:11: -

vV, =u, (3

[ 2m, |
A : !uI (0 ),

| 2m, )

W, = L1

The equations (4.55) and (4.56) show that in one dimensional
elastic collision, when two bodies of equal mass collide after the collision
their velocities are exchanged.

When bodies have the same mass i.e., m; = m, and second body
(usually called target) is at rest (uz = 0),

By substituting m; =m; and u, =0 in equations (4.53) and equations
(4.54) we get, body moves with the initial velocity of the first body.

=% v . =U

—""u.—LI.I

The first body is very much lighter than the second body
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=1

m m
m <= m,—<1|th nth rano —L=0

m, I,

Dividing numerator and denominator of equation (4.53) by m2, we get

-
—= _|{0)
m

| m, !

'.u--El'

Dividing numerator and denominator of equation (4.54) by m2, we get

m
'|_ |
.
= |©)
+ | |
i, f

L n
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The equation (4.59) implies that the first body which is lighter
returns back (rebounds) in the opposite direction with the same initial
velocity as it has a negative sign. The equation (4.60) implies that the
second body which is heavier in mass continues to remain at rest even
after collision. For example, if a ball is thrown at a fixed wall, the ball
will bounce back from the wall with the same velocity with which it was
thrown but in opposite direction.

The second body is very much lighter than the first body

n. .
m,<=m,—<|| th nth ratw — =0

I, m,

\1+0 .-l

]T“ Ill|+

\Y)

Dividing numerator and denominator of equation (4.58) by m1, we get

1l

3= |
m,
—_—
. .{ )
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v, =2u,

The equation (4.61) implies that the first body which is heavier
continues to move with the same initial velocity. The equation (4.62)
suggests that the second body which is lighter will move with twice the
initial velocity of the first body. It means that the lighter body is thrown
away from the point of collision.

A lighter particle moving with a speed of 10 m s collides with an
object of double its mass moving in the same direction with half its
speed. Assume that the collision is a one dimensional elastic collision.
What will be the speed of both particles after the collision?

Let the mass of the first body be m which moves with an initial velocity,
ul = 10 m s-1. Therefore, the mass of second body is 2m and its initial
velocity is

u, = = Tl'll] ms |,

l
2

Then, the final velocities of the bodies can be calculated from the
equation (4.53) and equation (4.54)

| m,—m, | | 2m; |
V= = ju ) ————
L m. +m. | \m, +m, |
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[ m—2m 2x2m .
1™

|]u—' |
\ m+2m

\'m++2m/

10+ 20 10

5 +
d ol

-‘ =

333 ms

2m, | [ m;—m,
u +| —+ L lu.
m,+m, ] ' | m +m,

[ 2m ﬁ'llﬁ [ 2m—m |,
| =
I

&
. m+2m ) \m+2m )/

¥ |
— [10+] = {5=
3 ) \ 3

v.=833ms "

As the two speeds v; and v, are positive, they move in the same
direction with the velocities, 3.33 m s~ and 8.33 m s~ respectively.

Perfect inelastic collision

In a perfectly inelastic or completely inelastic collision, the objects
stick together permanently after collision such that they move with
common velocity. Let the two bodies with masses m; and m, move with
initial velocities u; and u» respectively before collision. After perfect
inelastic collision both the objects move together with a common
velocity v

Since, the linear momentum is conserved during collisions,
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.IHI M+ M . = |'r.rJ|+ R

Velocity Linear
momentum

Initial Final Initial Final
Mass m T8 v m " v

Mass m, i, W L Mo

Total m o, + {rrr|+-

JTNTH IR

The common velocity can be computed by

mu, 4 m.,u,

N
{m, +m, )

A bullet of mass 50 g is fired from below into a suspended object
of mass 450 g. The object rises through a height of 1.8 m with bullet

remaining inside the object. Find the speed of the bullet. Take g = 10 ms-
2

m =50g=005kg; m =450g=0.45ke

The speed of the bullet is ul. The second body is at rest u,=0 . Let
the common velocity of the bullet and the object after the bullet is
embedded into the object is v.

m,u, +m,u,

| m, +m, |

0.05u, +=(0.45%0) (.05
V= - =—--1l
(0,02 +0.45) L, 54
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The combined velocity is the initial velocity for the vertical
upward motion of the combined bullet and the object. From second
equation of motion,

v=>6ms"
Substituting this in the above equation, the value of u; is
(.05 (.50

b= W] T U, = wih=]0=x06
(.50 (.05

Alms

Loss of kinetic energy in perfect inelastic collision

In perfectly inelastic collision, the loss in kinetic energy during
collision is transformed to another form of energy like sound, thermal,
heat, light etc. Let KE; be the total kinetic energy before collision and KE
be the total kinetic energy after collision.

Total kinetic energy before collision,

: 1 ! .
KE, =—m,u, +—m,u,
, -

| .
KE, =—{m, +m, |\

=

Then the loss of kinetic energy is Loss of KE, A Q = KE; -KE;
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==t g g
= —mu; +—m,u;——(m, +m, v
] ; | o fom j. 1 X

Substituting equation (4.63) in equation (4.66), and on simplifying
(expand v by using the algebra

N

[a+b) =a" +b" + 2ab,

Loss of KE, AQ = | m,m,

.|I;“I = :I:

2lm. +m.

Coefficient of restitution (e)

Suppose we drop a rubber ball and a plastic ball on the same floor.
The rubber ball will bounce back higher than the plastic ball. This is
because the loss of kinetic energy for an elastic ball is much lesser than
the loss of kinetic energy for a plastic ball. The amount of kinetic energy
after the collision of two bodies, in general, can be measured through a
dimensionless number called the coefficient of restitution (COR).

It is defined as the ratio of velocity of separation (relative velocity)
after collision to the velocity of approach (relative velocity) before
collision, i.e.,

velocity of separation| after collision |

L' : — - : -- ¢
velocity of approach( betore collision |

(v,-v)

a {"I —H_.'

In an elastic collision, we have obtained the velocity of separation
is equal to the velocity of approach i.e.,
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{x':—x'lﬁ

(=1}

lu, —u,)={v,—V, ] =]=g

This implies that, coefficient of restitution for an elastic collision,
e=1. Physically, it means that there is no loss of kinetic energy after the
collision. So, the body bounces back with the same kinetic energy which
is usually called as perfect elastic.

In any real collision problems, there will be some losses in kinetic
energy due to collision, which means e is not always equal to unity. If
the ball is perfectly plastic, it will never bounce back and therefore their
separation of velocity is zero after the collision. Hence, the value of
coefficient of restitution, e=0.

In general, the coefficient of restitution for a material lies between

D<ce<],

Show that the ratio of velocities of equal masses in an inelastic
collision when one of the masses is stationary is

velocity of separation( atter collision

velocity of approach( betore collision |

{r:—tﬁ iw:—wJ 1#1—VH

1I.|.;—l.!_,] |||.||—_H.]- u,
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From the law of conservation of linear momentum,

mu =mv, +myv, =>u =v, +v,(2)

Using the equation (2) for ul in (1), we get

On simplification, we get

L el ol ol ol o ol ol o o ol ol o
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12th-std
Unit 1- Electrostatics

INTRODUCTION

e FElectromagnetism is one of the most important branches of physics.
The technological developments of the modern 21st century are
primarily due to our understanding of electromagnetism. The forces
we experience in everyday life are electromagnetic in nature except

gravity.

In standard XI, we studied about the gravitational force, tension,
friction, normal force etc. Newton treated them to be independent of
each other with each force being a separate natural force. But what is
the origin of all these forces? It is now understood that except
gravity, all forces which we experience in every day life (tension in
the string, normal force from the surface, friction etc.) arise from
electromagnetic forces within the atoms. Some examples are

When an object is pushed, the atoms in our hand interact with the
atoms in the object and this interaction is basically electromagnetic in
nature.

(ii) When we stand on Earth's surface, the gravitational force on us acts
downwards and the normal force acts upward to counter balance the
gravitational force. What is the origin of this normal force?

It arises due to the electromagnetic interaction of atoms on the surface of
the Earth with the atoms present in the feet of the person. Though, we
are attracted by the gravitational force of the Earth, we stand on Earth
only because of electromagnetic force of atoms.

(iii) When an object is moved on a surface, static friction resists the
motion of the object. This static friction arises due to electromagnetic
interaction between the atoms present in the object and atoms on the
surface. Kinetic friction also has similar origin.

55| P age APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187




APPES L0

From these examples, it is clear that understanding electromagnetism is
very essential to understand the universe in a holistic manner. The basic
principles of electromagnetism are dealt in XII physics volume 1. This
unit deals with the behaviour and other related phenomena of charges at
rest. This branch of electricity which deals with stationary charges is
called Electrostatics.

Historical background of electric charges

e Two millenniums ago, Greeks noticed that amber (a solid,
translucent material formed from the resin of a fossilized tree) after
rubbing with animal fur attracted small pieces of leaves and dust.
The amber possessing this property is said to be ‘charged’. It was
initially thought that amber has this special property. Later people
found that not only amber but even a glass rod rubbed with silk
cloth, attracts pieces of papers. So glass rod also becomes ‘charged’
when rubbed with a suitable material.

Consider a charged rubber rod hanging from a thread as shown in
Figure 1.1. Suppose another charged rubber rod is brought near the
tirst rubber rod; the rods repel each other. Now if we bring a charged
glass rod close to the charged rubber rod, they attract each other. At
the same time, if a charged glass rod is brought near another charged
glass rod, both the rods repel each other.

From these observations, the following inferences are made

(i) The charging of rubber rod and that of glass rod are different from
one another.

(i) The charged rubber rod repels another charged rubber rod, which
implies that ‘like charges repel each other’. We can also arrive at the
same inference by observing that a charged glass rod repels another
charged glass rod.

(iii) The charged amber rod attracts the charged glass rod, implying that
the charge in the glass rod is not the same kind of charge present in the
rubber. Thus unlike charges attract each other.

Therefore, two kinds of charges exist in the universe. In the 18th century,
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Benjamin Franklin called one type of charge as positive (+) and another
type of charge as negative (-). Based on Franklin’s convention, rubber
and amber rods are negatively charged while the glass rod is positively
charged. If the net charge is zero in the object, it is said to be
electrically neutral.

Following the pioneering work of J. J. Thomson and E. Rutherford, in
the late 19th century and in the beginning of 20th century, we now
understand that the atom is electrically neutral and is made up of the
negatively charged electrons, positively charged protons, and
neutrons which have zero charge. The material objects made up of
atoms are neutral in general. When an object is rubbed with another
object (for example rubber with silk cloth), some amount of charge is
transferred from one object to another due to the friction between
them and the object is then said to be electrically charged. Charging
the objects through rubbing is called triboelectric charging.

Basic properties of charges
(i) Electric charge

e Most objects in the universe are made up of atoms, which in turn are
made up of protons, neutrons and electrons. These particles have
mass, an inherent property of particles. Similarly, the electric charge

is another intrinsic and fundamental property of particles. The nature of
charges is understood through various experiments performed in the
19th and 20th century. The SI unit of charge is coulomb.

(ii) Conservation of charges

e Benjamin Franklin argued that when one object is rubbed with
another object, charges get transferred from one to the other. Before
rubbing, both objects are electrically neutral and rubbing simply
transfers the charges from one object to the other. (For example,
when a glass rod is rubbed against silk cloth, some negative charge
are transferred from glass to silk. As a result, the glass rod is
positively charged and silk cloth becomes negatively charged). From
these observations, he concluded that charges are neither created or
nor destroyed but can only be transferred from one object to other.
This is called conservation of total charges and is one of the
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fundamental conservation laws in physics. It is stated more generally
in the following way.

“The total electric charge in the universe is constant and charge can
neither be created nor be destroyed. In any physical
process, the net change in charge will always be zero.

(iii) Quantisation of charges

What is the smallest amount of charge that can be found in nature?
Experiments show that the charge on an electron is —e and the charge
on the proton is +e. Here, e denotes the fundamental unit of charge.
The charge g on any object is equal to an integral multiple of this
fundamental unit of charge e.

g =ne (1.1)

Here n is any integer (0, +1, +2, +3, +4........... ). This is called

quantisation of electric charge.

e Robert Millikan in his famous experiment found that the value of e =
1.6 x 10°C. The charge of an electron is -1.6 x 10-19 C and the
charge of the proton is +1.6 x 10-19C.

When a glass rod is rubbed with silk cloth, the number of charges
transferred is usually very large, typically of the order of 1010. So the
charge quantisation is not appreciable at the macroscopic level. Hence
the charges are treated to be continuous (not discrete). But at the
microscopic level, quantisation of charge plays a vital role.

EXAMPLE
Calculate the number of electrons in one coulomb of negative charge.

Solution
According to the quantisation of charge
q =ne
Here q = 1C. So the number of electrons in 1 coulomb of charge is

1c

n=2 =— =% x=6.25x 10 1. . electrons
e 1.6x10-19

COULOMB'’S LAW
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e In the year 1786, Coulomb deduced the expression for the force
between two stationary point charges in vacuum or free space.
Consider two point charges ql and g2 at rest in vacuum, and
separated by a distance of r, as shown in Figure 1.2. According to
Coulomb, the force on the point charge q2 exerted by another point
charge ql

F, =kdir
r

Where ry, is the unit vector directed from charge q1 to charge g2 and k is
the proportionality constant.

Important aspects of Coulomb’s law

(i) Coulomb's law states that the electrostatic force is directly
proportional to the product of the magnitude of the two point charges
and is inversely proportional to the square of the distance between the
two point charges.

(ii) The force on the charge q2 exerted by the charge q1 always lies along
the line joining the two charges. is the unit

vector pointing from charge ql to g2 .It is shown in the Figure 1.2.
Likewise, the force on the charge ql exerted by g2 is along (i.e., in the
direction opposite to ).

1
(iii) In SI units, K= 2me0 and its value is 9 x 10° N m2 C2. Here &, is the

s 1 _
permittivity of free space or vacuum and the value of &;= z— =

8.85x1012C2N1m?.

(iv) The magnitude of the electrostatic force between two charges each
of one coulomb and separated by a distance of 1 m is calculated as
follows:

9x10x1x1
1

=9%x 10°N
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This is a huge quantity, almost equivalent to the weight of one million
ton. We never come across 1 coulomb of charge in practice. Most of the
electrical phenomena in day-to-day life involve electrical charges of the
order of pC (micro coulomb) or nC (nano coulomb).

(v) In SI units, Coulomb’s law in vacuum takes the form

F,=kdfhr
r

In a medium of permittivity ¢, the force between two point charges is
given,

Fo=kddip
r

the force between two point charges in a medium other than vacuum is

always less than that in vacuum. We define the relative permittivity for
€

a given medium as er —
€0

For vacuum or air, er = 1 and for all other media er> 1.

(vi) Coulomb’s law has same structure as Newton’s law of gravitation.
Both are inversely proportional to the square of the distance between the
particles. The electrostatic force is directly proportional to the product

of the magnitude of two point charges and gravitational force is directly
proportional to the product of two masses. But there are some important
differences between these two laws.

* The gravitational force between two masses is always attractive but
Coulomb force between two charges can be attractive or repulsive,
depending on the nature of charges.

* The value of the gravitational constant G = 6.626 x 10-11 N m2 kg-2.
The value of the constant k in Coulomb law is k = 9 x 109 N m2 C-2.
Since k is much more greater than G, the electrostatic force is always
greater in magnitude than gravitational force for smaller size objects.

* The gravitational force between two masses is independent of the

medium. For example, if 1 kg of two masses are kept in air or inside
water, the gravitational force between two masses remains the same. But
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the electrostatic force between the two charges depends on nature of the
medium in which the two charges are kept at rest.

* The gravitational force between two point masses is the same whether
two masses are at rest or in motion. If the charges are in motion, yet
another force (Lorentz force) comes into play in addition to coulomb
force.

(vii) The force on a charge q1 exerted by a point charge g2 is given by
_|" | .Ir |i' -
- A4RE_ 1

Here is the unit vector from charge q2 to q1. But'"

B | g, |

4NE_ 1 titE

;-
5

Lor) Fu=—I

Therefore, the electrostatic force obeys Newton’s third law.

(viii) The expression for Coulomb force is true only for point charges.
But the point charge is an ideal concept. However we can apply
Coulomb’s law for two charged objects whose sizes are very much
smaller than the distance between them. In fact, Coulomb discovered his
law by considering the charged spheres in the torsion balance as point
charges. The distance between the two charged spheres is much greater
than the radii of the spheres.

They are separated by a distance of 1m. Calculate the force experienced
by the two charges for the following cases:

(@) q1 =+2pCand g2 = +3pC
(b) q1 = +2pC and g2 =-3pC
(c) q1= +2pC and g2 = -3pC kept in water (er = 80)

(@) q1 = +2 pC, g2 = +3 pC, and r = Im. Both are positive charges. so the
force will be repulsive

Force experienced by the charge q2 due to q1 is given by
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B = ! Iil"llr
] 4ME_ T ]

Here “is the unit vector from ql to g2. Since g2 is located on the right
of q1, we have

r, =i, 50 that

rding to ew on’s thi d law the for e exp rienced by he cha ge q' ue to g2 is
E, E

»0 that I':: =—54x 10" NJ .

The dirctions of Fyand Fyp are sho n in he abo e fig re in as (a)

ql +C, g2 -C,and r =1 . The are unl ke cha ges. So he for e wil be tt
active. Force exprienced by he chage g2 due to q;is given by
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| I'IIL' l.II.IIE_l. q, l-'-l” l."|.|'l.1|lL.'-|l.I."' an aftractive
force towards g which is in the negative x

direction

According to Newtons third law, the force

experienced by the charge q due to q, is

so that F,=54x=10 "N{

[he directions of F andE . are shown in
the hgure {case (b))

{cd If these two -.']'u'lr';l'L'!- are L|.'|:-r inside
the water, then the torce experienced by g

-||I|l.' ||l|.:|

SI0CE E

we have

EXAMPLE

Two sma l-sized ide tical equ lly changed sph res, eac hav ng mas 1 m re
han ing in qu librium as ho n in he fig re. The lenth of ac str ng is 0 m nd
the ang e 0 i ° it the ver ical. Calculate the mag itude of he chacnge in ac
sphere

Solution

If the two spheres are neutral, the angle between them will be 0o when
hanged vertically. Since they are positively charged spheres, there will
be a repulsive force between them and they will be at equilibrium with
each other at an angle of 7° with the vertical. At equilibrium, each charge
experiences zero net force in each direction. We can draw a free body
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diagram for one of the charged spheres and apply Newton’s second law
for both vertical and horizontal directions.

The free body diagram is shown below. In the x-direction, the
acceleration of the charged sphere is zero.

(F =ma),
Using Newton’s second law

Isin®f =Ff =0

I'sinB= F
Here T is the tension acting on the charge due to

the string and Fe is the electrostatic force between the two charges.
In the y-direction also, the net acceleration experienced by the charge is
Zero.

i ons8 i mig | = i¥

herefore, I cost= myp
By dividing equation (1) by equation (2),

Mmce - they  are  equally dharged, the

L ilaiicke il tha |||||I| slalis M

- HEAEETETELL BT SOEATTEEY L e et
Aoarmanging e equaetion (40 IO get g
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Calculate the electrostatic force and
gravitational force between the proton and
the electron in a hydrogen atom. They are
separated by a distance of 5.3 X 10r'"" m
The magnitude of charges on the electron
and proton are 1.6 X 10" C. Mass of the
electron is m_= 9.1 X 10" kg and mass of

proton ism_= 1.6 X 10~ kg.

Solution

The proton and the electron attract each
other. The m:a;:nitudi: of the electrostatic
force between these two particles is given by

910" % (1.6x107 "

[53x= 107"

Yt oh
2809

«100"=82 X 10* N

The gravitational force between the

proton and the electron is  atiractive.

The magnitude of the gravitational force

between these particles is

_ Cirni rm

Fo=- -
=

by

9711

: W =34xI0VN
Ja.0g

B2x107"
34x10"

) ) . F
'he ratio of the two forces— =

=241 X 10"

Motethat F =10"F
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o The electrostatic force between a proton and an electron is
enormously greater than the gravitational force between them. Thus
the gravitational force is negligible when compared with the
electrostatic force in many situations such as for small size objects
and in the atomic domain. This is the reason why a charged comb
attracts an uncharged piece of paper with greater force even though
the piece of paper is attracted downward by the Earth. This is shown

Superposition principle

Coulomb’s law explains the interaction between two point charges. If
there are more than two charges, the force on one charge due to all
the other charges needs to be calculated. Coulomb’s law alone does
not give the answer. The superposition principle explains the
interaction between multiple charges.

According to this superposition principle, the total force acting on a
given charge is equal to the vector sum of forces exerted on it by all
the other charges.

Consider a system of n charges, namely q1, g2, 3 ....qn. The force on
ql exerted by the charge g2

g 1

T

Here is the unit vector from g2 to ql along the line joining the two
charges and

21 is the distance between the charges ql and 2. The electrostatic
force between two charges is not affected by the presence of other
charges in the neighbourhood.

The force on g1 exerted by the charge g3 is

P4
F

¢ By continuing this, the total force acting on the charge ql due to all
other charges is given by
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EXAMPLE15

Consider four equal charges q1,q92, g3 and g4 = q = +1pC located at
four different points on a circle of radius 1m, as shown in the figure.
Calculate the total force acting on the charge ql due to all the other
charges.

Solution
According to the superposition principle, the total electrostatic force on
charge q1 is the vector sum of the forces due to the other charges,

following dia ram sho s the dir ction of ac for e on he cha ge q1.

The charges g2 and g4 are equi-distant from ql. As a result the strengths
(magnitude) of the forces F12 and F* are the same even though their
directions are different. Therefore the vectors representing these two
forces are drawn with equal lengths. But the charge g3 is located farther
compared to g2 and g4. Since the strength of the electrostatic force
decreases am ulinliuniiin: I riascs, 10 stremth ol e Joroe 118 is lesser
than that of forces F12 and F'4 . Huewir Lo wendur reprresaistigg the Jure: |
FBin Urawn with sinallor lenetth cerpaeed 1o hat o lurees 112 and F14

From thefigure, r, =v2m=r, andr, =2m

['he magnitudes of the forces are given by

L 9= 10" =10
poo M
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Erom the ‘|Ii_"=\.lr-\!'. the '“"FI" = 45° In terms

of the components, we have

.'-'_n.'ll:-.ﬂ.' F sin@ |

Sl NI

|
1=
- .'-” cos@d -F sind |
= 455107 w—d +E5%10
wa
'hen the total force on q, is

E™ =|F. cosaBi —F_ sinf ) |4

i P I.|:-'.II| i I'.il'.‘l:l: |

F*" =|F, cosB 4+ F, + F, cosf |

F_sing-+ F sin@} |

Since F . = F , the |" component 18 2ero.

Henoe we have

I-' — ._.|-|F| = F . |I |'\':“~I:I‘ [ ]

substituting the walues in the above

ecpuation,

Sble il N

The resultant force is along the positive x

AKEE.
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ELECTRIC FIELD AND ELECTRIC FIELD LINES

Electric Field

e The interaction between two charges is determined by Coulomb’s
law. How does the interaction itself occur? Consider a point charge
kept at a point in space. If another point charge is placed at some
distance from the first point charge, it experiences either an attractive
force or repulsive force. This is called “action at a distance’. But how
does the second charge know about existence of the first charge
which is located at some distance away from it? To answer this
question, Michael Faraday introduced the concept of field.

According to Faraday, every charge in the universe creates an
electric field in the surrounding space, and if another charge is
brought into its field, it will interact with the electric field at that
point and will experience a force. It may be recalled that the
interaction of two masses is similarly explained using the concept of
gravitational field (Refer unit 6, volume 2, XI physics). Both the
electric and gravitational forces are non-contact forces, hence the
field concept is required to explain action at a distance.

Consider a source point charge q located at a point in space. Another
point charge qo (test charge) is placed at some point P which is at a
distance r from the charge q. The electrostatic force experienced by
the charge qo due to q is given by Coulomb’s law.
ka l i I
= —F =———r where k=——
r 4ME_ T 4ME

The charge q creates an electric field in the surrounding space. The
electric field at the point P at a distance r from the point charge q is
the force experienced by a unit charge and is given by
- ) i i
Feflatpe 2 Asnmn
.:il K 4ME. 1T

Here is the unit vector pointing from q to the point of interest P. The
electric field is a vector quantity and its SI unit is Newton per Coulomb
(NC-1).

69 | P age APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187




APPES L0

Important aspects of Electric field

(i) If the charge g is positive then the electric field points away from the
source charge and if g is negative, the electric field points towards the
source charge g. This is shown in the Figure 1.4.

(ii) If the electric field at a point P is E then the force experienced by the
test charge qo placed at the point P is

(iii) The equation (1.4) implies that the electric field is independent of
the test charge qo and it depends only on the source charge q.

(iv) Since the electric field is a vector quantity, at every point in space,
this field has unique direction and magnitude as shown in Figures 1.6(a)
and (b). From equation (1.4), we can infer that as distance increases, the
electric field decreases in magnitude.

Note that in Figures 1.6 (a) and (b) the length of the electric field vector
is shown for three different points. The strength or magnitude of the
electric field at point P is stronger than at the points Q and R because the
point P is closer to the source charge.

(v) In the definition of electric field, it is assumed that the test charge g0
is taken sufficiently small, so that bringing this test charge will not move
the source charge. In other words, the test charge is made sufficiently
small such that it will not modify the electric field of the source charge.

(vi) The expression (1.4) is valid only for point charges. For continuous
and finite size charge distributions, integration techniques must be used
These will be explained later in the same section. However, this
expression can be used as an approximation for a finite-sized charge if
the test point is very far away from the finite sized source charge. Note
that we similarly treat the Earth as a point mass when we calculate the
gravitational field of the Sun on the Earth (refer unit 6, volume 2, XI
physics).

(vii) There are two kinds of the electric field: uniform (constant) electric
field and non-uniform electric field. Uniform electric field will have the
same direction and constant magnitude at all points in space. Non-
uniform electric field will have different directions or different
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magnitudes or both at different points in space. The electric field created
by a point charge is basically a non uniform electric field. This non-
uniformity arises, both in direction and magnitude, with the direction
being radially outward (or inward) and the magnitude changes as
distance increases. These are shown in Figure 1.7.

EXAMPLE 1.6

Calculate the electric field at points P, Q for the following two cases, as
shown in the figure.

(@) A positive point charge +1 pC is placed at the origin
(b) A negative point charge -2 pC is placed at the origin

Solution
Case (a)
The magnitude of the electric field at point P is

| if 9w 0" =110
f

= 2.25x 10" MNC

Since the source charge is positive, the electric field points away from
the charge. So the electric field at the point P is given by

B, =225x10'NC"i
For the point ()
9% 10° % 110

il - N.56= 10" NC
16

E —056 10 §
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Case (b)

I'he magnitude of the electric field at point

I g 9xl0 x2x10

4NE, -

= 45X 10° N C

Since the source charge is negative, the
electric field points towards the charge. So

the electric field at the point P is given by

E.=—4.5x10°i NC
For the point (),

=03x 10" NC

"'.. = 0,56x10"i NC

Al the point () the electric field is directed

along the positive x-axis.

Electric field due to the system of point charges

Suppose a number of point charges are distributed in space. To find
the electric field at some point P due to this collection of point
charges, superposition principle is used. The electric field at an
arbitrary point due to a collection of point charges is simply equal to
the vector sum of the electric fields created by the individual point
charges. This is called superposition of electric fields. Consider a
collection of point charges located at various points in space. The

total electric field at some point P due to all these n chargesisgivenby
i, v, 4]
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(1.7)

dere .11 -+ are the distance of the

he charges §.9,.4,......q, from the point

3 respectively. Alsor,.r..fpoeent, @re the

'I"I'I'i."'i]."':"ﬂl.ill‘-l__i'. unit vectors directed from

For example in Figure 1.8, the resultant electric field due to three point
charges at point P is shown. i 1.
Note that the relative lengths of the electric field vectors for the charges

depend on relative distances of the charges to the point P.

EXAMPLE 1.7

Consider the charge configuration as shown in the figure. Calculate
the electric field at point A. If an electron is placed at points A, what
is the acceleration experienced by this electron? (mass of the electron

= 9.1 x 103! kg and charge of electron = —1.6 x 10-19 C)
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Solution

By using superposition principle, the net

electric field at point A is

Poa =it

r —_—
4ME_r; 4RE

where r , and r,, are the distances of point

A from the two charges respectively.

0% 10" x1x10 G0 <1x10"
: —| J i+ { 1)
| % 14| | &= 1077

=2235x10" f4+2.25x100 =2.25x10° ({1 + §)

The magnitude of electric feld

B.]= J(225x10°] +(2.25%10°)

=225xy2x 10" NC

direction of E, is given by
which

is the unit vector along OA as shown in the
figure.
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['he acceleration experienced by an

electron placed at point A is

.r- |_|'.!- i

[he electron is accelerated in a direction

exactly opposite to E,

Electric field due to continuous charge distribution

The electric charge is quantized microscopically. The expressions
(1.2), (1.3), (1.4) are applicable to only point charges. While dealing
with the electric field due to a charged sphere or a charged wire etc.,
it is very difficult to look at individual charges in these charged
bodies. Therefore, it is assumed that charge is distributed
continuously on the charged bodies and the discrete nature of
charges is not considered here. The electric field due to such
continuous charge distributions is found by invoking the method of
calculus.

Consider the following charged object of irregular shape as shown in
Figure 1.9. The entire charged object is divided into a large number
of charge elementsand each charge element A 4.8 1 jg
taken as a point charge.

The electric field at a point P due to a charged object is
approximately given by the sum of the fields at P due to all such
charge elements.
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e Here is the ith charge element, riP is the distance of the point P from
the ith charge element and is the unit vector from ith charge element
to the point P.
However the equation (1.9) is only an approximation. To incorporate
the continuous distribution of charge, we take the limit In this limit,
the summation in the equation (1.9) becomes an integration and
takes the following form

g, IJI—“r (1.10)
dME_ -

4

Here r is the distance of the point P from the infinitesimal charge dq and
r~is the unit vector from dg to point P. Even though the electric field for a

continuous charge distribution is difficult to evaluate, the force
experienced by some test charge q in this

electric hield is still given by F =gk

If the -C.harge. Qis uniforml.y distributed along the wire of length L, then
linear charge density (charge per unit length)

3 J !
5 A= { [ts unit is coulomb per meter

The charge present in the infinitesimal length dl is dg = Adl. This is
shown in Figure 1.10 (a).

The electric field due to the line of total charge Q is given by
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E=
ime " 4ne '

II|- Al A pdl
r ad’

{b) If the charge Q is uniformly distributed
on a surface of area A, then surface
charge density (charge per unit area)

; ) :
is =" Its unit is coulomb per square
meter (C m =),

I'he charge present in the infinitesimal
area dA is dq = odA. This is shown in
the figure 1.10 (b).

The electric field due to a of total charge
Q is given by

- | « el - 1 2 ]
H= l m.' F = 4 i' ir.—r
4me ' r ine 4 r

This is shown in Figure 1.10(b).

If the charge Q) is uniformly distributed
in a volume V, then volume charge
density {(charge per unit volume) is

8
given by p= iil . Its unit is coulomb per

cubic meter (C m~).

The charge present in the infinitesimal
volume element dV is dg = pdV. This is
shown in Figure 1.10{(c).

[he electric field due to a volume of
total charge () is given by

3 1 ppdV 1 vdV
E= f= i —T.
4mE J r 47E '}-I r
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EXAMPLE 1.8

A block of mass m and positive charge q is placed on an insulated
frictionless inclined plane as shown in the figure. A uniform electric field
E is applied parallel to the inclined surface such that the block is at rest.
Calculate the magnitude of the electric field E.

Solution

Note: A similar problem is solved in XIth Physics volume I, unit 3
section 3.3.2.
There are three forces that acts on the mass m:

(i) The downward gravitational force exerted by the Earth (mg)
(ii) The normal force exerted by the inclined surface (IN)

(iii) The Coulomb force given by uniform electric field (qE)
The free body diagram for the mass m is drawn below.

A convenient inertial coordinate system is located in the inclined surface
as shown in the figure. The mass m has zero net acceleration both in x
and y-direction.

Along x-direction, applying Newton’s second law, we have
myg Sin@i — gEi =0

g sin g .I'I — {

mig sink

0T, — -
q

Note that the magnitude of the electric field is directly proportional to
the mass m and inversely proportional to the charge q. It implies that, if
the mass is increased by keeping the charge constant, then a strong
electric field is required to stop the object from sliding. If the charge is
increased by keeping the mass constant, then a weak electric field is
sufficient to stop the mass from sliding down the plane.

The electric field also can be expressed in terms of height and the length
of the inclined surface of the plane.
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Electric field lines

Electric field vectors are visualized by the concept of electric field lines.
They form a set of continuous lines which are the visual representation
of the electric field in some region of space. The following rules are
followed while drawing electric field lines for charges.

* The electric field lines start from a positive charge and end at negative
charges or at infinity. For a positive point charge the electric field lines
point radially outward and for a negative point charge, the electric field
lines point radially inward.

Note that for an isolated positive point charge the electric field line starts
from the charge and ends only at infinity. For an isolated negative point
charge the electric field lines start at infinity and end at the negative
charge.

* The electric field vector at a point in space is tangential to the electric
field line at that point.

* The electric field lines are denser (more closer) in a region where the
electric field has larger magnitude and less dense in a region where the
electric field is of smaller magnitude. In other words, the number of lines
passing through a given surface area perpendicular to the lines is
proportional to the magnitude of the electric field in that region. electric
field lines from a positive point charge. The magnitude of the electric
field for a point charge decreases

g
as the distance u:{:-.'m-u.!ll'| x —|. S0 the
] r'

electric field has greater magnitude at the surface A than at B. Therefore,
the number of lines crossing the surface A is greater than the number of
lines crossing the surface B. Note that at surface B the electric field lines
are farther apart compared to the electric field lines at the surface A.
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As a consequence, if some charge is placed in the intersection point, then
it has to move in two different directions at the same time, which is
physically impossible. Hence, electric field lines do not intersect.

* The number of electric field lines that emanate from the positive
charge or end at a negative charge is directly proportional to the
magnitude of the charges.

For example in the Figure 1.15, the electric field lines are drawn for
charges +q and -2q. Note that the number of field lines emanating from
+q is 8 and the number of field lines ending at -2q is 16. Since the
magnitude of the second charge is twice that

e No two electric field lines intersect each other. If two lines cross at a
point, then there will be two different electric field vectors at the same
point,

of the first charge, the number of field lines drawn for -2q is twice in
number than that for charge +q.

EXAMPLE 1.9

The following pictures depict electric field lines for various charge
configurations.

(i) In figure (a) identify the signs of two charges and find the ratio

(ii) In figure (b), calculate the ratio of two positive charges and identify
the strength of the electric field at three points A, B, and C

(iii) Figure (c) represents the electric field lines for three charges. If q2 = -
20 nC, then calculate the values of q1 and g3

Solution

(i) The electric field lines start at g2 and end at ql. In figure (a), g2 is
positive and q1 is negative. The number of lines starting from q2 is 18

and number of the lines ending at ql is 6. So g2 has greater magnitude.

.ill ..".I i |
= vk = e — ot imiplies
.| N, 18 3

that |g.|=3|g
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(ii)In figure (b), the number of field lines emanating from both positive
charges are equal (N=18). So the charges are equal. At point A, the
electric field lines are denser compared to the lines at point B. So the
electric field at point A is greater in magnitude compared to the field at
point B. Further, no electric field line passes through C, which implies
that the resultant electric field at C due to these two charges is zero.

(iii) In the figure (c), the electric field lines start at q1 and g3 and end at
g2. This implies that q1 and g3 are positive charges. The ratio of the
number

_ . lg] 8 Jq,| 1
of field lines is = = R =
14:) 16 |4 | -
implying that g and q are half of the

||1.';J_:|1ir|';-i; of q. S0 q,=4q,= 10 nCC,

ELECTRIC DIPOLE AND ITS PROPERTIES
Electric dipole

Two equal and opposite charges separated by a small distance
constitute an electric dipole. In many molecules, the centers of positive
and negative charge do not coincide. Such molecules behave as
permanent dipoles. Examples: CO, water, ammonia, HCl etc.

Consider two equal and opposite point charges (+q, -q) that are
separated by a distance 2a as shown in Figure 1.16(a).

The electric dipole moment is defined as

Here 7 is the position vector of +q from

—gr the origin and 7 is the position vector of -q

from the origin. Then, from Figure 1.16 (a),

pr=gai —gal -1 )=2gai (L11)

The electric dipole moment vector lies along the line joining two charges
and is directed from -q to +q. The SI unit of dipole moment is coulomb
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meter (Cm). The electric field lines for an electric dipole are shown in
Figure 1.16 (b).

* For simplicity, the two charges are placed on the x-axis. Even if the
two charges are placed on y or z-axies, dipole moment will point from -
q to +q. The magnitude of the electric dipole moment is equal to the
product of the magnitude of one of the charges and the distance between
them,

* Though the electric dipole moment for two equal and opposite charges
is defined, it is very general. It is possible to define and calculate the
electric dipole moment for a single charge, two positive charges, two
negative charges and also for more than two charges.

For a collection of n point charges, the electric dipole moment is defined
as follows:

pga=2

P=) qf (1.12)

where 7 is the position vector of charge g

from the origin,
Solution

Case (a) The position vector for the +q on
the positive x-axis is al and position vector
tor the +q charge the negative x axis is —ai

So the |_:||F1-|"II-;," mioment 1s,

p=[+g)| ai |+[4+gll —ai =10

Case {b) In this case one charge is placed
at the origin, so its position vector is zero.
Hence only the second charge +q with
i'll'l siton vector ar Conmt r!l'l-l]'l £S5 o I'!ll.' -.|.|-]"'I.I|I.'

moment, which is p=qai .

From both cases (a) and (b), we can infer that in general the electric
dipole moment depends on the choice of the origin and charge
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configuration. But for one special case, the electric dipole moment is
independent of the origin. If the total charge is zero, then the electric
dipole moment will be the same irrespective of the choice of the origin.
It is because of this reason that the electric dipole moment of an electric
dipole (total charge is zero) is always directed from -q to +q,
independent of the choice of the origin

Case (¢} p=l —2qlaj +ql2a)(—] }=—4qaj
Note that in this case p is directed from

2q to +q
Case (d) p 2ga{—i )+ qaj +gal —j)

2gai

The water molecule (H20) has this charge configuration. The
water molecule has three atoms (two H atom and one O atom). The
centers of positive (H) and negative (O) charges of a water molecule
lie at different points, hence it possess permanent dipole moment.
The O-H bond length is 0.958 x 10-10 m due to which the electric
dipole moment of water molecule has the magnitude p = 6.1 x 10-30
Cm. The electric dipole moment is directed from center of negative
charge to the center of positive charge, as shown in the figure.

Electric field due to a dipole

Case (i) Electric field due to an electric dipole at points on the axial
line Consider an electric dipole placed on the x-axis as shown in
Figure 1.17. A point C is located at a distance of r from the midpoint
O of the dipole along the axial line.
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The electric tield at a point C due to +q is
|

E d - along BC
4ME (r—aj

Since the electric dipole moment vector p
is from —q to +q and is directed along BC,
the above equation is rewritten as

" 1 g -
E : i
. 4HE¢|!Lr—n]'P (1.13)

where p is the electric dipole moment unit
vector from -q to +q
The electric field at a point C due to —q is

— |_ q -
E =-— ¥ 2 (114}
*HTEl__i |:r_|_ L_III-

Since +q Is located closer to the point C than
-q, E, is stronger than E . Therefore, the
length of the E_ vector is drawn larger than
that of E vector.
The total electric field at point Cis calculated
using the superposition principle of the
electric field.
Eml =E +E

| q l iq

= : = F = - 5 F
4NE, (r—a) 4“En-lr+-ljl

APP® 10|
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- p
\r+a) I (115

LLlG)

Note that the total eectric field is along £,
since +g is closer to C than -g.

I'he direction of E is shown in Figure 1.18.
1 ]

- -
i

il

Figure 1.18 Total electric field of the
dipole on the axial line

If the point C is very far away from the

dipole then (r >> a}. Under this limit the
term [r*=g') =¢', Substituting this into
equation { .16}, we get

& 1 | 4ag}

"_‘._ - .1EE. T:IFP (r>>al

since lagp = p

{r>>a) (L.17)

If the point C is chosen on the left side of
the dipole, the total electric field is sull in
the direction of I|'1l We Infer this resull by
examining the electric field lines of the
dipole shown in Figere 1.16{b}

Case (il) Electric field due to an electric
dipole al a point on the equatorial plame
Consider a point C at a distance r from the
midpaint O of the dipole on the equatorial
plane as shown in Figure 1.19,

Since the point C is equi-distant from +q
and —q, the magnitude of the electric fields
of +q and —q are the same. The direction of
E, is along BC and the direction of E is
along CA. £ and E_ are resolved into two
companents; one component parallel w the
dipole axis and the other perpendicular to
il The perpendicular components |f,i-|ﬂ[+
and |E [un® are oppositely directed and
cancel ench other. The magnitude of the
total electric field &t point C is the sum of
the parallel components of £ and E and
its direction is along —p as shown In the
Figure 1.19.

E'I_, = —|E_|i:|:||.H|h —|I-: |i:|:|:.l.l_p

£ sinlf
§

| Figure 1.19 Electric field due to a dipole at a point on the equatorial plane

=
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Ihe magnitudes £ and E are the same and

are given by

e i
e LE1Y9]

Ihy substituling equation { 1. 149} info egliation

B3] wor et

i
since condl =

W -+ "

et e

e o
{(r4a"f
singe = lqap (1.20)
Al very lange distances (re=al, Hye equation
[ 120} ey
L

i r

(o {824

[mportant inferences

(i} Frioan exjuations (07 amed 41,200, I8 is
inferred that for very large disiances,
the magninede of the eleotrie feld a1
pernts it the cipade akis |s twice the
imagnitude of the electric fleld of polnts
L] r|'||-|-|.||_|.|ru|- .| |'l|.||||' | |l-'||||'|'|_ Flawin and
the eleciric lield a1 poinis on the dipole
axis |s direcied .|||I'|F; phne direction axl
.I||'-u||- meEmient vecior B bat al [rimliits
oml The equsioriad plane it B direcied
ippasite fo the dipole moment vecto,
that is along —p

Al wety lange distances, the elecirk
fieldd die 16 & l.|Ir\l|l||' VArIEs a8 : i T
thatt for & polot . chargs, e elictric
field varies as —. This implies that thi
electric feld due to a dipnle 2t very large
distances goes o fero Faster than the

& L0

| APPS L0

SHIENNA

ectric flebd doe to o paiit Charge. The
reasiof fod thls belsaviisr B rhat &l Viry
larpe distance, (he bwo changss appears
io bie close (] cach ....'I'"_-:' .||||‘| T |'_|||;|'|-
cach other.
(i) The vguations [1L17) and {1.21) are
valid only et wery larpe distances

(re==a) Auppose  [he ilistanie
La approaches gero and o approaches
infinity such that the prodoct of
Ly = p & findee, then the dipols

cablbed & point dipade, For such poinl
dipales, eguations [LIT) and 1031

ire exact and hold trae for &y i

Torque experienced
by an electric dipole in the
uniform electric field

Consder an eleciric  dipole ol  dipade
imomenl p placed i a unidorm eleciric fleld
F whose ficld lines agy |.1|-.|.|.'I'|' 1'|'-.'..'|'|E| and
prairit In the sanee direction. The chame +i
will experience a fofce g E in the direction
isl the field amd charge 4 wrill| FXperience
a force -gE i a divection opposite o the
fleld. Since the external Held E is Lo B,
the 1odal Jorce acting on the -.Il|1|-I|' % ICrm
[Teese twio forces acting o differont points
will comlitle a4 couple and the dipole
CXPUTICNGE i [OTjse &5 TR Le TS |'|:|,;I|||' 120
.I.Ill'\-\. 1|||.||||_' r|-|||_1= 10 feale I|:| |!I!_||||| | :":l.lrl'
that electoic Held lined ol & uailirm feseld
are |.-|.||..|I!l.' s angl point I thie same
dtrechion|

e totad boragues oni The dipwle ahout e
prsirit O

b= DA =[-gE|+OBxgE  (122)
| Beles

B, anit 20, 0f is found that faotal

Uising righf-hand corlkescrew  rule
Al vodime
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Torque Is bnko the paper ()

| Figure 1.20 Torque on dipole

torque is perpendicular to the plane of the
paper and Is directed into it
The magnitude of the total torque

i= U.-i.| gk |sinf 4 |Uﬁ”q!:-|sinﬂ

T =qE Jasm#

(1.23)

where 8 is the angle made by p with E.
Since p = 2aq, the torque s written in terms
of the vector product as

The magnitude of this torque is t=pEsinf
and is maximum when 6 =90,

This torque tends to rotate the dipole and
align it with the electric field E. Once p
is aligned with E, the total torque on the
dipole becomes zero.

I7 the electric feld is not uniform, then the
force experienced by +q is different [rom

APP® L0 |

that experienced by -g. In addition to the
torque, there will be net force acting on the
dipole. This is shown (n Figure 1.21.

' . —
NewwiormE o, _—gF,

Mt lorque, Net force

Figure .21 The dipole in a non-uniform
electric field

EXAMPLE 1.11

| Asample of HCI gas is placed in a uniform
| electric field of magnitude 3 X 10' N C*
| The dipole moment of each HC] molecule
is 3.4 % 10 Cm. Calculate the maximum
torque experienced by each HCl molecule.

Solution
The maximum torque experienced by the
| dipole is when it is aligned perpendicular
o the applied field,
1 = pEsin90 = 34107 x3x10°Nm

gy
A 0210 Nm
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ELECTROSTATIC POTENTIAL AND POTENTIAL ENERGY
Introduction

In mechanics, potential energy is defined for conservative forces.
Since gravitational force is a conservative force, its gravitational
potential energy is defined in XI standard physics (Unit 6). Since
Coulomb force is an inverse-square-law force, its also a conservative
force like gravitational force. Therefore, we can define potential
energy for charge configurations

Electrostatic Potential energy and Electrostatic potential

L b

&

W

Consider a positive charge q kept fixed at the origin which
produces an electric field around it. A positive test charge q' is
brought from point R to point P against the repulsive force between
q and q' as shown in Figure 1.22. Work must be done to overcome
this repulsion. This work done is stored as potential energy.

The test charge q' is brought from R to P with constant velocity
which means that external force used to bring the test charge q' from
R to P must be equal and opp031te

v the cowlomb torce | F I

-|'r -‘Illllr, ki

.I LY |

ince  ooubomb  force B conservative,

wrk dose i independent of the path and

|I||-| nds onlby on the initial and final

IIII'H.|'||- =1 M the tedd ._|'.|'1-\. |r |_-.|:,._|.r|.|:

erergy associated with g at Pis U and that

at Ris U, then difference in potential energ)

[

letined &5 the work dome to ||||I.|_'| i Test

charge q° from poant K to P and is given as

U= W= Al

AU = [E_-dt
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The potential energy difference per unit
charge is given by

.

R U G
L —.—]I"E-.-E (1.29)
q q <

The above equation (1.29) is independent
e o AU o . is call
of q". The quantity 2~ _ f E.dr is called

q' ot
electric potential ditference between P and
Randisdenotedas V -V, = AV.
In otherwords, the electric potential
difference is defined as the work done by an

external force to bring unit positive charge

from point K to point P

P
V,~V,=aV= | -Edr (1.30)

|
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Ihe eleciric potential energy difference
P B

q AY. Physically

pnnrmu.l ditterence betwesn two polmts

can be writien a8 AL
b a meaninglul quantity, The value of
the potential Hsell at one point is not
mieaninghul. Therefore the point B is taken
at infindty and its potential s comnsidered
as gero (Vo= 0),

Then the electric potential af a podnt P is
cqpual to the work done by an external force
to bring s unit positive charge with constant
velocity (rom infinity to the point P in
the region of the external electric field F
Mathematically this is written as

.I'.r = lr.r'ﬂrl-

]||1;|'mrur|l 1mi:|.1-

1. Electric potential s posnl P depends
anly on the cectne held which s due
io the source charge g and not on the
1ol .':h.JrEl_:' q' Liniit pesiiive .'h.a.rll_:' 1]
brought from nfinlty to the polat P
with conatant velocity because external
agency shardd ot fmpart any Einartic

cisergy to the test change

From eguation (1.29], the uni ol
electric ['4|-1r.||:ul i foule per coislermi
The practical undt b voll (V) named
after Alessandro  Volta (1745-1827)
who invented the electrical batterv, The
potenitial difference between two podits
is expressed in terms of vollage.

Electric potential due
to a point charge

Comgider a positive change q kept fxed at
the origin. Let P be a point at distance r from
the charge . This is shown in Figure 1.23.

ﬂ;'--

Figure 1. 2% Electrostitic pofential af a
E||||1|'I F'

The electric pnl.*lm.-:[.a.l the perit PEs

Vo [[(~E)dF= Ir dF (1,32

Electric field due 1o positive point ..']1..1.1'|.'_|:"|;
&

y =t I | ]
Fum—%LF
AmE,

I .|I ralr
iRE, 'I F

The infinitessmal  displacement  vector,

dr = drr and using ¢. f=1, we have

I || ‘ Foidr
dme + r

! i
Jrl:r_-Ir .

After the inlegrationm,

I g

4n0m
Hence the electric potentinl due to o poinl

charge o a distance ¢ s

el

R0, |
Impr.:rl:uul: puint-
(i1 0 ke soaroe |.'I5.1|!I;:- q s positive, ol
I g ds negative, then YV is negative il
1 g
4.I'II:' F
kil The description of motion of ohjects

equal o V

using the comcept of potential o
potendial energy i simpler than thal
using the concept of field

UsiT # BELpcTmosTarics
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Cinp e expressands (1,330 0 W clear 1k
the potential doe o positive charge
decreates as the distance increases.
Isit for & negative charge the potetial
Increases as the distance is increased. A
mfinity (= o) chectrostatic potential
= gere [V = 0]

n the case of gravitatwonal force
masa moves from a podng of highe
gravilational polential o o poimt of
Livwwsice |:Iu'||l:.:||||l:|a| pifential Simuilarly
a positive charge moves from a poin
i |I.IHI1|'I il TPnEratic rhll-|1|I:|:'|| Lib
lower decirostatic potential. Howeser
i negative |.|L|:il:- irveves froim  lower
electrostatic  potentinl 10 higher
elecinoir s F'I“:I'Il:l.ll .I.Ilﬁ'u-\.l'lll'lll.lrllllll

i= shown in Figare 1.24

The electsi i'l"{l'lﬁl.l: al n |l|l||11 P Jus

ko a codlectbon of charges .94, a0

I egqual 1o sum of the electric polentials

.‘||||.' i |||.|i'-'.||l.|.|| i ||.|5g\

O |l i r—
et

L] .

LA |
1" P pyme -1 e m—
Tl drirn ariwriniter
e

L N, L ¥
i (G—
- r O = 0 i F

@
i 0

. T Ty — o p— 3 e —
T S e R L B e S L

Figwre 1.34 Motson of charges in terms
iof electric polential

LmiT i rJII. THRORTATHEL®

| APPSS L0

EMTN

SHIENNA

Rl {1.34)

r

i hiepe | s | R L ihip  ddstances

ol g, @, O o |,
:Fl.j.;un e |

respectively  from P

%

F1!.;,'.u| 1.25 Electrostatic |'-.|r|u|r|u| diie &

[ I"I.'l I o |r [ II.II .ﬂ."l

&) Calalate the cleciin |'\-|.|r-'r|I|:-|| al

proimts P oanad O} as shasn in the Bigure
badenw

Suppaose the charge +90C i replaced
I Bl llad i

i it

potentialy at points P and G

Calculate the work done 1o bring o
Tisd i ||.||p' + il Froms iilnily i rhe
poimt B Assiwme the charge +%uC
in hatel famesl aa Irugin TA L LT T
beought from indinity e B
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Solution

{a) Electric }"I.lh'm:',l] at point Pis Eiven l‘-j.'
I ||' Ly I'I < I'l.l

4nE v L

8.1 10"
Electric potential at point (} is given by

<9 =10
I6

S0 = 0V

Note that the electric potential at point Q is less than the electric
potential at point P. If we put a positive charge at P, it moves from P to
Q. However if we place a negative charge at P it will move towards the
charge +9pC.
The potential difference between the points P and Q is given by

W=V, =V, =4+3.04x 10"V
Suppose we replace the charge +9 pC by -9 pC, then the corresponding
potentials at the points P and Q are,

V. =—81x10'V. V. =—506x10")

Note that in this case electric potential at the point Q is higher than at
point P.

The potential difference or voltage between the points P and Q is given
by
AV =¥, —¥ =—3MxI0"F

(c) The electric potential V at a point P due to some charge is defined as
the work done by an external force to bring a unit positive charge from
infinity to P. So to bring the q amount of charge from infinity to the
point P, work done is given as follows.
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W =gV

P £ | S06=10 f=10L123=10 /)

EXAMPLE 1.13

Consider a point charge +q placed at the origin and another point
charge -2q placed at a distance of 9 m from the charge +q. Determine the
point between the two charges at which electric potential is zero.

Solution

According to the superposition principle, the total electric potential at a
point is equal to the sum of the potentials due to each charge at that
point.

Consider the point at which the total potential zero is located at a
distance x from the charge +q as shown in the figure.

I'he total electric |-c>tt=|1r5.1§ at P is zero

s

Oif
i

Hence, x=3Im

Electrostatic potential at a point due to an electric dipole

Consider two equal and opposite charges separated by a small
distance 2a as shown in Figure 1.26. The point P is located at a distance r
from the midpoint of the dipole. Let 0 be the angle between the line OP
and dipole axis AB.
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Let rq be the distance of point P from +q and r, be the distance of point P
from -q.

1
Potential at P due to charge +q = i

4ME 1

I i
Potential at P due to charge -g y :
RE, !

lotal potential at the point P,

11
ARE f:_r r

Suppose if the point P is far away from the dipole, such that r>>a, then
equation (1.35) can be expressed in terms of r. By the cosine law for
triangle BOP

2riacost

2a
——¢0sH
r

Since the point P is very far from dipole, then r>>a. As a result the term

is very small and can be neglected. Therefore

civs H
1] 2

_-"l..'

fIJﬁ1i|.

Similarly applying the cosine law for triangle AOP,
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at = 2riacos|180—8)

since cos|l30—8) cosd we get

4+ 2racosB

: . ;
Neglecting the term — (because r>>a)

L &
I

; 1 2acosd
=r|l4
1 r

Jacosh 2
ril- .

T

Using Binomial theorem, we gel

cosk
i
r

Substituting equation (1.37) and (1.36) in equation (1.35),

ql - | a1
4Re, Ir F

e il
r F

1 |1 -.':.'I»&-E}| | fmu”

q | I|l cosf .:mlFI'i|

] J— | + it —

-1I'IL'_|_.'. f F

e | Em}.:::m{-]

dme, r

But the electric dipole moment p = 2qa and we get,
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Now we can wrile p costl = p-r, where r is
the unit vector from the point O to point P

Hence the electric potential at a point P due

to an electric dipole is given by

V= L& (r=>a) (1.38)
qME T

Equation (1.38) is valid for distances very large compared to the size of
the dipole. But for a point dipole, the equation (1.38) is valid for any
distance.

Special cases

Case (i) If the point P lies on the axial line of the dipole on the side of +q,
then 0 = 0. Then the electric potential becomes

(1.39)

Case (ii) If the point P lies on the axial line of the dipole on the side of -
q, then 6 = 1800, then

{ 1.40)

Case (iii) If the point P lies on the equatorial line of the dipole, then 0 =
900. Hence

V=0 (1.41)
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Important points
I

The potential due to an electric dipole falls as " and the potential
|

due to a single point charge falls as ." . Thus the potential due to
the dipole falls faster than that due to a monopole (point charge).
As the distance increases from electric dipole, the effects of
positive and negative charges nullify each other.

The potential due to a point charge is spherically symmetric since
it depends only on the distance r. But the potential due to a dipole
is not spherically symmetric because the potential depends on the

angle between l-' and position vector " of the point.
However the dipole potential is axially symmetric. If the position vector
" isrotated about bby keeping 6 fixed, then all points on the cone at
the same distance r will have the same potential as shown in Figure 1.27.
In this figure, all the points located on the blue curve will have the same
potential.

Equi-potential Surface

e Consider a point charge q located at some point in space and an
imaginary sphere of radius r is chosen by keeping the charge q at
its center (Figure 1.28(a)). The electric potential at all points on the
surface of the given sphere is the same. Such a surface is called an
equipotential surface.

An equipotential surface is a surface on which all the points are at
the same potential. For a point charge the equipotential surfaces
are concentric spherical surfaces as shown in Figure 1.28(b). Each
spherical surface is an equipotential surface but the value of the
potential is different for different spherical surfaces.
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e For a uniform electric field, the equipotential surfaces form a set of

planes normal to the electric field " . This is shown in the Figure
1.29.
Properties of equipotential surfaces

(i) The work done to move a charge q between any two points A and B,
W = q (VB - VA). If the points A and B lie on the same equipotential
surface, work done is zero because VA = VB.

(ii) The electric field is normal to an equipotential surface. If it is not
normal, then there is a component of the field parallel to the surface.
Then work must be done to move a charge between two points on the
same surface. This is a contradiction. Therefore the electric field must
always be normal to equipotential surface.

Relation between electric field and potential

e Consider a positive charge q kept fixed at the origin. To move a
unit positive charge by a small distance dx in the electric field E,
the work done is given by dW = —E dx. The minus sign implies
that work is done against the electric field. This work done is equal
to electric potential difference. Therefore,

dW=dV,
(or) dV=-Edx (1.42)

Hence E 1 (1.43)

The electric field is the negative gradient of the electric potential. In
general,

Be|2X; ' {1.44)
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Electrostatic potential energy for collection of point charges

e The electric potential at a point at a distance r from point charge q1
is given by

This potential V is the work done to bring a unit positive charge
from infinity to the point. Now if the charge g2 is brought from infinity
to that point at a distance r from q1, the work done is the product of g2
and the electric potential at that point. Thus we have

W= q2V

This work done is stored as the electrostatic potential energy U of
a system of charges q1 and g2 separated by a distance r. Thus we have

o The electrostatic potential energy depends only on the distance
between the two point charges. In fact, the expression (1.45) is
derived by assuming that ql is fixed and g2 is brought from
infinity. The equation (1.45) holds true when g2 is fixed and q1 is
brought from infinity or both ql and g2 are simultaneously
brought from infinity to a distance r between them.

Three charges are arranged in the following configuration as
shown in Figure 1.30.

To calculate the total electrostatic potential energy, we use the
following procedure. We bring all the charges one by one and

arrange them according to the configuration as shown in Figure
1.30.
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e Bringing a charge ql from infinity to the point A requires no work,
because there are no other charges already present in the vicinity
of charge ql.

e To bring the second charge g2 to the point B, work must be done
against the electric field created by the charge ql. So the work
done on the charge q2 is W = g2 V1B. Here V1B is the electrostatic
potential due to the charge q1 at point B.

7 ——— (1.46)
aRE 1,

Note that the expression is same when ¢:is brought first and then g later.

e Similarly to bring the charge gs to the point C, work has to be done
against the total electric field due to both charges g1 and g2. So the
work done to bring the charge gsis = g5 (Vic + Vac). Here Vicis the
electrostatic potential due to charge ¢: at point C and Vac is the
electrostatic potential due to charge g:at point C.

The electrostatic potential is

| |44 | u'.-u'-‘

4ne | r,

IS

Adding equations (1.46) and (1.47), the total electrostatic potential
energy for the system of three charges q1, q2 and q3 is

1 olads 99 90| a8

4re F- Fs F

Note that this stored potential energy U is equal to the total
external work done to assemble the three charges at the given
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