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ELECTRICITY 
Part –2 (11th to 12th) 

11th std (Term-I) 
Unit - 4 

WORK, ENERGY AND POWER 
 
 
INTRODUCTION 
 
 The term work is used in diverse contexts in daily life. It refers to 
both physical as well as mental work. In fact, any activity can generally 
be called as work. But in Physics, the term work is treated as a physical 
quantity with a precise definition. Work is said to be done by the force 
when the force applied on a body displaces it. To do work, energy is 
required. In simple words, energy is defined as the ability to do work. 
Hence, work and energy are equivalents and have same dimension. 
Energy, in Physics exists in different forms such as mechanical, 
electrical, thermal, nuclear and so on. Many machines consume one form 
of energy and deliver energy in a different form. In this chapter we deal 
mainly with mechanical energy and its two types namely kinetic energy 
and potential energy. The next quantity in this sequence of discussion is 
the rate of work done or the rate of energy delivered. The rate of work 
done is called power. A powerful strike in cricket refers to a hit on the 
ball at a fast rate. This chapter aims at developing a good understanding 
of these three physical quantities namely work, energy and power and 
their physical significance. 
 
WORK 
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 Let us consider a force ( F ), acting on a body which moves it by a 

displacement in some direction ( dr )  
 
 The expression for work done (w) by the force on the body is 
mathematically written as, 
 

 W= F . dr  
 

 Here, the product F . dr  is a scalar product (or dot product). The 
scalar product of two vectors is a scalar. Thus, work done is a scalar 
quantity. It has only magnitude and no direction. In SI system, unit of 
work done is N m (or) joule (J). Its dimensional formula is [ML2T-2]. 
 
 The equation (4.1) is, 
 

 W= F dr cos  
 

 which can be realised using  ( as .a b  ab cos ) where,    is the 
angle between applied force and the displacement of the body. 
 
 The work done by the force depends on the force (F), displacement 
(dr) and the angle (θ) between them Work done is zero in the following 
cases. 
 
 When the force is zero (F = 0). For example, a body moving on a 
horizontal smooth frictionless surface will continue to do so as no force 
(not even friction) is acting along the plane. (This is an ideal situation.) 
 
 When the displacement is zero (dr = 0). For example, when force 
is applied on a rigid wall it does not produce any displacement. Hence, 
the work done is zero 
 
 When the force and displacement are perpendicular (θ = 90o) to 
each other. when a body moves on a horizontal direction, the 
gravitational force (mg) does no work on the body, since it acts at right 
angles to the displacement as shown in Figure 4.3(b). In circular motion 
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the centripetal force does not do work on the object moving on a circle as 
it is always perpendicular to the displacement. 
 
 For a given force (F) and displacement (dr), the angle (θ) between 
them decides the value of work done as consolidated. 
 
 There are many examples for the negative work done by a force. In 
a football game, the goalkeeper catches the ball coming towards him by 
applying a force such that the force is applied in a direction opposite to 
that of the motion of the ball till it comes to rest in his hands. During the 
time of applying the force, he does a negative work on the ball. We will 
discuss many more situations of negative work further in this unit. 
 
 A box is pulled with a force of 25 N to produce a displacement of 
15 m. If the angle between the force and displacement is 30o, find the 
work done by the force. 
 

 Force, F = 25 N 
 Displacement, dr = 15 m 
 Angle between F and dr, θ = 30o 

 
 

 Work done, W= Fdr cos  
 

3
W= 25 15 cos30 = 25 15

2

W= 324.76 J

   
 

 
Work done by a constant force 
 
 When a constant force F acts on a body, the small work done (dW) 
by the force in producing a small displacement dr is given by the 
relation, 
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dW= (F cos ) dr  

  
 The total work done in producing a displacement from initial 
position ri to final position rf is,  
 

f

1

f f

f f

r

r

r r

r r

W= dW 

W= (F cos )dr =(F cos ) dr

(F cos )( )
f i

r r

 

 



   

 
 The graphical representation of the work done by a constant force . 
The area under the graph shows the work done by the constant force. 
 
An object of mass 2 kg falls from a height of 5 m to the ground. What is 
the work done by the gravitational force on the object? (Neglect air 
resistance; Take g = 10 m s-2) 
 
 In this case the force acting on the object is downward 

gravitational force mg . This is a constant force. Work done by 

gravitational force is 
 

f

1

r

r

W = F.dr  

f

1

r

1

r

W =(cos ( .cos )( )
f

dr mg r r    

 The object also moves downward which is in the direction of 

gravitational force  F mg as shown in figure. Hence, the angle between 

them is θ = 0°; cos θ =1 and the displacement, 1( )
f

r r =5m. 

 

W=mg 1( )
f

r r  

W = 2 ×  × 5 =    

 
 The work done by the gravitational force on the object is positive. 
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 An object of mass m=1 kg is sliding from top to bottom in the 
frictionless inclined plane of inclination angle θ =30o and the length of 
inclined plane is 10 m as shown in the figure. Calculate the work done 
by gravitational force and normal force on the object. Assume 
acceleration due to gravity, g = 10 m s-2 
 
 We calculated in the previous chapter that the acceleration 
experienced by the object in the inclined plane as g sinθ . According to 
Newton’s second law, the force acting on the mass along the inclined 
plane F = mg sinθ. Note that this force is constant throughout the motion 
of the mass. The work done by the parallel component of gravitational 
force (mg sinθ) is given by 
 

W = F. cosdr Fdr   

 
 where   is the angle between the force (mg sin θ) and the direction 

of motion (dr). In this case, force (mg sin θ) and the displacement ( )dr  

are in the same direction. Hence cos 1and    

 
W = F dr = ( mg sinθ) ( dr) 

 
( dr = length of the inclined place) 
 

1
W = 1  10 sin (30°)  10 = 100 50

2
J      

 
 The component mg cosθ and the normal force N are perpendicular 
to the direction of motion of the object, so they do not perform any 
work. 
 If an object of mass 2 kg is thrown up from the ground reaches a 
height of 5 m and falls back to the Earth (neglect the air resistance). 
Calculate 
 

1. The work done by gravity when the object reaches 5 m height 
2. The work done by gravity when the object comes back to Earth 
3. Total work done by gravity both in upward and downward 

motion and mention the physical significance of the result. 
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 When the object goes up, the displacement points in the upward 
direction whereas the gravitational force acting on the object points in 
downward direction. Therefore, the angle between gravitational force 
and displacement of the object is 180°. 
 
The work done by gravitational force in the upward motion. 
 

Given that r  =5m and F =mg 
 

o

upW  =F r cos mg r cos180    

upW 2 10 5 ( 1) 100 .

[cos180 1]o

joule      

   

 
 When the object falls back, both the gravitational force and 
displacement of the object are in the same direction. This implies that the 
angle between gravitational force and displacement of the object is 0°. 
 

downW cos0o
F r   

downW 2 10 5 (1) 100

[cos0 1]o

joule    


 

 
 The total work done by gravity in the entire trip (upward and 
downward motion). 
 

total up downW W W

100 100 0joule joule

 

     

 
 It implies that the gravity does not transfer any energy to the 
object. When the object is thrown upwards, the energy is transferred to 
the object by the external agency, which means that the object gains 
some energy. As soon as it comes back and hits the Earth, the energy 
gained by the object is transferred to the surface of the Earth (i.e., 
dissipated to the Earth). 
 
 A weight lifter lifts a mass of 250 kg with a force 5000 N to the 
height of 5 m. 
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1. What is the workdone by the weight lifter? 
2. What is the workdone by the gravity? 
3. What is the net workdone on the object? 

 
 When the weight lifter lifts the mass, force and displacement are in 
the same direction, which means that the angle between them 0o  . 
Therefore, the work done by the weight lifter,  
 

0

weight lifterW cos (cos0 )
w w

F h F h   

5000 5 (1) 25,000 25joule kJ      

 
 When the weight lifter lifts the mass, the gravity acts downwards 
which means that the force and displacement are in opposite direction. 

Therefore, the angle between them 
o180   

 
o

gravityW cos (cos180 )
g

F h mgh   

250 10 5 ( 1)

12,500 12.5joule kJ

    
     

 
 The net work done (or total work done) on the object 
 

net weight lifter gravityW W W

25 12.5 12.5kJ kJ kJ

 

   
 

 
Work done by a variable force 
 
 When the component of a variable force F acts on a body, the small 
work done (dW) by the force in producing a small displacement dr is 
given by the relation 
 

dW=F cos θ dr 
[F cos θ is the component of the variable force F] 
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 where, F and θ are variables. The total work done for a 
displacement from initial position ri to final position rf is given by the 
relation, 

cos

f f

i i

r r

r r

W dW F dr    

 A graphical representation of the work done by a variable force. 
The area under the graph is the work done by the variable force. 
 
 A variable force F = k x2 acts on a particle which is initially at rest. 
Calculate the work done by the force during the displacement of the 
particle from x = 0 m to x =4 m. (Assume the constant k =1 N m-2) 
 
Work done, 
 

4

2

0

64
( )

3

f

i

x

x

W F x dx k x dx Nm     

 
 Energy is defined as the capacity to do work. In other words, work 
done is the manifestation of energy. That is why work and energy have 
the same dimension (ML2T−2) 
 
 The important aspect of energy is that for an isolated system, the 
sum of all forms of energy i.e., the total energy remains the same in any 
process irrespective of whatever internal changes may take place. This 
means that the energy disappearing in one form reappears in another 
form. This is known as the law of conservation of energy. In this chapter 
we shall take up only the mechanical energy for discussion. 
 
 In a broader sense, mechanical energy is classified into two types 
 

1. Kinetic energy 
2. Potential energy 

 
 The energy possessed by a body due to its motion is called kinetic 
energy. The energy possessed by the body by virtue of its position is 
called potential energy. 
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 The SI unit of energy is the same as that of work done i.e., N m (or) 
joule (J). The dimension of energy is also the same as that of work done. 
It is given by [ML2T-2]. The other units of energy and their SI equivalent 
values. 
 

SI equivalent of other units of energy 
 

Unit Equivalent in joule 

1 erg (CGS unit) 10-7 J 

1 electron volt (eV) 1.6x10-19 J 

1 calorie (cal) 4.186 J 

1 kilowatt hour (kWh) 3.6x106 J 

 
Kinetic energy 
 
 Kinetic energy is the energy possessed by a body by virtue of its 
motion. All moving objects have kinetic energy. A body that is in motion 
has the ability to do work. For example a hammer kept at rest on a nail 
does not push the nail into the wood. Whereas the same hammer when 
it strikes the nail, draws the nail into the wood. Kinetic energy is 
measured by the amount of work that the body can perform before it 
comes to rest. The amount of work done by a moving body depends 
both on the mass of the body and the magnitude of its velocity. A body 
which is not in motion does not have kinetic energy. 
 
Work–Kinetic Energy Theorem 
 
 Work and energy are equivalents. This is true in the case of kinetic 
energy also. To prove this, let us consider a body of mass m at rest on a 
frictionless horizontal surface. 
 
 The work (W) done by the constant force (F) for a displacement (s) 
in the same\ direction is, 
 

W=Fs 
 
The constant force is given by the equation, 
 

F=ma 
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V2=u2+2as 

2 2V

2

u
a

s


  

 
Substituting for a in equation 
 

2 2V

2

u
F m

s

 
  

 
 

2 2

2 2

V
W

2 2

1 1
W=

2 2

u
m S m S

s s

mv mu

   
    

   


 

 

 The term 
21

2
mv

 
 
 

 in the above equation is the kinetic energy of 

the body of mass (m) moving with velocity (v). 
 

21
KE=

2
mv  

 
Kinetic energy of the body is always positive. From equations 
 

2 21 1
KE=

2 2
mv mu   

Thus, W= KE  
 
 The expression on the right hand side (RHS) of equation (4.12) is 
the change in kinetic energy (ΔKE) of the body. 
 
 This implies that the work done by the force on the body changes 
the kinetic energy of the body. This is called work-kinetic energy 
theorem. 
 
The work-kinetic energy theorem implies the following. 
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1. If the work done by the force on the body is positive then its 
kinetic energy increases. 

2. If the work done by the force on the body is negative then its 
kinetic energy decreases. 

3. If there is no work done by the force on the body then there is no 
change in its kinetic energy, which means that the body has moved 
at constant speed provided its mass remains constant. 

 
Relation between Momentum and Kinetic Energy 
 

 Consider an object of mass m moving with a velocity v . Then its 

linear momentum is p=mv  and its kinetic energy, 
21

KE=
2

mv . 

 21 1
KE= v.v

2 2
mv m  

Multiplying both the numerator and denominator of equation 
 

 2 v.v1
KE=

2

m

m
 

   

2

2

v . v1
v

2

1 .

2

p

2

p
KE= 

2m

m m
p m

m

p p

m

m

   



  

 

 where p  is the magnitude of the momentum. The magnitude of 

the linear momentum can be obtained by 
 

 p p= 2m KE  
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 Note that if kinetic energy and mass are given, only the magnitude 
of the momentum can be calculated but not the direction of momentum. 
It is because the kinetic energy and mass are scalars. 
 
 Two objects of masses 2 kg and 4 kg are moving with the same 
momentum of 20 kg m s-1. 
 

1. Will they have same kinetic energy? 
2. Will they have same speed? 

 

The kinetic energy of the mass is given by 

2p
KE= 

2m
 

 
For the object of mass 2 kg, kinetic energy is 
 

 2

1

20 400
KE = 100J

2 2 4
 

  

 
For the object of mass 4 kg, kinetic energy is 
 

 2

2

20 400
KE = 50J

2 4 8
 

  

 

 Note that 1 2KE KE  i.e., even though both are having the same 

momentum, the kinetic energy of both masses is not the same. The 
kinetic energy of the heavier object has lesser kinetic energy than smaller 
mass. It is because the kinetic energy is inversely proportional to the 

mass 
1

KE
m

 
 
 

 for a given momentum. 

 
 As the momentum, p = mv, the two objects will not have same 
speed. 
 
Potential Energy 
 
 The potential energy of a body is associated with its position and 
configuration with respect to its surroundings. This is because the 
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various forces acting on the body also depends on position and 
configuration. 
 
 “Potential energy of an object at a point P is defined as the amount 
of work done by an external force in moving the object at constant 
velocity from the point O (initial location) to the point P (final location). 
At initial point O potential energy can be taken as zero. 
 

Mathematically, potential energy is defined as U= F .a dr  

 
 where the limit of integration ranges from initial location point O 
to final location point P. 
 
 We have various types of potential energies. Each type is 
associated with a particular force.  
 

1. The energy possessed by the body due to gravitational force gives 
rise to gravitational potential energy 

2. The energy due to spring force and other similar forces give rise to 
elastic potential energy. 

3. The energy due to electrostatic force on charges gives rise to 
electrostatic potential energy. 

 
 We will learn more about conservative forces in the section. Now, 
we continue to discuss more about gravitational potential energy and 
elastic potential energy. 
 
Potential energy near the surface of the Earth 
 
 The gravitational potential energy (U) at some height h is equal to 
the amount of work required to take the object from ground to that 
height h with constant velocity. 
 
 Let us consider a body of mass m being moved from ground to the 
height h against the gravitational force. 
 

 The gravitational force g
F  acting on the body is, ˆ

g
F mgj   (as the 

force is in y direction, unit vector ĵ  is used). Here, negative sign implies 
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that the force is acting vertically downwards. In order to move the body 
without acceleration (or with constant velocity), an external applied 

force 
a

F equal in magnitude but opposite to that of gravitational force g
F

has to be applied on the body i.e., a g
F F . This implies that = ˆ

a
F mgj  . 

The positive sign implies that the applied force is in vertically upward 
direction. Hence, when the body is lifted up its velocity remains 
unchanged and thus its kinetic energy also remains constant. 
 
 The gravitational potential energy (U) at some height h is equal to 
the amount of work required to take the object from the ground to that 
height h. 
 

0

. cos

h

a a
U F dr F dr     

 
 Since the displacement and the applied force are in the same 
upward direction, the angle between them, 0o  . Hence, cos0o=1 and 

a
F mg  and dr dr . 

 

 
0

0

h

h

U mg dr

U mg r mgh



 


 

 
 
 Note that the potential energy stored in the object is defined 
through work done by the external force which is positive. Physically 
this implies that the agency which is applying the external force is 
transferring the energy to the object which is then stored as potential 
energy. If the object is allowed to fall from a height h then the stored 
potential energy is converted into kinetic energy. 
 
An object of mass 2 kg is taken to a height 5 m from the ground _g 
_10ms-2. 
 

1. Calculate the potential energy stored in the object. 
2. Where does this potential energy come from? 
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3. What external force must act to bring the mass to that height? 
4. What is the net force that acts on the object while the object is 

taken to the height ‘h’? 
 
 The potential energy U =mg h = 2105 = 100 J Here the positive 
sign implies that the energy is stored on the mass 
 
 This potential energy is transferred from external agency which 
applies the force on the mass. 
 

 The external applied force a
F which takes the object to the height 5 

m is a g
F F  . 

 

 ˆ ˆ
a

F mgj mgj     

 

 where, ĵ represents unit vector along vertical upward direction. 

 
 From the definition of potential energy, the object must be moved 
at constant velocity. So the net force acting on the object is zero. 
 

0
g a

F F   

 
Elastic Potential Energy 
 
 When a spring is elongated, it develops a restoring force. The 
potential energy possessed by a spring due to a deforming force which 
stretches or compresses the spring is termed as elastic potential energy. 
The work done by the applied force against the restoring force of the 
spring is stored as the elastic potential energy in the spring. 
 
 Consider a spring-mass system. Let us assume a mass, m lying on 
a smooth horizontal. Here, x = 0 is the equilibrium position. One end of 
the spring is attached to a rigid wall and the other end to the mass. 
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 As long as the spring remains in equilibrium position, its potential 

energy is zero. Now an external force a
F  is applied so that it is stretched 

by a distance (x) in the direction of the force. 
 

 There is a restoring force called spring force s
F  developed in the 

spring which tries to bring the mass back to its original position. This 
applied force and the spring force are equal in magnitude but opposite 

in direction i.e., a s
F F  According Hooke’s law, the restoring force 

developed in the spring is 
 

s
F k x   

 The negative sign in the above expression implies that the spring 

force is always opposite to that of displacement x  and k is the force 

constant. Therefore applied force is a
F k x  . The positive sign implies 

that the applied force is in the direction of displacement x . The spring 
force is an example of variable force as it depends on the displacement 

x . Let the spring be stretched to a small distance  

d x .The work done by the applied force on the spring to stretch it by a 

displacement x  is stored as elastic potential energy. 
 

0

. cos

x

a a
U F dr F dr     

0

cos

x

a
F dx    

 

 The applied force 
a

F  and the displacement dr  (i.e., here dx ) are in 

the same direction. As, the initial position is taken as the equilibrium 
position or mean position, x=0 is the lower limit of integration. 
 

0

x

U kxdx   

2

0
2

x

x
U k

 
  

 
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21

2
U kx  

 
 If the initial position is not zero, and if the mass is changed from 
position xi to xf , then the elastic potential energy is 
 

 2 21

2
f i

U k x x   

 
Force-displacement graph for a spring 
 
 Since the restoring spring force and displacement are linearly 
related as F = – k x, and are opposite in direction, the graph between F 
and x is a straight line with dwelling only in the second and fourth 
quadrant as shown in Figure 4.10. Th e elastic potential energy can be 
easily calculated by drawing a F - x graph. Th e shaded area (triangle) is 
the work done by the spring force. 
 

   

2

1 1
Area = (base)(height)=

2 2

1

2

x kx

kx

 


 

 
Potential energy-displacement graph for a spring 
 
 A compressed or extended spring will transfer its stored potential 
energy into kinetic energy of the mass attached to the spring. 
 
 In a frictionless environment, the energy gets transferred from 
kinetic to potential and potential to kinetic repeatedly such that the total 
energy of the system remains constant. At the mean position, 

 

KE U    
 
Let the two springs A and B be such that kA>kB. On which spring will 
more work has to be done if they are stretched by the same force? 
 

A A B B
F K x K x   
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,
A B

A B

F F
x x

k k
   

 
The work done on the springs are stored as potential energy in the 
springs. 
 

 
 
 kA>kB implies that UB>UA . Thus, more work is done on B than A. 
 
 A body of mass m is attached to the spring which is elongated to 
25 cm by an applied force from its equilibrium position. 
 

1. Calculate the potential energy stored in the spring-mass system? 
2. What is the work done by the spring force in this elongation? 
3. Suppose the spring is compressed to the same 25 cm, calculate the 

potential energy stored and also the work done by the spring force 
during compression. (The spring constant, k = 0.1 N m−1). 

 
The spring constant, k = 0.1 N m-1 
The displacement, x = 25 cm = 0.25 m 
 
The potential energy stored in the spring is given by 
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The work done Ws by the spring force 
s

F is given by, 

 

 
 

The spring force 
s

F acts in the negative x direction while elongation acts 

in th positive x direction. 
 

 
 
 Note that the potential energy is defined through the work done 
by the external agency. The positive sign in the potential energy implies 
that the energy is transferred from the agency to the object. But the work 
done by the restoring force in this case is negative since restoring force is 
in the opposite direction to the displacement direction. 
 
 During compression also the potential energy stored in the object 
is the same. 
 

21
0.0031

2
U kx J   

 
Work done by the restoring spring force during compression is given by 
 

 
 
 In the case of compression, the restoring spring force acts towards 
positive x-axis and displacement is along negative x direction. 
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Conservative and nonconservative forces 
Conservative force 
 
 A force is said to be a conservative force if the work done by or 
against the force in moving the body depends only on the initial and 
final positions of the body and not on the nature of the path followed 
between the initial and final positions. Let us consider an object at point 
A on the Earth. It can be taken to another point B at a height h above the 
surface of the Earth by three paths. 
 
 Whatever may be the path, the work done against the gravitational 
force is the same as long as the initial and final positions are the same. 
This is the reason why gravitational force is a conservative force. 
Conservative force is equal to the negative gradient of the potential 
energy. In one dimensional case, Examples for conservative forces are 
elastic spring force, electrostatic force, magnetic force, gravitational 
force, etc. 
 

 
 
Non-conservative force 
 
 A force is said to be non-conservative if the work done by or 
against the force in moving a body depends upon the path between the 
initial and final positions. This means that the value of work done is 
different in different paths. 
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1. Frictional forces are non-conservative forces as the work done 
against friction depends on the length of the path moved by the 
body. 

2. The force due to air resistance, viscous force are also non-
conservative forces as the work done by or against these forces 
depends upon the velocity of motion. 

 
 
Compute the work done by the gravitational force for the following 
cases 
 

 

Displacement vector ˆ ˆdr dxi dyj   

(As the displacement is in two dimension; unit vectors î  and ĵ are 

used) 
 
 Since the motion is only vertical, horizontal displacement 
component dx is zero. Hence, work done by the force along path 1 (of 
distance h). 
 

 
But 
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Therefore, the total work done by the force along the path 2 is 
 

 
 
 Note that the work done by the conservative force is independent 
of the path. 
 
 Consider an object of mass 2 kg moved by an external force 20 N 
in a surface having coefficient of kinetic friction 0.9 to a distance 10 m. 
What is the work done by the external force and kinetic friction ? 
Comment on the result. (Assume g = 10 ms-2) 
 
 
m = 2 kg, d = 10 m, Fext = 20 N, μk = 0.9. When an object is in motion on 
the horizontal surface, it experiences two forces. 
 

1. External force, Fext =20 N 
2. Kinetic friction 

 

 
 
The work done by the external force Wext = F d 2010 200J 
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 The work done by the force of kinetic friction Wk =fk = (−18)×10 = 
−180 J. Here the negative sign implies that the force of kinetic friction is 
opposite to the direction of displacement. 
 
 The total work done on the object Wtotal=Wext+W k = 200 J −180 J = 
20 J. 
 
 Since the friction is a non-conservative force, out of 200 J given by 
the external force, the 180 J is lost and it can not be recovered. 
 
Law of conservation of energy 
 
 When an object is thrown upwards its kinetic energy goes on 
decreasing and consequently its potential energy keeps increasing 
(neglecting air resistance). When it reaches the highest point its energy is 
completely potential. Similarly, when the object falls back from a height 
its kinetic energy increases whereas its potential energy decreases. When 
it touches the ground its energy is completely kinetic. At the 
intermediate points the energy is both kinetic and potential When the 
body reaches the ground the kinetic energy is completely dissipated into 
some other form of energy like sound, heat, light and deformation of the 
body etc. 
 
 In this example the energy transformation takes place at every 
point. The sum of kinetic energy and potential energy i.e., the total 
mechanical energy always remains constant, implying that the total 
energy is conserved. This is stated as the law of conservation of energy. 
 
 The law of conservation of energy states that energy can neither be 
created nor destroyed. It may be transformed from one form to another 
but the total energy of an isolated system remains constant. 
 
 illustrates that, if an object starts from rest at height h, the total 
energy is purely potential energy (U=mgh) and the kinetic energy (KE) 
is zero at h. When the object falls at some distance y, the potential 
energy and the kinetic energy are not zero whereas, the total energy 
remains same as measured at height h. When the object is about to touch 
the ground, the potential energy is zero and total energy is purely 
kinetic. 
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An object of mass 1 kg is falling from the height h = 10 m. Calculate 
 

1. The total energy of an object at h =10 m 
2. Potential energy of the object when it is at h = 4 m 
3. Kinetic energy of the object when it is at h = 4 m 
4. What will be the speed of the object when it hits the ground? 

(Assume g =10 ms-2) 
 
 The gravitational force is a conservative force. So the total energy 
remains constant throughout the motion. At h =10 m, the total energy E 
is entirely potential energy. 
 

 
 
 The potential energy of the object at h =4 m is 
 

 
 
 Since the total energy is constant throughout the motion, the 
kinetic energy at h=4m must be KE = E −U = 100 − 40 = 60J 
 
 Alternatively, the kinetic energy could also be found from velocity 
of the object at 4 m. At the height 4 m, the object has fallen through a 
height of 6 m. 
 
 The velocity after falling 6 m is calculated from the equation of 
motion, 
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 When the object is just about to hit the ground, the total energy is 
completely kinetic and the potential energy, U=0. 
 

 
 
 A body of mass 100 kg is lifted to a height 10 m from the ground in 
two different ways as shown in the figure. What is the work done by the 
gravity in both the cases? Why is it easier to take the object through a 
ramp? 
 
m = 100 kg, h = 10 m 
Along path (1): 
 
 The minimum force F1 required to move the object to the height of 
10 m should be equal to the gravitational force, F1 =mg =10010 =1000 N 
 
The distance moved along path (1) is, h=10 m 
 

 
 
Along path (2): 
 
 In the case of the ramp, the minimum force F2 that we apply on the 
object to take it up is not equal to mg, it is rather equal to mg sin  . (mg 
sin  <mg) . 
 
Here, angle θ = 30o 
 
Therefore, F2 = mg sinθ = 100 × 10 × sin30o = 100 × 10 × 0.5 =500N 
 
Hence, (mg sin  <mg). 
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The work done on the object along path (2) is, W = F2 l = 500 × 20 = 
10,000 J 
 
 Since the gravitational force is a conservative force, the work done 
by gravity on the object is independent of the path taken. 
 
 In both the paths the work done by the gravitational force is 10,000 
J 
 
Along path (1): more force needs to be applied against gravity to cover 
lesser distance . 
 
Along path (2): lesser force needs to be applied against the gravity to 
cover more distance. 
 
 As the force needs to be applied along the ramp is less, it is easier 
to move the object along the ramp. 
 
 An object of mass m is projected from the ground with initial 
speed v0. Find the speed at height h. 
 
 Since the gravitational force is conservative; the total energy is 
conserved throughout the motion. 
 

 
 
 Final values of potential energy, kinetic energy and total energy 
are measured a the height h. 
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 By law of conservation of energy, the initial and final total energies 
are the same. 
 

 
 
 Note that in section  similar result is obtained using kinematic 
equation based on calculus method. However, calculation through 
energy conservation method is much easier than calculus method. 
 
 An object of mass 2 kg attached to a spring is moved to a distance 
x=10 m from its equilibrium position. The spring constant k=1 N m-1 and 
assume that the surface is frictionless. 
 
 

1. When the mass crosses the equilibrium position, what is the speed 
of the mass? 

2. What is the force that acts on the object when the mass crosses the 
equilibrium position and extremum position x = ±10 m. 

 
 Since the spring force is a conservative force, the total energy is 
constant. At  x=10 m, the total energy is purely potential. 
 

 
 
 When the mass crosses the equilibrium position (x=0) , the 
potential energy 
 

 
 
 The entire energy is purely kinetic energy at this position. 
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The speed 
 

 
 
 Since the restoring spring force is F = - kx, when the object crosses 
the equilibrium position, it experiences no force. Note that at 
equilibrium position, the object moves very fast. When the object is at x 
= +10 m (elongation), the force F = − k x 
 
 F = − (1) (10) = − 10 N. Here the negative sign implies that the 
force is towards equilibrium i.e., towards negative x-axis and when the 
object is at x = − 10m (compression), it experiences a forces F = − (1) (− 
10) = +10 N. Here the positive sign implies that the force points towards 
positive x-axis. 
 
 The object comes to momentary rest at x = ±10m even though it 
experiences a maximum force at both these points. 
 
Motion in a vertical circle 
 
 Imagine that a body of mass (m) attached to one end of a massless 
and inextensible string executes circular motion in a vertical plane with 
the other end of the string fixed. The length of the string becomes the 

radius ( r ) of the circular path 
 
 Let us discuss the motion of the body by taking the free body 

diagram (FBD) at a position where the position vector ( r ) makes an 
angle θ with the vertically downward direction and the instantaneous 
velocity. 
 
There are two forces acting on the mass. 
 

1. Gravitational force which acts downward 
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2. Tension along the string. 
 
 Applying Newton’s second law on the mass, In the tangential 
direction, 
 

 

 
 
In the radial direction, 
 

 
 The circle can be divided into four sections A, B, C, D for better 
understanding of the motion. The four important facts to be understood 
from the two equations are as follows: 
 

1. The mass is having tangential acceleration (g sin θ) for all values of 
θ (except θ = 0o), it is clear that this vertical cirular motion is not a 
uniform circular motion. 

2. From the equations (4.28) and (4.29) it is understood that as the 
magnitude of velocity is not a constant in the course of motion, the 
tension in the string is also not constant 
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greater than zero. Hence the tension cannot vanish even when the 
velocity vanishes. 

 

 
is always greater than zero. Hence velocity cannot vanish, even 
when the tension vanishes. 

 
 These points are to be kept in mind while solving problems related 
to motion in vertical circle. 
 
 To start with let us consider only two positions, say the lowest 
point 1 and the highest point 2 as shown in Figure 4.15 for further 

analysis. Let the velocity of the body at the lowest point 1 be 1v , at the 

highest point 2 be 2v and v at any other point. The direction of velocity is 

tangential to the circular path at all points. Let 1T be the tension in the 

string at the lowest point and 2T be the tension at the highest point and 
T  be the tension at any other point. Tension at each point acts towards 
the center. The tensions and velocities at these two points can be found 
by applying the law of conservation of energy. 
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 At the highest point 2, both the gravitational force mg฀ on the 

body and the tension 2T act downwards, i.e. towards the center again. 
 

 
 

 
 

 The term 
2 2

1 2[ ]v v can be found easily by applying law of 

conservation of energy. 
 
Total Energy at point 1(E1) is same as the total energy at a point 2 (E2) 
 

E1 = E2 
 
 
 Potential Energy at point 1, U1=0 (by taking reference as point 1) 
 
Kinetic Energy at point 1, 
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Total Energy at point 1, 
 

 
 
 Similarly, Potential Energy at point 2, U2 =mg (2r) 
 
Kinetic Energy at point 2, 
 

 
Total Energy at point 2, 
 

 
From the law of conservation of energy given in equation 
 

 
After rearranging, 
 

 
Substituting equation 
 

 
Therefore, the difference in tension is 
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 The body must have a minimum speed at point 2 otherwise, the 
string will slack before reaching point 2 and the body will not loop the 
circle. To find this minimum speed let us take the tension T2 = 0 in 
equation 
 

 
 

 The body must have a speed at point 2, 2v gr to stay in the 

circular path. 
 

 To have this minimum speed  2v gr   at point 2, the body must 

have minimum speed also at point 1. 
 
 By making use of equation (4.36) we can find the minimum speed 
at point 1. 
 

 
Substituting equation 
 



                                 

34 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 

 The body must have a speed at point 1, 1 5v gr  to stay in the 

circular path. 
 
 It is clear that the minimum speed at the lowest point 1 should be 

5  times more than the minimum speed at the highest point 2, so that 
the body loops without leaving the circle. 
 
 Water in a bucket tied with rope is whirled around in a vertical 
circle of radius 0.5 m. Calculate the minimum velocity at the lowest 
point so that the water does not spill from it in the course of motion. (g = 
10 ms-2) 
 
Radius of circle r = 0.5 m 
 
 The required speed at the highest point 
 

 
 
POWER 
Definition of Power 
 
 Power is a measure of how fast or slow a work is done. Power is 
defined as the rate of work done or energy delivered. 
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Average power 
 
 The average power (Pav) is defined as the ratio of the total work 
done to the total time taken. 
 

 
 
Instantaneous power 
 
 The instantaneous power (Pinst) is defined as the power delivered 
at an instant (as time interval approaches zero), 
 

 
Unit of Power 
 
 Power is a scalar quantity. Its dimension is [ML2T–3]. The SI unit of 
power is watt (W), named after the inventor of the steam engine James 
Watt. One watt is defined as the power when one joule of work is done 
in one second,(1 W = 1 J s–1). 
 
 The higher units are kilowatt(kW), megawatt(MW), and 
Gigawatt(GW). 
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 For motors, engines and some automobiles an old unit of power 
still commercially in use which is called as the horse-power (hp). We 
have a conversion for horse-power (hp) into watt (W) which is, 
 

 
 
 All electrical goods come with a definite power rating in watt 
printed on them. A 100 watt bulb consumes 100 joule of electrical energy 
in one second. The energy measured in joule in terms of power in watt 
and time in second is written as, 1 J =1 W s. When electrical appliances 
are put in use for long hours, they consume a large amount of energy. 
Measuring the electrical energy in a small unit watt. second (W s) leads 
to handling large numerical values. Hence, electrical energy is measured 
in the unit called kilowatt hour (kWh). 
 

 
 
 Electricity bills are generated in units of kWh for electrical energy 
consumption. 1 unit of electrical energy is 1 kWh. (Note: kWh is unit of 
energy and not of power.) 
 
 Calculate the energy consumed in electrical units when a 75 W fan 
is used for 8 hours daily for one month (30 days). 
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Power, P = 75 W 
 

 Time of usage, t = 8 hour × 30 days = 240 hours 
 Electrical energy consumed is the product of power and time of 

usage. 
 
 Electrical energy = power × time of usage = P × t 
 

 
 

Incandescent lamps glow for 1000 hours. CFL lamps glow for 6000 
hours. But LED lamps glow for 50000 hrs (almost 25 years at 5.5 hour 
per day). 

 
Relation between power and velocity 
 

The work done by a force F  for a displacement dr  is 
 

 
Left hand side of the equation (4.40) can be written as 
 

 
 
 

 Since, velocity is ; .
dr

v dr vdt
dt

  . Right hand side of the equation 

(4.40) can be written as  
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 This relation is true for any arbitrary value of dt. This implies that 
the term within the bracket must be equal to zero, i.e., 
 

 
 
 A vehicle of mass 1250 kg is driven with an acceleration 0.2 ms-2 
along a straight level road against an external resistive force 500 N. 
Calculate the power delivered by the vehicle’s engine if the velocity of 
the vehicle is 30 ms-1. 
 
 The vehicle’s engine has to do work against resistive force and 
make vechile to move with an acceleration. Therefore, power delivered 
by the vehicle engine is 
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COLLISIONS 
 
 Collision is a common phenomenon that happens around us every 
now and then. For example, carom, billiards, marbles, etc.,. Collisions 
can happen between two bodies with or without physical contacts. 
 
 Linear momentum is conserved in all collision processes. When 
two bodies collide, the mutual impulsive forces acting between them 
during the collision time (Δt) produces a change in their respective 
momenta. That is, the first body exerts a force 12F on the second body. 

From Newton’s third law, the second body exerts a force 21F  on the first 

body. This causes a change in momentum Δ
1

p  and Δ
2

p  of the first body 

and second body respectively. Now, the relations could be written as, 
 

 
Adding equation 
 

 
 

According to Newton’s third law, 12 21F F   
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Dividing both sides by Δt and taking limit Δ t→0 , we get 
 

 
 The above expression implies that the total linear momentum is a 
conserved quantity. Note: The momentum is a vector quantity. Hence, 
vector addition has to be followed to find the total momentum of the 
individual bodies in collision. 
 
Types of collections 
 
 In any collision process, the total linear momentum and total 
energy are always conserved whereas the total kinetic energy need not 
be conserved always. Some part of the initial kinetic energy is 
transformed to other forms of energy. This is because, the impact of 
collisions and deformation occurring due to collisions may in general, 
produce heat, sound, light etc. By taking these effects into account, we 
classify the types of collisions as follows: 
 

1. Elastic collision 
2. Inelastic collision 

 
Elastic collision 
 
 In a collision, the total initial kinetic energy of the bodies (before 
collision) is equal to the total final kinetic energy of the bodies (after 
collision) then, it is called as elastic collision. i.e., 
 
 Total kinetic energy before collision = Total kinetic energy after 
collision 
 
Inelastic collision 
 
 In a collision, the total initial kinetic energy of the bodies (before 
collision) is not equal to the total final kinetic energy of the bodies (after 
collision) then, it is called as inelastic collision. i.e., 
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 Total kinetic energy before collision ≠ Total kinetic energy after 
collision 
 

 
 Even though kinetic energy is not conserved but the total energy is 
conserved. This is because the total energy contains the kinetic energy 
term and also a term ΔQ, which includes all the losses that take place 
during collision. Note that loss in kinetic energy during collision is 
transformed to another form of energy like sound, thermal, etc. Further, 
if the two colliding bodies stick together after collision such collisions 
are known as completely inelastic collision or perfectly inelastic 
collision. Such a collision is found very often. For example when a clay 
putty is thrown on a moving vehicle, the clay putty (or Bubblegum) 
sticks to the moving vehicle and they move together with the same 
velocity. 
 
Elastic collisions in one dimension 
 
 Consider two elastic bodies of masses m1 and m2 moving in a 
straight line (along positive x direction) on a frictionless horizontal 
surface. 
 

 
 
 In order to have collision, we assume that the mass m1 moves 
faster than mass m2 i.e., u1 >u2. For elastic collision, the total linear 
momentum and kinetic energies of the two bodies before and after 
collision must remain the same. 
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 From the law of conservation of linear momentum, 
 
 Total momentum before collision (pi) = Total momentum after 
collision (pf) 
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Total kinetic energy before collision KEi = Total kinetic energy after 
collision KEf 

 

 
 
After simplifying and rearranging the terms, 
 

 
 
Using the formula a2 –b2=(a+b)(a-b) we can rewrite the above equation 
as 
 

 
 

 
 
Equation (4.50) can be rewritten as 
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 This means that for any elastic head on collision, the relative speed 
of the two elastic bodies after the collision has the same magnitude as 
before collision but in opposite direction. Further note that this result is 
independent of mass. 
 
Rewriting the above equation for v1 and v2, 
 

 
To find the final velocities v1 and v2: 
 
 Substituting equation (4.52) in equation (4.47) gives the velocity of 
m1 as 
 

 
 Similarly, by substituting (4.51) in equation (4.47) or substituting 
equation (4.53) in equation (4.52), we get the final velocity of m2 as 
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When bodies has the same mass i.e., m1 = m2, 
 

 
 

 
 
 The equations (4.55) and (4.56) show that in one dimensional 
elastic collision, when two bodies of equal mass collide after the collision 
their velocities are exchanged. 
 
 When bodies have the same mass i.e., m1 = m2 and second body 
(usually called target) is at rest (u2 = 0), 
 
 By substituting m1 =m 2 and u2 =0 in equations (4.53) and equations 
(4.54) we get, body moves with the initial velocity of the first body. 
 
 

 
The first body is very much lighter than the second body 
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Dividing numerator and denominator of equation (4.53) by m2, we get 
 

 
 

 
 
Dividing numerator and denominator of equation (4.54) by m2, we get 
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 The equation (4.59) implies that the first body which is lighter 
returns back  (rebounds) in the opposite direction with the same initial 
velocity as it has a negative sign. The equation (4.60) implies that the 
second body which is heavier in mass continues to remain at rest even 
after collision. For example, if a ball is thrown at a fixed wall, the ball 
will bounce back from the wall with the same velocity with which it was 
thrown but in opposite direction. 
 
The second body is very much lighter than the first body 
 

 
 

 
 

 
 
Dividing numerator and denominator of equation (4.58) by m1, we get 
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 The equation (4.61) implies that the first body which is heavier 
continues to move with the same initial velocity. The equation (4.62) 
suggests that the second body which is lighter will move with twice the 
initial velocity of the first body. It means that the lighter body is thrown 
away from the point of collision. 
 
 A lighter particle moving with a speed of 10 m s-1 collides with an 
object of double its mass moving in the same direction with half its 
speed. Assume that the collision is a one dimensional elastic collision. 
What will be the speed of both particles after the collision? 
 
Let the mass of the first body be m which moves with an initial velocity, 
u1 = 10 m s-1. Therefore, the mass of second body is 2m and its initial 
velocity is 
 

 
 
 Then, the final velocities of the bodies can be calculated from the 
equation (4.53) and equation (4.54) 
 

 
 



                                 

49 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 
 
 As the two speeds v1 and v2 are positive, they move in the same 
direction with the velocities, 3.33 m s−1 and 8.33 m s−1 respectively. 
 
Perfect inelastic collision 
 
 In a perfectly inelastic or completely inelastic collision, the objects 
stick together permanently after collision such that they move with 
common velocity. Let the two bodies with masses m1 and m2 move with 
initial velocities u1 and u2 respectively before collision. After perfect 
inelastic collision both the objects move together with a common 
velocity v 
 
 Since, the linear momentum is conserved during collisions, 
 



                                 

50 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 

 
 
 The common velocity can be computed by 
 

 
 
 A bullet of mass 50 g is fired from below into a suspended object 
of mass 450 g. The object rises through a height of 1.8 m with bullet 
remaining inside the object. Find the speed of the bullet. Take g = 10 ms-

2. 
 

 
 
 The speed of the bullet is u1. The second body is at rest u2= 0 . Let 
the common velocity of the bullet and the object after the bullet is 
embedded into the object is v. 
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 The combined velocity is the initial velocity for the vertical 
upward motion of the combined bullet and the object. From second 
equation of motion, 
 

 
 Substituting this in the above equation, the value of u1 is 
 

 
 
Loss of kinetic energy in perfect inelastic collision 
 
 In perfectly inelastic collision, the loss in kinetic energy during 
collision is transformed to another form of energy like sound, thermal, 
heat, light etc. Let KEi be the total kinetic energy before collision and KEf 
be the total kinetic energy after collision. 
 
 Total kinetic energy before collision, 
 

 
 

 
 

Then the loss of kinetic energy is Loss of KE, Q = KEi -KEf 
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 Substituting equation (4.63) in equation (4.66), and on simplifying 
(expand v by using the algebra 

 
 

 
 
Coefficient of restitution (e) 
 
 Suppose we drop a rubber ball and a plastic ball on the same floor. 
The rubber ball will bounce back higher than the plastic ball. This is 
because the loss of kinetic energy for an elastic ball is much lesser than 
the loss of kinetic energy for a plastic ball. The amount of kinetic energy 
after the collision of two bodies, in general, can be measured through a 
dimensionless number called the coefficient of restitution (COR). 
 
 It is defined as the ratio of velocity of separation (relative velocity) 
after collision to the velocity of approach (relative velocity) before 
collision, i.e., 
 

 
 

 
 In an elastic collision, we have obtained the velocity of separation 
is equal to the velocity of approach i.e., 
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 This implies that, coefficient of restitution for an elastic collision, 
e=1. Physically, it means that there is no loss of kinetic energy after the 
collision. So, the body bounces back with the same kinetic energy which 
is usually called as perfect elastic. 
 
 In any real collision problems, there will be some losses in kinetic 
energy due to collision, which means e is not always equal to unity. If 
the ball is perfectly plastic, it will never bounce back and therefore their 
separation of velocity is zero after the collision. Hence, the value of 
coefficient of restitution, e=0. 
 
 In general, the coefficient of restitution for a material lies between 
 

 
 
 Show that the ratio of velocities of equal masses in an inelastic 
collision when one of the masses is stationary is 
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 From the law of conservation of linear momentum, 
 

 
 
 Using the equation (2) for u1 in (1), we get 
 

 
 
On simplification, we get 
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12th-std 
Unit 1- Electrostatics 

 
 

INTRODUCTION 
  
 Electromagnetism is one of the most important branches of physics. 

The technological developments of the modern 21st century are 
primarily due to our understanding of electromagnetism. The forces 
we experience in everyday life are electromagnetic in nature except 
gravity.  

 

 In standard XI, we studied about the gravitational force, tension, 
friction, normal force etc. Newton treated them to be independent of 
each other with each force being a separate natural force. But what is 
the origin of all these forces? It is now understood that except 
gravity, all forces which we experience in every day life (tension in 
the string, normal force from the surface, friction etc.) arise from 
electromagnetic forces within the atoms. Some examples are  

 

 When an object is pushed, the atoms in our hand interact with the 
atoms in the object and this interaction is basically electromagnetic in 
nature. 

 
(ii) When we stand on Earth's surface, the gravitational force on us acts 
downwards and the normal force acts upward to counter balance the 
gravitational force. What is the origin of this normal force?  
It arises due to the electromagnetic interaction of atoms on the surface of 
the Earth with the atoms present in the feet of the person. Though, we 
are attracted by the gravitational force of the Earth, we stand on Earth 
only because of electromagnetic force of atoms.  
 
(iii) When an object is moved on a surface, static friction resists the 
motion of the object. This static friction arises due to electromagnetic 
interaction between the atoms present in the object and atoms on the 
surface. Kinetic friction also has similar origin. 
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From these examples, it is clear that understanding electromagnetism is 
very essential to understand the universe in a holistic manner. The basic 
principles of electromagnetism are dealt in XII physics volume 1. This 
unit deals with the behaviour and other related phenomena of charges at 
rest. This branch of electricity which deals with stationary charges is 
called Electrostatics. 

 

Historical background of electric charges 

 

 Two millenniums ago, Greeks noticed that amber (a solid, 
translucent material formed from the resin of a fossilized tree) after 
rubbing with animal fur attracted small pieces of leaves and dust. 
The amber possessing this property is said to be ‘charged’. It was 
initially thought that amber has this special property. Later people 
found that not only amber but even a glass rod rubbed with silk 
cloth, attracts pieces of papers. So glass rod also becomes ‘charged’ 
when rubbed with a suitable material. 

 

 Consider a charged rubber rod hanging from a thread as shown in 
Figure 1.1. Suppose another charged rubber rod is brought near the 
first rubber rod; the rods repel each other. Now if we bring a charged 
glass rod close to the charged rubber rod, they attract each other. At 
the same time, if a charged glass rod is brought near another charged 
glass rod, both the rods repel each other.  

 
From these observations, the following inferences are made 
 
(i) The charging of rubber rod and that of glass rod are different from 
one another. 
 
(ii) The charged rubber rod repels another charged rubber rod, which 
implies that ‘like charges repel each other’. We can also arrive at the 
same inference by observing that a charged glass rod repels another 
charged glass rod. 
 
(iii) The charged amber rod attracts the charged glass rod, implying that 
the charge in the glass rod is not the same kind of charge present in the 
rubber. Thus unlike charges attract each other. 
Therefore, two kinds of charges exist in the universe. In the 18th century,  
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Benjamin Franklin called one type of charge as positive (+) and another 
type of charge as negative (-). Based on Franklin’s convention, rubber 
and amber rods are negatively charged while the glass rod is positively 
charged. If the net charge is zero in the object, it is said to be 
electrically neutral. 
 

 Following the pioneering work of J. J. Thomson and E. Rutherford, in 
the late 19th century and in the beginning of 20th century, we now 
understand that the atom is electrically neutral and is made up of the 
negatively charged electrons, positively charged protons, and 
neutrons which have zero charge. The material objects made up of 
atoms are neutral in general. When an object is rubbed with another 
object (for example rubber with silk cloth), some amount of charge is 
transferred from one object to another due to the friction between 
them and the object is then said to be electrically charged. Charging 
the objects through rubbing is called triboelectric charging. 

 
Basic properties of charges 
 
(i) Electric charge 
 

 Most objects in the universe are made up of atoms, which in turn are 
made up of protons, neutrons and electrons. These particles have 
mass, an inherent property of particles. Similarly, the electric charge  

is another intrinsic and fundamental property of particles. The nature of 
charges is understood through various experiments performed in the 
19th and 20th century. The SI unit of charge is coulomb. 
 
(ii) Conservation of charges 
 

 Benjamin Franklin argued that when one object is rubbed with 
another object, charges get transferred from one to the other. Before 
rubbing, both objects are electrically neutral and rubbing simply 
transfers the charges from one object to the other. (For example, 
when a glass rod is rubbed against silk cloth, some negative charge 
are transferred from glass to silk. As a result, the glass rod is 
positively charged and silk cloth becomes negatively charged). From 
these observations, he concluded that charges are neither created or 
nor destroyed but can only be transferred from one object to other. 
This is called conservation of total charges and is one of the 
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fundamental conservation laws in physics. It is stated more generally 
in the following way. 

 
‘The total electric charge in the universe is constant and charge can 
neither be created nor be destroyed. In any physical  
process, the net change in charge will always be zero.  
 
(iii) Quantisation of charges  
 

 What is the smallest amount of charge that can be found in nature? 
Experiments show that the charge on an electron is −e and the charge 
on the proton is +e. Here, e denotes the fundamental unit of charge. 
The charge q on any object is equal to an integral multiple of this 
fundamental unit of charge e.  

q = ne (1.1)  
Here n is any integer (0, ±1, ±2, ±3, ±4………..). This is called 
quantisation of electric charge.  
 

 Robert Millikan in his famous experiment found that the value of e = 
1.6 × 10-19C. The charge of an electron is −1.6 × 10-19 C and the 
charge of the proton is +1.6 × 10-19C.  

When a glass rod is rubbed with silk cloth, the number of charges 
transferred is usually very large, typically of the order of 1010. So the 
charge quantisation is not appreciable at the macroscopic level. Hence 
the charges are treated to be continuous (not discrete). But at the 
microscopic level, quantisation of charge plays a vital role.  
 
E X A M P L E  
 
Calculate the number of electrons in one coulomb of negative charge.  
 
Solution  
According to the quantisation of charge  

q = ne 
Here q = 1C. So the number of electrons in 1 coulomb of charge is  
 

n= 
    = 

           × =6. 25  10 18. . electrons  

 
COULOMB’S LAW  
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 In the year 1786, Coulomb deduced the expression for the force 
between two stationary point charges in vacuum or free space. 
Consider two point charges q1 and q2 at rest in vacuum, and 
separated by a distance of r, as shown in Figure 1.2. According to 
Coulomb, the force on the point charge q2 exerted by another point 
charge q1  

 
 
Where r12 is the unit vector directed from charge q1 to charge q2 and k is 
the proportionality constant.  
 
Important aspects of Coulomb’s law  
 
(i) Coulomb's law states that the electrostatic force is directly 
proportional to the product of the magnitude of the two point charges 
and is inversely proportional to the square of the distance between the 
two point charges.  
 
(ii) The force on the charge q2 exerted by the charge q1 always lies along 
the line joining the two charges. is the unit 
vector pointing from charge q1 to q2 .It is shown in the Figure 1.2. 
Likewise, the force on the charge q1 exerted by q2 is along (i.e., in the 
direction opposite to ). 
 

 (iii) In SI units, K       and its value is 9 × 109 N m2 C-2. Here εo is the 

permittivity of free space or vacuum and the value of εo       

8.85×1012C2N1m2.  
 
(iv) The magnitude of the electrostatic force between two charges each 
of one coulomb and separated by a distance of 1 m is calculated as 
follows:  
            9   9 N 
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 This is a huge quantity, almost equivalent to the weight of one million 
ton. We never come across 1 coulomb of charge in practice. Most of the 
electrical phenomena in day-to-day life involve electrical charges of the 
order of μC (micro coulomb) or nC (nano coulomb). 
 
(v) In SI units, Coulomb’s law in vacuum takes the form  

 
 
In a medium of permittivity ε, the force between two point charges is  
given, 
 

   
the force between two point charges in a medium other than vacuum is 
always less than that in vacuum. We define the relative permittivity for 

a given medium as εr      

For vacuum or air, εr = 1 and for all other media εr> 1. 
 
(vi) Coulomb’s law has same structure as Newton’s law of gravitation. 
Both are inversely proportional to the square of the distance between the 
particles. The electrostatic force is directly proportional to the product  
of the magnitude of two point charges and gravitational force is directly 
proportional to the product of two masses. But there are some important 
differences between these two laws.  
 
• The gravitational force between two masses is always attractive but 
Coulomb force between two charges can be attractive or repulsive, 
depending on the nature of charges.  
 
• The value of the gravitational constant G = 6.626 × 10-11 N m2 kg-2. 
The value of the constant k in Coulomb law is k = 9 × 109 N m2 C-2. 
Since k is much more greater than G, the electrostatic force is always 
greater in magnitude than gravitational force for smaller size objects. 
 
• The gravitational force between two masses is independent of the 
medium. For example, if 1 kg of two masses are kept in air or inside 
water, the gravitational force between two masses remains the same. But 
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the electrostatic force between the two charges depends on nature of the 
medium in which the two charges are kept at rest.  
 
• The gravitational force between two point masses is the same whether 
two masses are at rest or in motion. If the charges are in motion, yet 
another force (Lorentz force) comes into play in addition to coulomb 
force. 
 
(vii) The force on a charge q1 exerted by a point charge q2 is given by  

 

Here is the unit vector from charge q2 to q1.  But  
 

 
 
Therefore, the electrostatic force obeys Newton’s third law. 
 
(viii) The expression for Coulomb force is true only for point charges. 
But the point charge is an ideal concept. However we can apply 
Coulomb’s law for two charged objects whose sizes are very much 
smaller than the distance between them. In fact, Coulomb discovered his 
law by considering the charged spheres in the torsion balance as point 
charges. The distance between the two charged spheres is much greater 
than the radii of the spheres. 
 
They are separated by a distance of 1m. Calculate the force experienced 
by the two charges for the following cases: 
 
(a) q1 = +2μC and q2 = +3μC 
(b) q1 = +2μC and q2 = -3μC 
(c) q1= +2μC and q2 = -3μC kept in water (εr = 80) 
 
(a) q1 = +2 μC, q2 = +3 μC, and r = 1m. Both are positive charges. so the 
force will be repulsive 
 
Force experienced by the charge q2 due to q1 is given by 
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Here is the unit vector from q1 to q2. Since q2 is located on the right 
of q1, we have  
 

  
 
rding to ew on’s thi d law the for e exp rienced by he cha ge q1 ue to q2 is 
 

 

 
 
The dirctions of F21and F12 are sho n in he abo e fig re in as (a)  
 
q1  + C, q2  - C, and r = 1 . The are unl ke cha ges. So he for e wil be tt 
active. Force exprienced by he chage q2 due to q1 is given by 
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EXA M P L E  
 
Two sma l-sized ide tical equ lly changed sph res, eac hav ng mas 1 m re 
han ing in qu librium as ho n in he fig re. The lenth of ac str ng is 0 m nd 
the ang e θ i ° it the ver ical. Calculate the mag itude of he chacnge in ac 
sphere 
 
Solution 
 
If the two spheres are neutral, the angle between them will be 0o when 
hanged vertically. Since they are positively charged spheres, there will 
be a repulsive force between them and they will be at equilibrium with 
each other at an angle of 7° with the vertical. At equilibrium, each charge 
experiences zero net force in each direction. We can draw a free body 
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diagram for one of the charged spheres and apply Newton’s second law 
for both vertical and horizontal directions. 
 
The free body diagram is shown below. In the x-direction, the 
acceleration of the charged sphere is zero. 
 

Using Newton’s second law  

 Here T is the tension acting on the charge due to 
the string and Fe is the electrostatic force between the two charges. 
In the y-direction also, the net acceleration experienced by the charge is 
zero. 

 
 
By dividing equation (1) by equation (2), 
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 The electrostatic force between a proton and an electron is 
enormously greater than the gravitational force between them. Thus 
the gravitational force is negligible when compared with the 
electrostatic force in many situations such as for small size objects 
and in the atomic domain. This is the reason why a charged comb 
attracts an uncharged piece of paper with greater force even though 
the piece of paper is attracted downward by the Earth. This is shown 

 
 Superposition principle 
 

 Coulomb’s law explains the interaction between two point charges. If 
there are more than two charges, the force on one charge due to all 
the other charges needs to be calculated. Coulomb’s law alone does 
not give the answer. The superposition principle explains the 
interaction between multiple charges. 

 

 According to this superposition principle, the total force acting on a 
given charge is equal to the vector sum of forces exerted on it by all 
the other charges. 

 

 Consider a system of n charges, namely q1, q2, q3 ….qn. The force on 
q1 exerted by the charge q2 

  
 Here is the unit vector from q2 to q1 along the line joining the two 

charges and 
 

 21 is the distance between the charges q1 and q2. The electrostatic 
force between two charges is not affected by the presence of other 
charges in the neighbourhood. 

 
The force on q1 exerted by the charge q3 is 

 
 By continuing this, the total force acting on the charge q1 due to all 

other charges is given by  



                                 

67 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 
E X A M P L E 1.5 
 

 Consider four equal charges q1,q2, q3 and q4 = q = +1μC located at 
four different points on a circle of radius 1m, as shown in the figure. 
Calculate the total force acting on the charge q1 due to all the other 
charges. 

 
 Solution 
According to the superposition principle, the total electrostatic force on 
charge q1 is the vector sum of the forces due to the other charges, 

 
 
following dia ram sho s the dir ction of ac for e on he cha ge q1.  
The charges q2 and q4 are equi-distant from q1. As a result the strengths 
(magnitude) of the forces  F12 and  F14 are the same even though their 
directions are different. Therefore the vectors representing these two 
forces are drawn with equal lengths. But the charge q3 is located farther 
compared to q2 and q4. Since the strength of the electrostatic force 
decreases a 13 is lesser 
than that of forces F12 and F14 
F13 12 and F14  
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ELECTRIC FIELD AND ELECTRIC FIELD LINES  
 
Electric Field  
 

 The interaction between two charges is determined by Coulomb’s 
law. How does the interaction itself occur? Consider a point charge 
kept at a point in space. If another point charge is placed at some 
distance from the first point charge, it experiences either an attractive 
force or repulsive force. This is called ‘action at a distance’. But how 
does the second charge know about existence of the first charge 
which is located at some distance away from it? To answer this 
question, Michael Faraday introduced the concept of field.  

 

 According to Faraday, every charge in the universe creates an 
electric field in the surrounding space, and if another charge is 
brought into its field, it will interact with the electric field at that 
point and will experience a force. It may be recalled that the 
interaction of two masses is similarly explained using the concept of 
gravitational field (Refer unit 6, volume 2, XI physics). Both the 
electric and gravitational forces are non-contact forces, hence the 
field concept is required to explain action at a distance.  

 

 Consider a source point charge q located at a point in space. Another 
point charge qo (test charge) is placed at some point P which is at a 
distance r from the charge q. The electrostatic force experienced by 
the charge qo due to q is given by Coulomb’s law. 

 
 

 The charge q creates an electric field in the surrounding space. The 
electric field at the point P at a distance r from the point charge q is 
the force experienced by a unit charge and is given by 

 
 
Here is the unit vector pointing from q to the point of interest P. The 
electric field is a vector quantity and its SI unit is Newton per Coulomb 
(NC-1). 
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Important aspects of Electric field 
 
(i) If the charge q is positive then the electric field points away from the 
source charge and if q is negative, the electric field points towards the 
source charge q. This is shown in the Figure 1.4. 
 
(ii) If the electric field at a point P is E then the force experienced by the 
test charge qo placed at the point P is  
 
(iii) The equation (1.4) implies that the electric field is independent of 
the test charge qo and it depends only on the source charge q.  
 
(iv) Since the electric field is a vector quantity, at every point in space, 
this field has unique direction and magnitude as shown in Figures 1.6(a) 
and (b). From equation (1.4), we can infer that as distance increases, the 
electric field decreases in magnitude.  
 
Note that in Figures 1.6 (a) and (b) the length of the electric field vector 
is shown for three different points. The strength or magnitude of the 
electric field at point P is stronger than at the points Q and R because the 
point P is closer to the source charge. 
 
(v) In the definition of electric field, it is assumed that the test charge q0 
is taken sufficiently small, so that bringing this test charge will not move 
the source charge. In other words, the test charge is made sufficiently 
small such that it will not modify the electric field of the source charge. 
 
(vi) The expression (1.4) is valid only for point charges. For continuous 
and finite size charge distributions, integration techniques must be used 
These will be explained later in the same section. However, this 
expression can be used as an approximation for a finite-sized charge if 
the test point is very far away from the finite sized source charge. Note 
that we similarly treat the Earth as a point mass when we calculate the 
gravitational field of the Sun on the Earth (refer unit 6, volume 2, XI 
physics). 
 
(vii) There are two kinds of the electric field: uniform (constant) electric 
field and non-uniform electric field. Uniform electric field will have the 
same direction and constant magnitude at all points in space. Non-
uniform electric field will have different directions or different 
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magnitudes or both at different points in space. The electric field created 
by a point charge is basically a non uniform electric field. This non-
uniformity arises, both in direction and magnitude, with the direction 
being radially outward (or inward) and the magnitude changes as 
distance increases. These are shown in Figure 1.7. 
 
EXAMPLE 1.6 
 
Calculate the electric field at points P, Q for the following two cases, as 
shown in the figure. 
 
(a) A positive point charge +1 μC is placed at the origin  
(b) A negative point charge -2 μC is placed at the origin 
 
Solution 
 
Case (a) 
 
The magnitude of the electric field at point P is  

 

 
 
Since the source charge is positive, the electric field points away from 
the charge. So the electric field at the point P is given by 
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Electric field due to the system of point charges 
 

 Suppose a number of point charges are distributed in space. To find 
the electric field at some point P due to this collection of point 
charges, superposition principle is used. The electric field at an 
arbitrary point due to a collection of point charges is simply equal to 
the vector sum of the electric fields created by the individual point 
charges. This is called superposition of electric fields. Consider a 
collection of point charges located at various points in space. The 
total electric field at some point P due to all these n chargesisgivenby
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For example in Figure 1.8, the resultant electric field due to three point 

charges at point P is shown.  
Note that the relative lengths of the electric field vectors for the charges 
depend on relative distances of the charges to the point P.  
 
EXAMPLE 1.7 
 

 Consider the charge configuration as shown in the figure. Calculate 
the electric field at point A. If an electron is placed at points A, what 
is the acceleration experienced by this electron? (mass of the electron 
= 9.1 × 10-31 kg and charge of electron = −1.6 × 10-19 C) 
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Electric field due to continuous charge distribution 
 

 The electric charge is quantized microscopically. The expressions 
(1.2), (1.3), (1.4) are applicable to only point charges. While dealing 
with the electric field due to a charged sphere or a charged wire etc., 
it is very difficult to look at individual charges in these charged 
bodies. Therefore, it is assumed that charge is distributed 
continuously on the charged bodies and the discrete nature of 
charges is not considered here. The electric field due to such 
continuous charge distributions is found by invoking the method of 
calculus. 

 

 Consider the following charged object of irregular shape as shown in 
Figure 1.9. The entire charged object is divided into a large number 
of charge elementsand each charge element  is 
taken as a point charge.  

 

 The electric field at a point P due to a charged object is 
approximately given by the sum of the fields at P due to all such 
charge elements. 
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 Here is the ith charge element, riP is the distance of the point P from 

the ith charge element and is the unit vector from ith charge element 
to the point P.  

 However the equation (1.9) is only an approximation. To incorporate 
the continuous distribution of charge, we take the limit In this limit, 
the summation in the equation (1.9) becomes an integration and 
takes the following form  

.  
, 
Here r is the distance of the point P from the infinitesimal charge dq and 
ris the unit vector from dq to point P. Even though the electric field for a 

continuous charge distribution is difficult to evaluate, the force 
experienced by some test charge q in this 

  
If the charge Q is uniformly distributed along the wire of length L, then 
linear charge density (charge per unit length) 

  
The charge present in the infinitesimal length dl is dq = λdl. This is 
shown in Figure 1.10 (a).  
 
The electric field due to the line of total charge Q is given by 
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EXAMPLE 1.8 
 
A block of mass m and positive charge q is placed on an insulated 
frictionless inclined plane as shown in the figure. A uniform electric field 
E is applied parallel to the inclined surface such that the block is at rest. 
Calculate the magnitude of the electric field E. 
 
Solution 
 
Note: A similar problem is solved in XIth Physics volume I, unit 3 
section 3.3.2.  
There are three forces that acts on the mass m: 
 
(i) The downward gravitational force exerted by the Earth (mg) 
(ii) The normal force exerted by the inclined surface (N) 
(iii) The Coulomb force given by uniform electric field (qE)  
The free body diagram for the mass m is drawn below. 
 
A convenient inertial coordinate system is located in the inclined surface 
as shown in the figure. The mass m has zero net acceleration both in x 
and y-direction. 
 
Along x-direction, applying Newton’s second law, we have  

 

 
Note that the magnitude of the electric field is directly proportional to 
the mass m and inversely proportional to the charge q. It implies that, if 
the mass is increased by keeping the charge constant, then a strong 
electric field is required to stop the object from sliding. If the charge is 
increased by keeping the mass constant, then a weak electric field is 
sufficient to stop the mass from sliding down the plane. 
 
The electric field also can be expressed in terms of height and the length 
of the inclined surface of the plane.  
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Electric field lines 
 
Electric field vectors are visualized by the concept of electric field lines. 
They form a set of continuous lines which are the visual representation 
of the electric field in some region of space. The following rules are 
followed while drawing electric field lines for charges. 
 
• The electric field lines start from a positive charge and end at negative 
charges or at infinity. For a positive  point charge the electric field lines 
point radially outward and for a negative point charge, the electric field 
lines point radially inward. 
 
Note that for an isolated positive point charge the electric field line starts 
from the charge and ends only at infinity. For an isolated negative point 
charge the electric field lines start at infinity and end at the negative 
charge.  
 
• The electric field vector at a point in space is tangential to the electric 
field  line at that point. 
 
• The electric field lines are denser (more closer) in a region where the 
electric field has larger magnitude and less dense in a region where the 
electric field is of smaller magnitude. In other words, the number of lines 
passing through a given surface area perpendicular to the lines is 
proportional to the magnitude of the electric field in that region. electric 
field lines from a positive point charge. The magnitude of the electric 
field for a point charge decreases  

 
 
electric field has greater magnitude at the surface A than at B. Therefore, 
the number of lines crossing the surface A is greater than the number of 
lines crossing the surface B. Note that at surface B the electric field lines 
are farther apart compared to the electric field lines at the surface A.  
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As a consequence, if some charge is placed in the intersection point, then 
it has to move in two different directions at the same time, which is 
physically impossible. Hence, electric field lines do not intersect. 
 
• The number of electric field lines that emanate from the positive 
charge or end at a negative charge is directly proportional to the 
magnitude of the charges. 
 
For example in the Figure 1.15, the electric field lines are drawn for 
charges +q and -2q. Note that the number of field lines emanating from 
+q is 8 and the number of field lines ending at -2q is 16. Since the 
magnitude of the second charge is twice that 
 
• No two electric field lines intersect each other. If two lines cross at a 
point, then there will be two different electric field vectors at the same 
point,  
 
of the first charge, the number of field lines drawn for -2q is twice in 
number than that for charge +q. 
 
EXAMPLE 1.9 
 
The following pictures depict electric field lines for various charge 
configurations.  
 
(i) In figure (a) identify the signs of two charges and find the ratio  
(ii) In figure (b), calculate the ratio of two positive charges and identify 
the strength of the electric field at three points A, B, and C  
(iii) Figure (c) represents the electric field lines for three charges. If q2 = -
20 nC, then calculate the values of q1 and q3  
 

Solution  
 
(i) The electric field lines start at q2 and end at q1. In figure (a), q2 is 
positive and q1 is negative. The number of lines starting from q2 is 18 
and number of the lines ending at q1 is 6. So q2 has greater magnitude. 
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(ii)In figure (b), the number of field lines emanating from both positive  
charges are equal (N=18). So the charges are equal. At point A, the 
electric field lines are denser compared to the lines at point B. So the 
electric field at point A is greater in magnitude compared to the field at 
point B. Further, no electric field line passes through C, which implies 
that the resultant electric field at C due to these two charges is zero.  
 
(iii) In the figure (c), the electric field lines start at q1 and q3 and end at 
q2. This implies that q1 and q3 are positive charges. The ratio of the 
number 
 

 
 
ELECTRIC DIPOLE AND ITS PROPERTIES  
 
Electric dipole  
 
Two equal and opposite charges separated by a small distance 
constitute an electric dipole. In many molecules, the centers of positive 
and negative charge do not coincide. Such molecules behave as 
permanent dipoles. Examples: CO, water, ammonia, HCl etc.  
Consider two equal and opposite point charges (+q, -q) that are 
separated by a distance 2a as shown in Figure 1.16(a).  
The electric dipole moment is defined as 
 

  
 
from the origin. Then, from Figure 1.16 (a), 

  
 
The electric dipole moment vector lies along the line joining two charges 
and is directed from –q to +q. The SI unit of dipole moment is coulomb 



                                 

82 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

meter (Cm). The electric field lines for an electric dipole are shown in 
Figure 1.16 (b). 
• For simplicity, the two charges are placed on the x-axis. Even if the 
two charges are placed on y or z-axies, dipole moment will point from –
q to +q. The magnitude of the electric dipole moment is equal to the 
product of the magnitude of one of the charges and the distance between 
them,  
 
• Though the electric dipole moment for two equal and opposite charges 
is defined, it is very general. It is possible to define and calculate the 
electric dipole moment for a single charge, two positive charges, two 
negative charges and also for more than two charges.  
For a collection of n point charges, the electric dipole moment is defined 
as follows: 

pqa=2 
 

 

 
 
 From both cases (a) and (b), we can infer that in general the electric 
dipole moment depends on the choice of the origin and charge 
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configuration. But for one special case, the electric dipole moment is 
independent of the origin. If the total charge is zero, then the electric 
dipole moment will be the same irrespective of the choice of the origin. 
It is because of this reason that the electric dipole moment of an electric 
dipole (total charge is zero) is always directed from –q to +q, 
independent of the choice of the origin 
 

 
 

  The water molecule (H2O) has this charge configuration. The 
water molecule has three atoms (two H atom and one O atom). The 
centers of positive (H) and negative (O) charges of a water molecule 
lie at different points, hence it possess permanent dipole moment. 
The O-H bond length is 0.958 × 10-10 m due to which the electric 
dipole moment of water molecule has the magnitude p = 6.1 x 10-30 
Cm. The electric dipole moment is directed from center of negative 
charge to the center of positive charge, as shown in the figure. 

 

Electric field due to a dipole 
 

  Case (i) Electric field due to an electric dipole at points on the axial 
line Consider an electric dipole placed on the x-axis as shown in 
Figure 1.17. A point C is located at a distance of r from the midpoint 
O of the dipole along the axial line. 
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ELECTROSTATIC POTENTIAL AND POTENTIAL ENERGY 
Introduction  

  In mechanics, potential energy is defined for conservative forces. 
Since gravitational force is a conservative force, its gravitational 
potential energy is defined in XI standard physics (Unit 6). Since 
Coulomb force is an inverse-square-law force, its also a conservative 
force like gravitational force. Therefore, we can define potential 
energy for charge configurations 

 
Electrostatic Potential energy and Electrostatic potential  
 

  Consider a positive charge q kept fixed at the origin which 
produces an electric field around it. A positive test charge q′ is 
brought from point R to point P against the repulsive force between 
q and q′ as shown in Figure 1.22. Work must be done to overcome 
this repulsion. This work done is stored as potential energy.  

 

  The test charge q′ is brought from R to P with constant velocity 
which means that external force used to bring the test charge q′ from 
R to P must be equal and opposite 
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Note that the electric potential at point Q is less than the electric 
potential at point P. If we put a positive charge at P, it moves from P to 
Q. However if we place a negative charge at P it will move towards the 
charge +9μC. 
 
The potential difference between the points P and Q is given by 

 
Suppose we replace the charge +9 μC by -9 μC, then the corresponding 
potentials at the points P and Q are,  
 

  
 
Note that in this case electric potential at the point Q is higher than at 
point P. 
 
The potential difference or voltage between the points P and Q is given 
by 

 
 
(c) The electric potential V at a point P due to some charge is defined as 
the work done by an external force to bring a unit positive charge from 
infinity to P. So to bring the q amount of charge from infinity to the 
point P, work done is given as follows.  
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EXAMPLE 1.13 
 
 Consider a point charge +q placed at the origin and another point 
charge -2q placed at a distance of 9 m from the charge +q. Determine the 
point between the two charges at which electric potential is zero. 
 

Solution 
 
According to the superposition principle, the total electric potential at a 
point is equal to the sum of the potentials due to each charge at that 
point. 
 
Consider the point at which the total potential zero is located at a 
distance x from the charge +q as shown in the figure. 

 
 
Electrostatic potential at a point due to an electric dipole 
 

Consider two equal and opposite charges separated by a small 
distance 2a as shown in Figure 1.26. The point P is located at a distance r 
from the midpoint of the dipole. Let θ be the angle between the line OP 
and dipole axis AB.  
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Let r1 be the distance of point P from +q and r2 be the distance of point P 
from –q. 

 
 
Suppose if the point P is far away from the dipole, such that r>>a, then 
equation (1.35) can be expressed in terms of r. By the cosine law for 
triangle BOP 

 
Since the point P is very far from dipole, then r>>a. As a result the term  

is very small and can be neglected. Therefore 
 

 
 
 

Similarly applying the cosine law for triangle AOP, 
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Substituting equation (1.37) and (1.36) in equation (1.35), 
 

 
 
 

But the electric dipole moment p = 2qa and we get, 
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

 
Equation (1.38) is valid for distances very large compared to the size of 
the dipole. But for a point dipole, the equation (1.38) is valid for any 
distance. 
 
Special cases 
 
Case (i) If the point P lies on the axial line of the dipole on the side of +q, 
then θ = 0. Then the electric potential becomes 
 

 
 
 

Case (ii) If the point P lies on the axial line of the dipole on the side of –
q, then θ = 180o, then 
 

 
 
 

Case (iii) If the point P lies on the equatorial line of the dipole, then θ = 
90o. Hence 
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Important points 

I. The potential due to an electric dipole falls as  and the potential 

due to a single point charge falls as  . Thus the potential due to 
the dipole falls faster than that due to a monopole (point charge). 
As the distance increases from electric dipole, the effects of 
positive and negative charges nullify each other.  

 
 
II. The potential due to a point charge is spherically symmetric since 

it depends only on the distance r. But the potential due to a dipole 
is not spherically symmetric because the potential depends on the 

angle between  and position vector   of the point.  
 However the dipole potential is axially symmetric. If the position vector   

     is rotated about by keeping θ fixed, then all points on the cone at 
the same distance r will have the same potential as shown in Figure 1.27. 
In this figure, all the points located on the blue curve will have the same 
potential. 
 
Equi-potential Surface 
 

 Consider a point charge q located at some point in space and an 
imaginary sphere of radius r is chosen by keeping the charge q at 
its center (Figure 1.28(a)). The electric potential at all points on the 
surface of the given sphere is the same. Such a surface is called an 
equipotential surface.  

 

 An equipotential surface is a surface on which all the points are at 
the same potential. For a point charge the equipotential surfaces 
are concentric spherical surfaces as shown in Figure 1.28(b). Each 
spherical surface is an equipotential surface but the value of the 
potential is different for different spherical surfaces. 
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 For a uniform electric field, the equipotential surfaces form a set of 

planes normal to the electric field  . This is shown in the Figure 
1.29. 

Properties of equipotential surfaces  
 
(i) The work done to move a charge q between any two points A and B, 
W = q (VB – VA). If the points A and B lie on the same equipotential 
surface, work done is zero because VA = VB. 
 
(ii) The electric field is normal to an equipotential surface. If it is not 
normal, then there is a component of the field parallel to the surface. 
Then work must be done to move a charge between two points on the 
same surface. This is a contradiction. Therefore the electric field must 
always be normal to equipotential surface. 
 

Relation between electric field and potential 
 

 Consider a positive charge q kept fixed at the origin. To move a 
unit positive charge by a small distance dx in the electric field E, 
the work done is given by dW = −E dx. The minus sign implies 
that work is done against the electric field. This work done is equal 
to electric potential difference. Therefore, 

 
 
 

The electric field is the negative gradient of the electric potential. In 
general, 
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Electrostatic potential energy for collection of point charges 
 

 The electric potential at a point at a distance r from point charge q1 
is given by 

 

 
 

This potential V is the work done to bring a unit positive charge 
from infinity to the point. Now if the charge q2 is brought from infinity 
to that point at a distance r from q1, the work done is the product of q2 
and the electric potential at that point. Thus we have 
 

W= q2V 

 

This work done is stored as the electrostatic potential energy U of 
a system of charges q1 and q2 separated by a distance r. Thus we have 
 

 
 
 

 The electrostatic potential energy depends only on the distance 
between the two point charges. In fact, the expression (1.45) is 
derived by assuming that q1 is fixed and q2 is brought from 
infinity. The equation (1.45) holds true when q2 is fixed and q1 is 
brought from infinity or both q1 and q2 are simultaneously 
brought from infinity to a distance r between them. 
 

 Three charges are arranged in the following configuration as 
shown in Figure 1.30. 

 

 To calculate the total electrostatic potential energy, we use the 
following procedure. We bring all the charges one by one and 
arrange them according to the configuration as shown in Figure 
1.30. 
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 Bringing a charge q1 from infinity to the point A requires no work, 
because there are no other charges already present in the vicinity 
of charge q1.  

 

  To bring the second charge q2 to the point B, work must be done 
against the electric field created by the charge q1. So the work 
done on the charge q2 is W = q2 V1B. Here V1B is the electrostatic 
potential due to the charge q1 at point B. 

 

 
 
 

Note that the expression is same when q2 is brought first and then q1 later. 
 

 Similarly to bring the charge q3 to the point C, work has to be done 
against the total electric field due to both charges q1 and q2. So the 
work done to bring the charge q3 is = q3 (V1C + V2C). Here V1C is the 
electrostatic potential due to charge q1 at point C and V2C is the 
electrostatic potential due to charge q2 at point C. 

 
The electrostatic potential is 
 

 
 
 

 Adding equations (1.46) and (1.47), the total electrostatic potential 
energy for the system of three charges q1, q2 and q3 is 

 

 
 
 

 Note that this stored potential energy U is equal to the total 
external work done to assemble the three charges at the given 


