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FORCE AND MOTION 
 

PART - III 
 

11TH VOL- I 
 

UNIT – 3 LAWS OF MOTION 
 
INTRODUCTION 
 
 Each and every object in the universe interacts with every other 
object. The cool breeze interacts with the tree. The tree interacts with the 
Earth. In fact, all species interact with nature. But, what is the difference 
between a human‟s interaction with nature and that of an animal‟s. 
Human‟s interaction has one extra quality. We not only interact with 
nature but also try to understand and explain natural phenomena 
scientifically. 
 
 In the history of mankind, the most curiosity driven scientific 
question asked was about motion of objects–„How things move?‟ and 
„Why things move?‟ Surprisingly, these simple questions have paved the 
way for development from early civilization to the modern technological 
era of the 21st century. 
 
 Objects move because something pushes or pulls them. For 
example, if a book is at rest, it will not move unless a force is applied on 
it. In other words, to move an object a force must be applied on it. About 
2500 years ago, the famous philosopher, Aristotle, said that „Force causes 



 

2 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

motion‟. This statement is based on common sense. But any scientific 
answer cannot be based on common sense. It must be endorsed with 
quantitative experimental proof. 
 
 In the 15th century, Galileo challenged Aristotle‟s idea by doing a 
series of experiments. He said force is not required to maintain motion. 
 
 Galileo demonstrated his own idea using the following simple 
experiment. When a ball rolls from the top of an inclined plane to its 
bottom, after reaching the ground it moves some distance and continues 
to move on to another inclined plane of same angle of inclination as 
shown in the Figure 3.1(a). By increasing the smoothness of both the 
inclined planes, the ball reach almost the same height(h) from where it 
was released (L1) in the second plane (L2) (Figure 3.1(b)). The motion of 
the ball is then observed by varying the angle of inclination of the 
second plane keeping the same smoothness. If the angle of inclination is 
reduced, the ball travels longer distance in the second plane to reach the 
same height (Figure 3.1 (c)). When the angle of inclination is made zero, 
the ball moves forever in the horizontal direction (Figure 3.1(d)). If the 
Aristotelian idea were true, the ball would not have moved in the 
second plane even if its smoothness is made maximum since no force 
acted on it in the horizontal direction. From this simple experiment, 
Galileo proved that force is not required to maintain motion. An object 
can be in motion even without a force acting on it. 
 
 In essence, Aristotle coupled the motion with force while Galileo 
decoupled the motion and force. 
 
NEWTON’S LAWS 
 
 Newton analysed the views of Galileo, and other scientist like 
Kepler and Copernicus on motion and provided much deeper insights 
in the form of three laws. 
 
Newton’s First Law 
 
 Every object continues to be in the state of rest or of uniform 
motion (constant velocity) unless there is external force acting on it. 
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 This inability of objects to move on its own or change its state of 
motion is called inertia. Inertia means resistance to change its state. 
Depending on the circumstances, there can be three types of inertia. 
 
Inertia of rest:  
 
 When a stationary bus starts to move, the passengers experience a 
sudden backward push. Due to inertia, the body (of a passenger) will try 
to continue in the state of rest, while the bus moves forward. This 
appears as a backward push as shown in Figure 3.2. The inability of an 
object to change its state of rest is called inertia of rest. 
 
 Inertia of motion: When the bus is in motion, and if the brake is 
applied suddenly, passengers move forward and hit against the front 
seat. In this case, the bus comes to a stop, while the body (of a 
passenger) continues to move forward due to the property of inertia as 
shown in Figure 3.3. The inability of an object to change its state of 
uniform speed (constant speed) on its own is called inertia of motion. 
 
Inertia of direction:  
  
 When a stone attached to a string is in whirling motion, and if the 
string is cut suddenly, the stone will not continue to move in circular 
motion but moves tangential to the circle as illustrated in Figure 3.4. This 
is because the body cannot change its direction of motion without any 
force acting on it. The inability of an object to change its direction of 
motion on its own is called inertia of direction. 
 
 When we say that an object is at rest or in motion with constant 
velocity, it has a meaning only if it is specified with respect to some 
reference frames. In physics, any motion has to be stated with respect to 
a reference frame. It is to be noted that Newton‟s fi rst law is valid only 
in certain special reference frames called inertial frames. In fact, 
Newton‟s first law defines an inertial frame. 
 
Inertial Frames 
 
 If an object is free from all forces, then it moves with constant 
velocity or remains at rest when seen from inertial frames. Thus, there 
exists some special set of frames in which if an object experiences no 
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force it moves with constant velocity or remains at rest. But how do we 
know whether an object is experiencing a force or not? All the objects in 
the Earth experience Earth‟s gravitational force. In the ideal case, if an 
object is in deep space (very far away from any other object), then 
Newton‟s first law will be certainly valid. Such deep space can be 
treated as an inertial frame. But practically it is not possible to reach 
such deep space and verify Newton‟s first law. 
 
 For all practical purposes, we can treat Earth as an inertial frame 
because an object on the table in the laboratory appears to be at rest 
always. This object never picks up acceleration in the horizontal 
direction since no force acts on it in the horizontal direction. So the 
laboratory can be taken as an inertial frame for all physics experiments 
and calculations. For making these conclusions, we analyse only the 
horizontal motion of the object as there is no horizontal force that acts on 
it. We should not analyse the motion in vertical direction as the two 
forces (gravitational force in the downward direction and normal force 
in upward direction) that act on it makes the net force is zero in vertical 
direction. Newton‟s first law deals with the motion of objects in the 
absence of any force and not the motion under zero net force. Suppose a 
train is moving with constant velocity with respect to an inertial frame, 
then an object at rest in the inertial frame (outside the train) appears to 
move with constant velocity with respect to the train (viewed from 
within the train). So the train can be treated as an inertial frame. All 
inertial frames are moving with constant velocity relative to each other. 
If an object appears to be at rest in one inertial frame, it may appear to 
move with constant velocity with respect to another inertial frame. For 
example, in Figure 3.5, the car is moving with uniform velocity v with 
respect to a person standing (at rest) on the ground. As the car is moving 
with constant velocity with respect to ground to the person is at rest on 
the ground, both frames (with respect to the car and to the ground) are 
inertial frames. 
 
 Suppose an object remains at rest on a smooth table kept inside the 
train, and if the train suddenly accelerates (which we may not sense), the 
object appears to accelerate backwards even without any force acting on 
it. It is a clear violation of Newton‟s first law as the object gets 
accelerated without being acted upon by a force. It implies that the train 
is not an inertial frame when it is accelerated. For example, Figure 3.6 
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shows that car 2 is a non-inertial frame since it moves with acceleration a

with respect to the ground. 
 
 These kinds of accelerated frames are called non-inertial frames. A 
rotating frame is also a non inertial frame since rotation requires 
acceleration. In this sense, Earth is not really an inertial frame since it has 
self-rotation and orbital motion. But these rotational effects of Earth can 
be ignored for the motion involved in our day-to-day life. For example, 
when an object is thrown, or the time period of a simple pendulum is 
measured in the physics laboratory, the Earth‟s self rotation has very 
negligible effect on it. In this sense, Earth can be treated as an inertial 
frame. But at the same time, to analyse the motion of satellites and wind 
patterns around the Earth, we cannot treat Earth as an inertial frame 
since its self-rotation has a strong influence on wind patterns and 
satellite motion. 
 
Newton’s Second Law 
 
This law states that 
 
The force acting on an object is equal to the rate of change of its 
momentum 
 

 
 In simple words, whenever the momentum of the body changes, 
there must be a force acting on it. The momentum of the object is defined 

as p mv . In most cases, the mass of the object remains constant during 

the motion. In such cases, the above equation gets modified into a 
simpler form 
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 The above equation conveys the fact that if there is an acceleration 

a  on the body, then there must be a force acting on it. This implies that if 
there is a change in velocity, then there must be a force acting on the 
body. The force and acceleration are always in the same direction. 
Newton‟s second law was a paradigm shift from Aristotle‟s idea of 
motion. According to Newton, the force need not cause the motion but 
only a change in motion. It is to be noted that Newton‟s second law is 
valid only in inertial frames. In non-inertial frames Newton‟s second law 
cannot be used in this form. It requires some modification. 
 In the SI system of units, the unit of force is measured in newtons 
and it is denoted by symbol „N‟. 
 
 One Newton is defined as the force which acts on 1 kg of mass to 
give an acceleration 1 m s−2 in the direction of the force. 
 
Aristotle vs. Newton’s approach on sliding object 
 
 Newton‟s second law gives the correct explanation for the 
experiment on the inclined plane that was discussed in section 3.1. In 
normal cases, where friction is not negligible, once the object reaches the 
bottom of the inclined plane (Figure 3.1), it travels some distance and 
stops. Note that it stops because there is a frictional force acting in the 
direction opposite to its velocity. It is this frictional force that reduces the 
velocity of the object to zero and brings it to rest. As per Aristotle‟s idea, 
as soon as the body reaches the bottom of the plane, it can travel only a 
small distance and stops because there is no force acting on the object. 
Essentially, he did not consider the frictional force acting on the object. 
 
Newton’s Third Law 
 
 Consider Figure 3.8(a) whenever an object 1 exerts a force on the 

object 212( )F , then object 2 must also exert equal and opposite force on 

the object 121( )F . These forces must lie along the line joining the two 

objects. 
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 Newton‟s third law assures that the forces occur as equal and 
opposite pairs. An isolated force or a single force cannot exist in nature. 
Newton‟s third law states that for every action there is an equal and 
opposite reaction. Here, action and reaction pair of forces do not act on 
the same body but on two different bodies. Any one of the forces can be 
called as an action force and the other the reaction force. Newton‟s third 
law is valid in both inertial and non-inertial frames. 
 
 These action-reaction forces are not cause and effect forces. It 
means that when the object 1 exerts force on the object 2, the object 2 
exerts equal and opposite force on the body 1 at the same instant. 
 
Discussion on Newton’s Laws 
 

 Newton‟s laws are vector laws. The equation F ma is a vector 
equation and essentially it is equal to three scalar equations. In Cartesian 
coordinates, this equation can be written as  

ˆ ˆˆ ˆ ˆ ˆ .
x y z x y z

F i F j F k ma i ma j ma k     By comparing both sides, the three 

scalar equations are 
 

 x x
F ma The acceleration along the x direction depends only on 

the component of force acting along the x-direction. 
 
 The acceleration along the y direction depends only on the 
component of force acting along the y-direction. 
 

 z z
F ma The acceleration along the z direction depends only on 

the component of force acting along the z-direction. 
 
 From the above equations, we can infer that the force acting along 
y direction cannot alter the acceleration along x direction. In the same 
way, Fz cannot affect ay and ax. This understanding is essential for 
solving problems. 
 
 The acceleration experienced by the body at time t depends on the 
force which acts on the body at that instant of time. It does not depend 
on the force which acted on the body before the time t. This can be 
expressed as 
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 Acceleration of the object does not depend on the previous history 
of the force. For example, when a spin bowler or a fast bowler throws 
the ball to the batsman, once the ball leaves the hand of the bowler, it 
experiences only gravitational force and air frictional force. The 
acceleration of the ball is independent of how the ball was bowled (with 
a lower or a higher speed). 
 
 In general, the direction of a force may be different from the 
direction of motion. Though in some cases, the object may move in the 
same direction as the direction of the force, it is not always true. A few 
examples are given below. 
 
Case 1: Force and motion in the same direction 
 
 When an apple falls towards the Earth, the direction of motion 
(direction of velocity) of the apple and that of force are in the same 
downward direction 
 
Case 2: Force and motion not in the same direction 
 
 The Moon experiences a force towards the Earth. But it actually 
moves in elliptical orbit. In this case, the direction of the force is different 
from the direction of motion 
Case 3: Force and motion in opposite direction 
 
 If an object is thrown vertically upward, the direction of motion is 
upward, but gravitational force is downward as 
 
Case 4: Zero net force, but there is motion 
 
 When a raindrop gets detached from the cloud it experiences both 
downward gravitational force and upward air drag force. As it descends 
towards the Earth, the upward air drag force increases and after a 
certain time, the upward air drag force cancels the downward gravity. 
From then on the raindrop moves at constant velocity till it touches the 
surface of the Earth. Hence the raindrop comes with zero net force, 
therefore with zero acceleration but with non-zero terminal velocity. 
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 If multiple forces 1 2 3, , .... nF F F F  act on the same body, then the 

total force  netF  is equivalent to the vectorial sum of the individual 

forces. Their net force provides the acceleration. 
 

 
 
Newton‟s second law for this case is 
 

 
 
In this case the direction of acceleration is in the direction of net force. 
 
 Newton‟s second law can also be written in the following form. 
Since the acceleration is the second derivative of position vector of the 

body 
2

2

d r
a

dt

 
 

 
 the force on the body is  

 

 
 
 From this expression, we can infer that Newton‟s second law is 
basically a second order ordinary differential equation and whenever 
the second derivative of position vector is not zero, there must be a force 
acting on the body. 
 

If no force acts on the body then Newton‟s second law, 0
dv

m
dt

 . 

 It implies that v constant. It is essentially Newton‟s first law. It 
implies that the second law is consistent with the first law. However, it 
should not be thought of as the reduction of second law to the first when 
no force acts on the object. Newton‟s first and second laws are 
independent laws. They can internally be consistent with each other but 
cannot be derived from each other. 
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 Newton‟s second law is cause and effect relation. Force is the cause 
and acceleration is the effect. Conventionally, the effect should be 
written on the left and cause on the right hand side of the equation. So 

the correct way of writing Newton‟s second law is 
d p

ma F or F
dt

  . 

 
APPLICATION OF NEWTON’S LAWS 
Free Body Diagram 
 
 Free body diagram is a simple tool to analyse the motion of the 
object using Newton‟s laws. 
 
 The following systematic steps are followed for developing the 
free body diagram: 
 

1. Identify the forces acting on the object. 
2. Represent the object as a point. 
3. Draw the vectors representing the forces acting on the object. 

 
 When we draw the free body diagram for an object or a system, 
the forces exerted by the object should not be included in the free body 
diagram. 
 
EXAMPLE 
 
 A book of mass m is at rest on the table. (1) What are the forces 
acting on the book? (2) What are the forces exerted by the book? (3) 
Draw the free body diagram for the book. 
 
Solution 
 
There are two forces acting on the book. 
 

I. Gravitational force (mg) acting downwards on the book 
II. Normal contact force (N) exerted by the surface of the table on the 

book. It acts upwards as shown in the figure. 
 
 According to Newton‟s third law, there are two reaction forces 
exerted by the book. 
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I. The book exerts an equal and opposite force (mg) on the Earth 

which acts upwards. 
II. The book exerts a force which is equal and opposite to normal 

force on the surface of the table (N) acting downwards. 
 
EXAMPLE 
 
 If two objects of masses 2.5 kg and 100 kg experience the same 
force 5 N, what is the acceleration experienced by each of them? 
 
Solution 
 
From Newton‟s second law (in magnitude form), F = ma 

For the object of mass 2.5 kg, the acceleration is  25
2

2.5

F
a m s

m

    

For the object of mass 100 kg, the acceleration is 25
0.05

100

F
a m s

m

    

 
 When an apple falls, it experiences Earth‟s gravitational force. 
According to Newton‟s third law, the apple exerts equal and opposite 
force on the Earth. Even though both the apple and Earth experience the 
same force, their acceleration is different. The mass of Earth is enormous 
compared to that of an apple. So an apple experiences larger acceleration 
and the Earth experiences almost negligible acceleration. Due to the 
negligible acceleration, Earth appears to be stationary when an apple 
falls. 
 
EXAMPLE 
 

Which is the greatest force among the three force 1 2 3, ,F F F  shown 

below 
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Solution 
 
 Force is a vector and magnitude of the vector is represented by the 

length of the vector. Here 1F has greater length compared to other two. 

So 1F  is largest of the three. 
 
EXAMPLE 
 
 Apply Newton‟s second law to a mango hanging from a tree. 
(Mass of the mango is 400 gm) 
 
Solution 
 
Note: Before applying Newton‟s laws, the following steps have to be 
followed: 
 

1. Choose a suitable inertial coordinate system to analyse the 
problem. For most of the cases we can take Earth as an inertial 
coordinate system. 

2. Identify the system to which Newton‟s laws need to be applied. 
The system can be a single object or more than one object. 

3. Draw the free body diagram. 
4. Once the forces acting on the system are identified, and the free 

body diagram is drawn, apply Newton‟s second law. In the left 
hand side of the equation, write the forces acting on the system in 
vector notation and equate it to the right hand side of equation 
which is the product of mass and acceleration. Here, acceleration 
should also be in vector notation. 

5. If acceleration is given, the force can be calculated. If the force is 
given, acceleration can be calculated. 

 
By following the above steps: 
 
We fix the inertial coordinate system on the ground as shown in the 
figure. 
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The forces acting on the mango are 
 

1. Gravitational force exerted by the Earth on the mango acting 
downward along negative y axis 

 
2. Tension (in the cord attached to the mango) acts upward along 

positive y axis. 
 
The free body diagram for the mango is shown in the figure 
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 Here, mg is the magnitude of the gravitational force and    ĵ

represents the unit vector in negative y direction 
 

 
 

 Here T is the magnitude of the tension force and  ĵ represents the 

unit vector in positive y direction 
 

 
 

From Newton‟s second law netF ma  
 
 
 Since the mango is at rest with respect to us (inertial coordinate 

system) the acceleration is zero  0a   

So 0netF ma   
 

 
 
 By comparing the components on both sides of the above 
equation, we get    T −mg = 0 
 
So the tension force acting on the mango is given by T=mg 
 
Mass of the mango m = 400g and g = 9.8 m s–2 
 
Tension acting on the mango is T = 0.4 × 9.8 = 3.92 N 
 
EXAMPLE 

 A person rides a bike with a constant velocity v with respect to 

ground and another biker accelerates with acceleration a  with respect to 
ground. Who can apply Newton‟s second law with respect to a 
stationary observer on the ground? 
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Solution 
 
 Second biker cannot apply Newton‟s second law, because he is 
moving with acceleration a  with respect to Earth (he is not in inertial 
frame). But the first biker can apply Newton‟s second law because he is 
moving at constant velocity with respect to Earth (he is in inertial 
frame). 
 
EXAMPLE 
 
 The position vector of a particle is given by 2 ˆˆ ˆ3 5 7r ti t j k   . Find the 

direction in which the particle experiences net force? 
 
Solution 
 

 
 

Acceleration of the particle 
 

 
 Here, the particle has acceleration only along positive y direction. 
According to Newton‟s second law, net force must also act along 
positive y direction. In addition, the particle has constant velocity in 
positive x direction and no velocity in z direction. Hence, there are no 
net force along x or z direction. 
 
EXAMPLE 
 
 Consider a bob attached to a string, hanging from a stand. It 
oscillates as shown in the figure. 
 
Solution 
 



 

16 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

1. Identify the forces that act on the bob? 
2. What is the acceleration experienced by the bob? 

 
Two forces act on the bob. 
 

1. Gravitational force (mg) acting downwards 
2. Tension (T) exerted by the string on the bob, whose position 

determines the direction of T as shown in figure. 
 
 The bob is moving in a circular arc as shown in the above figure. 
Hence it has centripetal acceleration. At a point A and C, the bob comes 
to rest momentarily and then its velocity increases when it moves 
towards point B. Hence, there is a tangential acceleration along the arc. 
The gravitational force can be resolved into two components (mg cosθ, 
mg sinθ) as shown below 
 
EXAMPLE 
 
 The velocity of a particle moving in a plane is given by the 
following diagram. Find out the direction of force acting on the particle? 
 
Solution 

 
 The velocity of the particle is ˆˆ ˆ

x y z
v v i v j v k    As shown in the 

figure, the particle is moving in the xy plane, there is no motion in the z 
direction. So velocity in the z direction is zero (vz =0). The velocity of the 
particle has x component (vx) and y component (vy). From fi gure, as 
time increases from t = 0 sec to t = 3 sec, the length of the vector in y 
direction is changing (increasing). It means y component of velocity (vy) 
is increasing with respect to time. According to Newton‟s second law, if 
velocity changes with respect to time then there must be acceleration. In 
this case, the particle has acceleration in the y direction since the y 
component of velocity changes. So the particle experiences force in the y 
direction. The length of the vector in x direction does not change. It 
means that the particle has constant velocity in the x direction. So no 
force or zero net force acts in the x direction. 
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EXAMPLE 
 
 Apply Newton‟s second law for an object at rest on Earth and 
analyse the result. 
 
Solution 
 
 The object is at rest with respect to Earth (inertial coordinate 
system). There are two forces that act on the object. 
 

 
 

1. Gravity acting downward (negative y-direction) 
2. Normal force by the surface of the Earth acting upward (positive 

y-direction) 
 
The free body diagram for this object is 
 

 
 

Net force ˆ ˆ
netF mgj Nj    

 

 But there is no acceleration on the ball. So 0.a  . By applying 

Newton‟s second law  netF ma  

 

Since ˆ ˆ0, neta F mgj Nj     

 
By comparing the components on both sides of the equation, we get 
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-mg + N = 0 

N =mg 
 
 We can conclude that if the object is at rest, the magnitude of 
normal force is exactly equal to the magnitude of gravity. 
 
EXAMPLE 
 

 A particle of mass 2 kg experiences two forces 1
ˆˆ ˆ5 8 7F i j k    

and 2
ˆˆ ˆ3 4 3F i j k    What is the acceleration of the particle? 

 
Solution 
 

 We use Newton‟s second law, netF ma  where 1 2netF F F  . 

From the above equations the acceleration is 
netF

a
m

  where 

 

 
EXAMPLE 
 
 Identify the forces acting on blocks A, B and C shown in the figure. 
 
Solution 
Forces on block A: 
 

1. Downward gravitational force exerted by the Earth (mAg) 
2. Upward normal force (NB) exerted by block B (NB) 

 
The free body diagram for block A is as shown in the following picture. 
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Forces on block B : 
 

1. Downward gravitational force exerted by Earth (mBg) 
2. Downward force exerted by block A (NA) 
3. Upward normal force exerted by block C (NC) 

 

 
 
Forces on block C: 
 

1. Downward gravitational force exerted by Earth (mCg) 
2. Downward force exerted by block B (NB) 
3. Upward force exerted by the table (Ntable) 
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EXAMPLE 
 
 Consider a horse attached to the cart which is initially at rest. If the 
horse starts walking forward, the cart also accelerates in the forward 
direction. If the horse pulls the cart with force Fh in forward direction, 
then according to Newton‟s third law, the cart also pulls the horse by 
equivalent opposite force Fc=Fh in backward direction. Then total force 
on „cart+horse‟ is zero. Why is it then the „cart+horse‟ accelerates and 
moves forward? 
 
Solution 
 
 This paradox arises due to wrong application of Newton‟s second 
and third laws. Before applying Newton‟s laws, we should decide „what 
is the system?‟. Once we identify the „system‟, then it is possible to 
identify all the forces acting on the system. We should not consider the 
force exerted by the system. If there is an unbalanced force acting on the 
system, then it should have acceleration in the direction of the resultant 
force. By following these steps we will analyse the horse and cart 
motion. 
 
 If we decide on the cart+horse as a „system‟, then we should not 
consider the force exerted by the horse on the cart or the force exerted by 
cart on the horse. Both are internal forces acting on each other. 
According to Newton‟s third law, total internal force acting on the 
system is zero and it cannot accelerate the system. The acceleration of 
the system is caused by some external force. In this case, the force 
exerted by the road on the system is the external force acting on the 
system. It is wrong to conclude that the total force acting on the system 
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(cart+horse) is zero without including all the forces acting on the system. 
The road is pushing the horse 
and cart forward with acceleration. As there is an external force acting 
on the system, Newton‟s second law has to be applied and not Newton‟s 
third law. 
 
The following figures illustrates this. 
 
 If we consider the horse as the „system‟, then there are three forces 
acting on the horse. 
 

1. Downward gravitational force (mgh) 
2. Force exerted by the road (Fr) 
3. Backward force exerted by the cart (Fc) 

 
 
 The force exerted by the road can be resolved into parallel and 
perpendicular components. The perpendicular component balances the 
downward gravitational force. There is parallel component along the 
forward direction. It is greater than the backward force (Fc). So there is 
net force along the forward direction which causes the forward 
movement of the horse. 
 
If we take the cart as the system, then there are three forces acting on the 
cart. 
 

1. Downward gravitational force (mcg ) 
2. Force exerted by the road (Fr) 
3. Force exerted by the horse (Fh) 

 

 
 

 The force exerted by the road  rF  can be resolved into parallel 

and perpendicular components. The perpendicular component cancels 
the downward gravity (mcg). Parallel component acts backwards and 
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the force exerted by the horse  hF  acts forward. Force  hF is greater 

than the parallel component acting in the opposite direction. So there is 
an overall unbalanced force in the forward direction which causes the 
cart to accelerate forward. 
 
 If we take the cart+horse as a system, then there are two forces 
acting on the system. 
 

1. Downward gravitational force (mh+mc)g 
2. The force exerted by the road (Fr) on the system. 

 

 
 

3. In this case the force exerted by the road (Fr) on the system 
(cart+horse) is resolved in to parallel and perpendicular 
components. The perpendicular component is the normal force 
which cancels the downward gravitational force (mh+mc)g. The 
parallel component of the force is not balanced, hence the system 
(cart+horse) accelerates and moves forward due to this force. 

 

The acceleration is given by 
2

2

d y
a

dt
  

 

dv
a

dt
  

 
v =velocity of the particle in y direction 
 

 
 
The momentum of the particle = mv = m (u-gt). 
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The force acting on the object is given by F =ma = −mg 
 
 The negative sign implies that the force is acting on the negative y 
direction. This is exactly the force that acts on the object in projectile 
motion. 
 
Particle Moving in an Inclined Plane 
 
 When an object of mass m slides on a frictionless surface inclined 
at an angle  as shown in the Figure 3.12, the forces acting on it decides 
the 
 

1. acceleration of the object 
2. speed of the object when it reaches the bottom 

 
The force acting on the object is 
 

1. Downward gravitational force (mg) 
2. Normal force perpendicular to inclined surface (N) 

 
 To draw the free body diagram, the block is assumed to be a point 
mass (Figure 3.13 (a)). Since the motion is on the inclined surface, we 
have to choose the coordinate system parallel to the inclined surface. 
 
 The gravitational force mg is resolved in to parallel component mg 
sin  along the inclined plane and perpendicular component mg cos  
perpendicular to the inclined surface. 
 
 Note that the angle made by the gravitational force (mg) with the 
perpendicular to the surface is equal to the angle of inclination  . 
 
 There is no motion(acceleration) along the y axis. Applying 
Newton‟s second law in the y direction 
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By comparing the components on both sides, N −mg cosθ = 0 
 

N =mg cosθ 
 
 The magnitude of normal force (N) exerted by the surface is 
equivalent to mg cosθ . 
 
 The object slides (with an acceleration) along the x direction. 
Applying Newton‟s\ second law in the x direction 
 

 
 
By comparing the components on both sides, we can equate 
 

mg sinθ =ma 
 
The acceleration of the sliding object is 
 

a = g sinθ 
 
 Note that the acceleration depends on the angle of inclination θ . If 
the angle θ is 90 degree, the block will move vertically with acceleration 
a = g. 
 
 Newton‟s kinematic equation is used to find the speed of the object 
when it reaches the bottom. The acceleration is constant throughout the 
motion. 
 

 
 
 The acceleration a is equal to g sinθ. The initial speed (u) is equal 
to zero as it starts from rest. Here s is the length of the inclined surface. 
 
The speed (v) when it reaches the bottom is (using equation (3.3)) 
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Two Bodies in Contact on a Horizontal Surface 
 
 Consider two blocks of masses m1 and m2 (m1> m2) kept in 
contact with each other on a smooth, horizontal frictionless surface as 
shown in Figure 3.14. 
 
 By the application of a horizontal force F, both the blocks are set 
into motion with acceleration „a‟ simultaneously in the direction of the 
force F. 
 

 To find the acceleration a , Newton‟s second law has to be applied 
to the system (combined mass m = m1 + m2) 
 

 
If we choose the motion of the two masses along the positive x direction, 
 

 
 

By comparing components on both sides of the above equation 
 

 
 

The acceleration of the system is given by 
 

 
 
 The force exerted by the block m1 on m2 due to its motion is called 

force of contact  21
f . According to Newton‟s third law, the block m2 will 

exert an equivalent opposite reaction force  12
f  on block m1. 
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By comparing the components on both sides of the above equation, we 
get 
 

 
 
Substituting the value of acceleration from equation 
 

 
 
 Equation (3.7) shows that the magnitude of contact force depends 
on mass m2 which provides the reaction force. Note that this force is 
acting along the negative x direction. 
In vector notation, the reaction force on mass m1 is given by 

2
12

1 2

Fm
f

m m
 


 

 For mass m2 there is only one force acting on it in the x direction 

and it is denoted by 21
f . This force is exerted by mass m1. The free body 

diagram for mass m2  
 

Applying Newton‟s second law for mass m2 
 

 
 
By comparing the components on both sides of the above equation 
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Substituting for acceleration from equation (3.5) in equation (3.8), we get 
 

 
 
In this case the magnitude of the contact force is 
 

 
 
The direction of this force is along the positive x direction. 
 
 In vector notation, the force acting on mass m2exerted by mass 

m1is  
 

Note 12 21
f f   which confirms Newton‟s third law. 

 
 
Motion of Connected Bodies 
 
 When objects are connected by strings and a force F is applied 
either vertically or horizontally or along an inclined plane, it produces a 
tension T in the string, which affects the acceleration to an extent. Let us 
discuss various cases for the same. 
 
Case 1: Vertical motion 
 
 Consider two blocks of masses m1 and m2 (m1> m2) connected by a 
light and inextensible string that passes over a pulley as shown in Figure  
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 Let the tension in the string be T and acceleration a. When the 
system is released, both the blocks start moving, m2 vertically upward 
and m1 downward with same acceleration a. The gravitational force m1g 
on mass m1 is used in lifting the mass m2. 
 
The upward direction is chosen as y direction. 
 

 
 
Applying Newton‟s second law for mass m2 
 

 
 
 The left hand side of the above equation is the total force that acts 
on m2 and the right hand side is the product of mass and acceleration of 
m2 in y direction. 
 
By comparing the components on both sides, we get 
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Similarly, applying Newton‟s second law for mass m1 
 

 
 
 As mass m1 moves downward ˆ( )j  its acceleration is along ˆ( )j By 

comparing the components on both sides, we get 
 

 
 

 
 
From equation (3.11), the acceleration of both the masses is 
 

 
 
If both the masses are equal (m1=m2), from equation 
 

a=0 
 
 This shows that if the masses are equal, there is no acceleration 
and the system as a whole will be at rest. 
 
 To find the tension acting on the string, substitute the acceleration 
from the equation (3.12) into the equation (3.9). 
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By taking m2g common in the RHS of equation (3.13) 
 

 
 
Equation (3.12) gives only magnitude of acceleration. 

For mass m1, the acceleration vector is given by 
1 2

1 2

ˆm m
a j

m m

 
   

 

 

For mass m2, the acceleration vector is given b 
1 2

1 2

ˆm m
a j

m m

 
   

 

 
Case 2: Horizontal motion 
 
 In this case, mass m2 is kept on a horizontal table and mass m1 is 
hanging through a small pulley as shown in Figure 3.17. Assume that 
there is no friction on the surface. 
 
 As both the blocks are connected to the unstretchable string, if m1 
moves with an acceleration a downward then m2 also moves with the 
same acceleration a horizontally. 
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The forces acting on mass m2 are 
 

1. Downward gravitational force (m2g) 
2. Upward normal force (N) exerted by the surface 
3. Horizontal tension (T) exerted by the string 

 
The forces acting on mass m1 are 
 

1. Downward gravitational force (m1g) 
2. Tension (T) acting upwards 

 
The free body diagrams for both the masses 
 

 
 
Applying Newton‟s second law for m1 
 

 
 
By comparing the components on both sides of the above equation 
 

 
 
Applying Newton‟s second law for m2 
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By comparing the components on both sides of above equation, 
 

 
 
There is no acceleration along y direction for m2. 
 

 
 
By comparing the components on both sides of the above equation 
 

 
 
By substituting equation (3.15) in equation (3.14), we can find the tension 
T 
 

 
 
 Tension in the string can be obtained by substituting equation 
(3.17) in equation (3.15) 
 

 
 
 Comparing motion in both cases, it is clear that the tension in the 
string for horizontal motion is half of the tension for vertical motion for 
same set of masses and strings. 
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 This result has an important application in industries. The ropes 
used in conveyor belts (horizontal motion) work for longer duration 
than those of cranes and lifts (vertical motion). 
 
Concurrent Forces and Lami’s Theorem 
 
 A collection of forces is said to be concurrent, if the lines of forces 
act at a common point. Figure 3.19 illustrates concurrent forces. 
 
 Concurrent forces need not be in the same plane. If they are in the 
same plane, they are concurrent as well as coplanar forces. 
 
LAMI’S THEOREM 
 
 If a system of three concurrent and coplanar forces is in 
equilibrium, then Lami‟s theorem states that the magnitude of each force 
of the system is proportional to sine of the angle between the other two 
forces. The constant of proportionality is same for all three forces. 
 
 Let us consider three coplanar and concurrent forces 1 2 3,F F and F  

which act at a common point O as shown in Figure 3.20. If the point is at 
equilibrium, then according to Lami‟s theorem 
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 Lami‟s theorem is useful to analyse the forces acting on objects 
which are in static equilibrium. 
 
Application of Lami’s Theorem 
 
EXAMPLE 
 
 A baby is playing in a swing which is hanging with the help of two 
identical chains is at rest. Identify the forces acting on the baby. Apply 
Lami‟s theorem and find out the tension acting on the chain. 
 
Solution 
 
 The baby and the chains are modeled as a particle hung by two 
strings as shown in the figure. There are three forces acting on the baby. 
 

1. Downward gravitational force along negative y direction (mg) 
2. Tension (T) along the two strings 

 
 These three forces are coplanar as well as concurrent as shown in 
the following figure. 
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From this, the tension on each string is .
2cos

mg
T


  

 
LAW OF CONSERVATION OF TOTAL LINEAR MOMENTUM 
 
 In nature, conservation laws play a very important role. The 
dynamics of motion of bodies can be analysed very effectively using 
conservation laws. There are three conservation laws in mechanics. 
Conservation of total energy, conservation of total linear momentum, 
and conservation of angular momentum. By combining Newton‟s 
second and third laws, we can derive the law of conservation of total 
linear momentum. 
 
 When two particles interact with each other, they exert equal and 

opposite forces on each other. The particle 1 exerts force 21F  on particle 2 

and particle 2 exerts an exactly equal and opposite force 12F  on particle 
1, according to Newton‟s third law. 
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 In terms of momentum of particles, the force on each particle 
(Newton‟s second law) can be written as 
 

 
 

 Here 1
p is the momentum of particle 1 which changes due to the 

force 12F  exerted by particle 2. Further 2
p is the momentum of particle 2. 

This changes due to 21F exerted by particle 1. 
 

 
 

It implies that 1
p + 2

p =constant vector (always).  

 

 1
p + 2

p is the total linear momentum of the two particles 

 1 2
.totP p p  It is also called as total linear momentum of the system. 

Here, the two particles constitute the system. From this result, the law of 
conservation of linear momentum can be stated as follows. 
 
 If there are no external forces acting on the system, then the total 

linear momentum of the system ( totP )is always a constant vector. In 
other words, the total linear momentum of the system is conserved in 

time. Here the word „conserve‟ means that 1
p  and 2

p  can vary, in such a 

way that 1
p + 2

p is a constant vector. 

 

  The forces 12F  and 21F  are called the internal forces of the system, 
because they act only between the two particles. There is no external 
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force acting on the two particles from outside. In such a case the total 
linear momentum of the system is a constant vector or is conserved.                               
 
EXAMPLE 
 
Identify the internal and external forces acting on the following systems. 
 

1. Earth alone as a system 
2. Earth and Sun as a system 
3. Our body as a system while walking 
4. Our body + Earth as a system 

 
Solution 
 
Earth alone as a system 
 
 Earth orbits the Sun due to gravitational attraction of the Sun. If 
we consider Earth as a system, then Sun‟s gravitational force is an 
external force. If we take the Moon into account, it also exerts an external 
force on Earth. 
 

 
 
(Earth + Sun) as a system 
 
 In this case, there are two internal forces which form an action and 
reaction pair the gravitational force exerted by the Sun on Earth and 
gravitational force exerted by the Earth on the Sun. 
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Our body as a system 
 
 While walking, we exert a force on the Earth and Earth exerts an 
equal and opposite force on our body. If our body alone is considered as 
a system, then the force exerted by the Earth on our body is external. 
 

 
 
(Our body + Earth) as a system 
 
 In this case, there are two internal forces present in the system. 
One is the force exerted by our body on the Earth and the other is the 
equal and opposite force exerted by the Earth on our body. 
 

 
 
Meaning of law of conservation of momentum 
 
 The Law of conservation of linear momentum is a vector law. It 
implies that both the magnitude and direction of total linear momentum 
are constant. In some cases, this total momentum can also be zero. 
 To analyse the motion of a particle, we can either use Newton‟s 
second law or the law of conservation of linear momentum. Newton‟s 
second law requires us to specify the forces involved in the process. This 
is difficult to specify in real situations. But conservation of linear 
momentum does not require any force involved in the process. It is 
covenient and hence important. 
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 For example, when two particles collide, the forces exerted by 
these two particles on each other is difficult to specify. But it is easier to 
apply conservation of linear momentum during the collision process. 
 

 
 
Examples 
 
 Consider the firing of a gun. Here the system is Gun+bullet. 
Initially the gun and bullet are at rest, hence the total linear momentum 

of the system is zero. Let 1
p  be the momentum of the bullet and 2

p  

momentum of the gun before firing. Since initially both are at rest, 
 

 
 

Total momentum before fi ring the gun is zero, 1 2
0.p p   

 
According to the law of conservation of linear momentum, total linear 
momemtum has to be zero after the fi ring also. 
 
 When the gun is fi red, a force is exerted by the gun on the bullet 

in forward direction. Now the momentum of the bullet changes from 1
p  

to 1
p . To conserve the total linear momentum of the system, the 

momentum of the gun must also change from 2
p  to 2

p . Due to the 

conservation of linear momentum, 1 2
' ' 0.p p   It implies 

that 1 2
' ',p p  the momentum of the gun is exactly equal, but in the 

opposite direction to the momentum of the bullet. This is the reason 
after firing, the gun suddenly moves backward with the momentum 

 2
p . It is called „recoil momemtum‟. This is an example of conservation 

of total linear momentum. 
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 Consider two particles. One is at rest and the other moves towards 
the first particle (which is at rest). They collide and after collison  move 
in some arbitrary directions. In this case, before collision, the total linear 
momentum of the system is equal to the initial linear momentum of the 
moving particle. According to conservation of momentum, the total 
linear momentum after collision also has to be in the forward direction. 
The following figure explains this. 
 

 
 
 A more accurate calculation is covered in section 4.4. It is to be 
noted that the total momentum vector before and after collison points in 
the same direction. This simply means that the total linear momentum is 
constant before and after the collision. At the time of collision, each 
particle exerts a force on the other. As the two particles are considered as 
a system, these forces are only internal, and the total linear momentum 
cannot be altered by internal forces. 
 
Impulse 
 
 If a very large force acts on an object for a very short duration, 
then the force is called impulsive force or impulse. 
 
 If a force (F) acts on the object in a very short interval of time (Δt), 
from Newton‟s second law in magnitude form 
 

 
 
Integrating over time from an initial time ti to a final time tf , we get 
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pi= initial momentum of the object at time ti 
pf=final momentum of the object at time tf 
 
 

f i
p p p     change in momentum of the object during the time 

interval .
f i

t t t    

 

 The integral 
f

i

t

t

F dt J  is called the impulse and it is equal to change 

in momentum of the object. 
 
If the force is constant over the time interval, then 
 

 

 
 
 For a constant force, the impulse is denoted as J = FΔt and it is also 
equal to change in momentum ('p) of the object over the time interval 't. 
 
Impulse is a vector quantity and its unit is Ns. 
 
 The average force acted on the object over the short interval of 
time is defined by 
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 From equation (3.25), the average force that act on the object is 
greater if 't is smaller. Whenever the momentum of the body changes 
very quickly, the average force becomes larger. 
 
 The impulse can also be written in terms of the average force. 
Since 'p is change in momentum of the object and is equal to impulse (J), 
we have 
 

 
 
 The graphical representation of constant force impulse and 
variable force impulse. 
 

 

 
 

Illustration 
 
 When a cricket player catches the ball, he pulls his hands 
gradually in the direction of the ball‟s motion. Why? 
 
 
 If he stops his hands soon after catching the ball, the ball comes to 
rest very quickly. It means that the momentum of the ball is brought to 
rest very quickly. So the average force acting on the body will be very 
large. Due to this large average force, the hands will get hurt. To avoid 
getting hurt, the player brings the ball to rest slowly. 
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 When a car meets with an accident, its momentum reduces 
drastically in a very short time. This is very dangerous for the 
passengers inside the car since they will experience a large force. To 
prevent this fatal shock, cars are designed with air bags in such a way 
that when the car meets with an accident, the momentum of the 
passengers will reduce slowly so that the average force acting on them 
will be smaller. 
 
 The shock absorbers in two wheelers play the same role as airbags 
in the car. When there is a bump on the road, a sudden force is 
transferred to the vehicle. The shock absorber prolongs the period of 
transfer of force on to the body of the rider. Vehicles without shock 
absorbers will harm the body due to this reason. 
 
 Jumping on a concrete cemented floor is more dangerous than 
jumping on the sand. Sand brings the body to rest slowly than the 
concrete floor, so that the average force experienced by the body will be 
lesser. 
 
EXAMPLE 
 
 An object of mass 10 kg moving with a speed of 15 m s−1 hits the 
wall and comes to rest within 
 

1. 0.03 second 
2. 10 second 

Calculate the impulse and average force acting on the object in both the 
cases. 
 
Solution 
 
Initial momentum of the object pi =10 × 15 =150 k gm s−1 
 
Final momentum of the object pf =0 
 

 
 
Impulse J = Δp = 150N s. 
Impulse J = Δp = 150N s 
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We see that, impulse is the same in both cases, but the average force is 
different. 
 
FRICTION 
 
Introduction 
 
 If a very gentle force in the horizontal direction is given to an 
object at rest on the table, it does not move. It is because of the opposing 
force exerted by the surface on the object which resists its motion. This 
force is called the frictional force which always opposes the relative 
motion between an object and the surface where it is placed. If the force 
applied is increased, the object moves after a certain limit. 
 
 Relative motion: when a force parallel to the surface is applied on 
the object, the force tries to move the object with respect to the surface. 
This „relative motion‟ is opposed by the surface by exerting a frictional 
force on the object in a direction opposite to applied force. Frictional 
force always acts on the object parallel to the surface on which the object 
is placed. There are two kinds of friction namely 1) Static friction and 2) 
Kinetic friction. 
 

Static Friction  sf  

 Static friction is the force which opposes the initiation of motion of 
an object on the surface. When the object is at rest on the surface, only 
two forces act on it. They are the downward gravitational force and 
upward normal force. The resultant of these two forces on the object is 
zero. As a result the object is at rest as shown in Figure 3.23 
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 some external force Fext is applied on the object parallel to the 
surface on which the object is at rest, the surface exerts exactly an equal 
and opposite force on the object to resist its motion and tries to keep the 
object at rest. It implies that external force and frictional force are exactly 
equal and opposite. Therefore, no motion parallel to the surface takes 
place. But if the external force is increased, after a particular limit, the 
surface cannot provide sufficient opposing frictional force to balance the 
external force on the object. Then the object starts to slide. This is the 
maximal static friction that can be exerted by the surface. 
Experimentally, it is found that the magnitude of static frictional force fs 
satisfies the following empirical relation. 
 

 
 
 where μs is the coefficient of static friction. It depends on the 
nature of the surfaces in contact. N is normal force exerted by the surface 
on the body and sometimes it is equal to mg. But it need not be equal to 
mg always. 
 
 Equation (3.27) implies that the force of static friction can take any 
value from zero to μsN. 
 
 If the object is at rest and no external force is applied on the object, 
the static friction acting on the object is zero ( fs=0). 
 
 If the object is at rest, and there is an external force applied parallel 
to the surface, then the force of static friction acting on the object is 
exactly equal to the external force applied on the object  .s ext

f F  But still 

the static friction fs is less than μsN. 
 
 When object begins to slide, the static friction ( fs) acting on the 
object attains maximum, 
 
 The static and kinetic frictions (which we discuss later) depend on 
the normal force acting on the object. If the object is pressed hard on the 
surface then the normal force acting on the object will increase. As a 
consequence it is more difficult to move the object. This is shown in 
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Figure 3.23 (a) and (b). The static friction does not depend upon the area 
of contact. 
 

 
EXAMPLE 
 
 Consider an object of mass 2 kg resting on the floor. The coefficient 
of static friction between the object and the floor is μs = 0.8. What force 
must be applied on the object to move it? 
 
Solution 
 
 Since the object is at rest, the gravitational force experienced by an 
object is balanced by normal force exerted by floor. 
 

N = mg 
 
The maximum static frictional force max

s s s
f N mg    

 

 
 
 Therefore to move the object the external force should be greater 
than maximum static friction. 
 

 
 
EXAMPLE 
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 Consider an object of mass 50 kg at rest on the floor. A Force of 5 N 
is applied on the object but it does not move. What is the frictional force 
that acts on the object? 
 
Solution 
 
 When the object is at rest, the external force and the static frictional 
force are equal and opposite  
 
The magnitudes of these two forces are equal, fs =Fext 
 
Therefore, the static frictional force acting on the object is 
 

fs=5N . 
 
The direction of this frictional force is opposite to the direction of Fext. 
 
EXAMPLE 
 
 Two bodies of masses 7 kg and 5 kg are connected by a light string 
passing over a smooth pulley at the edge of the table as shown in the 
figure. The coefficient of static friction between the surfaces (body and 
table) is 0.9. Will the mass m1 = 7 kg on the surface move? If not what 
value of m2 should be used so that mass 7 kg begins to slide on the table? 
 
Solution 
 
As shown in the figure, there are four forces acting on the mass m1 
 

1. Downward gravitational force along the negative y-axis (m1g) 
2. Upward normal force along the positive y axis (N) 
3. Tension force due to mass m2 along the positive x axis 
4. Frictional force along the negative x axis 

 
Since the mass m1 has no vertical motion, m1g = N 
 



 

48 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 
 To determine whether the mass m1 moves on the surface, calculate 
the maximum static friction exerted by the table on the mass m1. If the 
tension on the mass m1 is equal to or greater than this maximum static 
friction, the object will move. 
 

 
 

 

 
 
 The tension acting on the mass m1 is less than the maximum static 
friction. So the mass m1 will not move. 
 
To move the mass m1, T> max

s
f  where T = m2g 

 

 
 
 If the mass m2 is greater than 6.3 kg then the mass m1 will begin to 
slide. Note that if there is no friction on the surface, the mass m1 will 
move for m2 even for just 1 kg. 
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 The values of coefficient of static friction for pairs of materials are 
presented in Table 3.1. Note that the ice and ice pair have very low 
coefficient of static friction. This means a block of ice can move easily 
over another block of ice. 
 

 
Kinetic Friction 
 
 If the external force acting on the object is greater than maximum 
static friction, the objects begin to slide. When an object slides, the 

surface exerts a frictional force called kinetic friction k
f  (also called 

sliding friction or dynamic friction). To move an object at constant 
velocity we must apply a force which is equal in magnitude and 
opposite to the direction of kinetic friction. 
 

 
 
 Experimentally it was found that the magnitude of kinetic friction 
satisfies the relation 
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 where μk is the coefficient of kinetic friction and N the normal 
force exerted by the surface on the object, 
 

 
 
 This implies that starting of a motion is more difficult than 
maintaining it. The salient features of static and kinetic friction 
 

 
 
 The variation of both static and kinetic frictional forces with 
external applied force 
 

 
 
 The Figure 3.25 shows that static friction increases linearly with 
external applied force till it reaches the maximum. If the object begins to 
move then the kinetic friction is slightly lesser than the maximum static 
friction. Note that the kinetic friction is constant and it is independent of 
applied force. 
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To Move an Object - Push or pull? Which is easier? 

 When a body is pushed at an arbitrary angle θ 0
2

to
 

 
 

 the 

applied force F can be resolved into two components as F sinθ parallel to 
the surface and F cosθ perpendicular to the surface as shown in Figure 
3.26. Th e total downward force acting on the body is mg + Fcosθ. It 
implies that the normal force acting on the body increases. Since there is 
no acceleration along the vertical direction the normal force N is equal to 
 

 
 
As a result the maximal static friction also increases and is equal to 
 

 
 
 Equation (3.30) shows that a greater force needs to be applied to 
push the object into motion. 
 

 
 When an object is pulled at an angle θ, the applied force is 
resolved into two components as shown in Figure 3.27 The total 
downward force acting on the object is 
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 Equation (3.31) shows that the normal force is less than Npush. 
From equations (3.29) and (3.31), it is easier to pull an object than to 
push to make it move. 
Angle of Friction 
 
 The angle of friction is defined as the angle between the normal 
force (N) and the resultant force (R) of normal force and maximum 
friction force max

s
f  

 

 
 
In Figure 3.28 the resultant force is  
 

 

 
But from the frictional relation, the object begins to slide when 

max

s s
f N  
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From equations (3.32) and (3.33) the coefficient of static friction is 
 

 
 
Angle of Repose 
 
Consider an inclined plane on which an object is placed, as shown in 
Figure 3.30. Let the angle which this plane makes with the horizontal be 
 . For small angles of   , the object may not slide down. As   is 
increased, for a particular value of  , the object begins to slide down. 
This value is called angle of repose. Hence, the angle of repose is the 
angle of inclined plane with the horizontal such that an object placed on 
it begins to slide. 
 
 Let us consider the various forces in action here. The gravitational 
force mg is resolved into components parallel (mg sin ) and 
perpendicular (mg cos ) to the inclined plane. 
 
 The component of force parallel to the inclined plane (mg sin ) 
tries to move the object down. 
 
 The component of force perpendicular to the inclined plane (mg 
cos ) is balanced by the Normal force (N). 
 

 
 
 When the object just begins to move, the static friction attains its 
maximum value 
 

 
 
This friction also satisfies the relation 
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Equating the right hand side of equations (3.35) and (3.36), we get 
 

 
 
 From the definition of angle of friction, we also know that in which 
  is the angle of friction. 
 

 
 Thus the angle of repose is the same as angle of friction. But the 
difference is that the angle of repose refers to inclined surfaces and the 
angle of friction is applicable to any type of surface 
 
EXAMPLE 
 
A block of mass m slides down the plane inclined at an angle 60° with 

an acceleration 
2

g
. Find the coefficient of kinetic friction? 

 
Solution 
 
Kinetic friction comes to play as the block is moving on the surface. 
 
 The forces acting on the mass are the normal force perpendicular 
to surface, downward gravitational force and kinetic friction fk along the 
surface 
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But a = g/2 
 

 
 
 
 There is no motion along the y-direction as normal force is exactly 
balanced by the mg cos  . 
 

 
 
Application of Angle of Repose 
 
 Antlions make sand traps in such a way that when an insect enters 
the edge of the trap, it starts to slide towards the bottom where the 
antilon hide itself. The angle of inclination of sand trap is made to be 
equal to angle of repose. 
 
 Children are fond of playing on sliding board (Figure 3.31). Sliding 
will be easier when the angle of inclination of the board is greater than 
the angle of repose. At the same time if inclination angle is much larger 
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than the angle of repose, the slider will reach the bottom at greater speed 
and get hurt. 
 
Rolling Friction 
 
 The invention of the wheel plays a crucial role in human 
civilization. One of the important applications is suitcases with rolling 
on coasters. Rolling wheels makes it easier than carrying luggage. When 
an object moves on a surface, essentially it is sliding on it. But wheels 
move on the surface through rolling motion. In rolling motion when a 
wheel moves on a surface, the point of contact with surface is always at 
rest. Since the point of contact is at rest, there is no relative motion 
between the wheel and surface. Hence the frictional force is very less. At 
the same time if an object moves without a wheel, there is a relative 
motion between the object and the surface. As a result frictional force is 
larger. This makes it difficult to move the object. The Figure 3.32 shows 
the difference between rolling and kinetic friction. 
 
 Ideally in pure rolling, motion of the point of contact with the 
surface should be at rest, but in practice it is not so. Due to the elastic 
nature of the surface at the point of contact there will be some 
deformation on the object at this point on the wheel or surface as shown 
in Figure 3.33. Due to this deformation, there will be minimal friction 
between wheel and surface. It is called „rolling friction‟. In fact, „rolling 
friction‟ is much smaller than kinetic friction. 
 
Methods to Reduce Friction 
 
 Frictional force has both positive and negative effects. In some 
cases it is absolutely necessary. Walking is possible because of frictional 
force. Vehicles (bicycle, car) can move because of the frictional force 
between the tyre and the road. In the braking system, kinetic friction 
plays a major role. As we have already seen, the frictional force comes 
into effect whenever there is relative motion between two surfaces. In 
big machines used in industries, relative motion between different parts 
of the machine produce unwanted heat which reduces its efficiency. To 
reduce this kinetic friction lubricants are used as shown in Figure 3.34. 
 
 Ball bearings provides another effective way to reduce the kinetic 
friction (Figure 3.35) in machines. If ball bearings are fixed between two 
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surfaces, during the relative motion only the rolling friction comes to 
effect and not kinetic friction. As we have seen earlier, the rolling friction 
is much smaller than kinetic friction; hence the machines are protected 
from wear and tear over the years. 
 
 During the time of Newton and Galileo, frictional force was 
considered as one of the natural forces like gravitational force. But in the 
twentieth century, the understanding on atoms, electron and protons 
has changed the perspective. The frictional force is actually the 
electromagnetic force between the atoms on the two surfaces. Even well 
polished surfaces have irregularities on the surface at the microscopic 
level as seen in the Figure 3.36. 
 
EXAMPLE 
 
 Consider an object moving on a horizontal surface with a constant 
velocity. Some external force is applied on the object to keep the object 
moving with a constant velocity. What is the net force acting on the 
object? 
 

 
 
 
Solution 
 
 If an object moves with constant velocity, then it has no 
acceleration. According to Newton‟s second law there is no net force 
acting on the object. The external force is balanced by the kinetic friction. 
 
DYNAMICS OF CIRCULAR MOTION 
 
 In the previous sections we have studied how to analyse linear 
motion using Newton‟s laws. It is also important to know how to apply 
Newton‟s laws to circular motion, since circular motion is one of the 
very common types of motion that we come across in our daily life. A 
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particle can be in linear motion with or without any external force. But 
when circular motion occurs there must necessarily be some force acting 
on the object. There is no Newton‟s first law for circular motion. In other 
words without a force, circular motion cannot occur in nature. A force 
can change the velocity of a particle in three different ways. 
 

1. The magnitude of the velocity can be changed without changing 
the direction of the velocity. In this case the particle will move in 
the same direction but with acceleration. 

 
Examples 
 
 Particle falling down vertically, bike moving in a straight road 
with acceleration 
 

2. The direction of motion alone can be changed without changing 
the magnitude (speed). If this happens continuously then we call it 
„uniform circular motion 

3. Both the direction and magnitude (speed) of velocity can be 
changed. If this happens non circular motion occurs. For example 
oscillation of a swing or simple pendulum, elliptical motion of 
planets around the Sun. 

 
 In this section we will deal with uniform circular motion and non-
circular motion. 
 
Centripetal force 
 
 If a particle is in uniform circular motion, there must be centripetal 
acceleration towards the center of the circle. If there is acceleration then 
there must be some force acting on it with respect to an inertial frame. 
This force is called centripetal force. 
 
 As we have seen in chapter 2, the centripetal acceleration of a 

particle in the circular motion is given by 

2
v

a
r

  and it acts towards 

center of the circle. According to Newton‟s second law, the centripetal 
force is given by 
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The word Centripetal force means center seeking force. In vector 
notation 
 

 
For uniform circular motion 
 

 
 
 The direction –rˆ points towards the center of the circle which is 
the direction of centripetal force as shown in Figure 3.38. 
 
 It should be noted that „centripetal force‟ is not other forces like 
gravitational force or spring force. It can be said as „force towards 
center‟. The origin of the centripetal force can be gravitational force, 
tension in the string, frictional force, Coulomb force etc. Any of these 
forces can act as a centripetal force. 
 

1. In the case of whirling motion of a stone tied to a string, the 
centripetal force on the particle is provided by the tensional force 
on the string. In circular motion in an amusement park, the 
centripetal force is provided by the tension in the iron ropes. 

2. In motion of satellites around the Earth, the centripetal force is 
given by Earth‟s gravitational force on the satellites. Newton‟s 
second law for satellite motion is 

 

 
 
Where r- distance of the planet from the center of the Earth. 
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3. When a car is moving on a circular track the centripetal force is 
given by the frictional force between the road and the tyres 
Newton‟s second law for this case is  

 

 
Even when the car moves on a curved track, the car experiences 
the centripetal force which is provided by frictional force between 
the surface and the tyre of the car. This is shown in the Figure 3.41. 

4. When the planets orbit around the Sun, they experience centripetal 
force towards the center of the Sun. Here gravitational force of the 
Sun acts as centripetal force on the planets as shown in Figure 3.42 

 
 Newton‟s second law for this motion Gravitational force of Sun on 

the planet 
2

mv

r
  

 
EXAMPLE 
 
 If a stone of mass 0.25 kg tied to a string executes uniform circular 
motion with a speed of 2 m s-1 of radius 3 m, what is the magnitude of 
tensional force acting on the stone? 
 
Solution 
 

 
 
EXAMPLE  
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 The Moon orbits the Earth once in 27.3 days in an almost circular 
orbit. Calculate the centripetal acceleration experienced by the Moon? 
(Radius of the Earth is 6.4 × 106 m) 
 
Solution 
 

 The centripetal acceleration is given by 
2

v
a

r
 . This expression 

explicitly depends on Moon‟s speed which is non trivial. We can work 
with the formula 
 

 
 
am is centripetal acceleration of the Moon due to Earth‟s gravity. 
 

  is angular velocity. 
 
 Rm is the distance between Earth and the Moon, which is 60 times 
the radius of the Earth 
 

 
 

As we know the angular velocity 
2

T

   and T = 27.3 days = 27.3 × 24 × 

60 × 60 second = 2.358 × 106 sec 
 
By substituting these values in the formula for acceleration  
 

 
 
The centripetal acceleration of Moon towards the Earth is 0.00272 m s-2 
 
Vehicle on a levelled circular road 
 
 When a vehicle travels in a curved path, there must be a 
centripetal force acting on it. This centripetal force is provided by the 
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frictional force between tyre and surface of the road. Consider a vehicle 
of mass „m‟ moving at a speed „v‟ in the circular track of radius „r‟. There 
are three forces acting on the vehicle when it moves as shown in the 
Figure 3.43 
 

1. Gravitational force (mg) acting downwards 
2. Normal force (mg) acting upwards 
3. Frictional force (Fs) acting horizontally inwards along the road 

 
 Suppose the road is horizontal then the normal force and 
gravitational force are exactly equal and opposite. The centripetal force 
is provided by the force of static friction Fs between the tyre and surface 
of the road which acts towards the center of the circular track, 
 

 
 As we have already seen in the previous section, the static friction 
can increase from zero to a maximum value 
 

 
There are two conditions possible: 
 

 
 
 The static friction would be able to provide necessary centripetal 
force to bend the car on the road. So the coefficient of static friction 
between the tyre and the surface of the road determines what maximum 
speed the car can have for safe turn. 
 

 
 
 If the static friction is not able to provide enough centripetal force 
to turn, the vehicle will start to skid. 
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EXAMPLE 
 
 Consider a circular leveled road of radius 10 m having coefficient 
of static friction 0.81. Three cars (A, B and C) are travelling with speed 7 
m s−1, 8 m s−1 and 10 ms−1 respectively. Which car will skid when it 
moves in the circular level road? (g =10 m s−2) 
 
Solution 
 
 From the safe turn condition the speed of the vehicle (v) must be 

less than or equal to s
rg  

 

 
 

For Car C, s
rg  is less than v 

 
 The speed of car A, B and C are 7 m s−1, 8 m s−1 and 10 m s−1 
respectively. The cars A and B will have safe turns. But the car C has 
speed 10 m s−1 while it turns which exceeds the safe turning speed. 
Hence, the car C will skid. 
 
Banking of Tracks 
 
 In a leveled circular road, skidding mainly depends on the 
coefficient of static friction ms The coefficient of static friction depends 
on the nature of the surface which has a maximum limiting value. To 
avoid this problem, usually the outer edge of the road is slightly raised 
compared to inner edge as shown in the Figure 3.44. This is called 
banking of roads or tracks. This introduces an inclination, and the angle 
is called banking angle. 
 
 Let the surface of the road make angle with horizontal surface. 
Then the normal force makes the same angle with the vertical. When 
the car takes a turn, there are two forces acting on the car: 
 



 

64 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

1. Gravitational force mg (downwards) 
2. Normal force N (perpendicular to surface) 

 
 We can resolve the normal force into two components. N cos and 
N sin  as shown in Figure 3.46. The component N cos balances the 
downward gravitational force „mg‟ and component N sin  will provide 
the necessary centripetal acceleration. By using Newton second law 
 

 
 

By dividing the equations we get tanθ=
2

v

rg
 

 
 The banking angle and radius of curvature of the road or track 
determines the safe speed of the car at the turning. If the speed of car 
exceeds this safe speed, then it starts to skid outward but frictional force 
comes into effect and provides an additional centripetal force to prevent 
the outward skidding. At the same time, if the speed of the car is little 
lesser than safe speed, it starts to skid inward and frictional force comes 
into effect, which reduces centripetal force to prevent inward skidding. 
However if the speed of the vehicle is sufficiently greater than the 
correct speed, then frictional force cannot stop the car from skidding. 
 
EXAMPLE 
 
 Consider a circular road of radius 20 meter banked at an angle of 
15 degree. With what speed a car has to move on the turn so that it will 
have safe turn? 
 
Solution 
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Centrifugal Force 
 
 Circular motion can be analysed from two different frames of 
reference. One is the inertial frame (which is either at rest or in uniform 
motion) where Newton‟s laws are obeyed. The other is the rotating 
frame of reference which is a non-inertial frame of reference as it is 
accelerating. When we examine the circular motion from these frames of 
reference the situations are entirely different. To use Newton‟s first and 
second laws in the rotational frame of reference, we need to include a 
pseudo force called „centrifugal force‟. This „centrifugal force‟ appears to 
act on the object with respect to rotating frames. To understand the 
concept of centrifugal force, we can take a specific case and discuss as 
done below.  
 
 Consider the case of a whirling motion of a stone tied to a string. 
Assume that the stone has angular velocity   in the inertial frame (at 
rest). If the motion of the stone is observed from a frame which is also 
rotating along with the stone with same angular velocity then, the 
stone appears to be at rest. This implies that in addition to the inward 
centripetal force −mω2r there must be an equal and opposite force that 
acts on the stone outward with value +mω2r. So the total force acting on 
the stone in a rotating frame is equal to zero (−mω2r +mω2r = 0). This 
outward force +mω2r is called the centrifugal force. The word 
„centrifugal‟ means „flee from center‟. Note that the „centrifugal force‟ 
appears to act on the particle, only when we analyse the motion from a 
rotating frame. With respect to an inertial frame there is only centripetal 
force which is given by the tension in the string. For this reason 
centrifugal force is called as a „pseudo force‟. A pseudo force has no 
origin. It arises due to the non inertial nature of the frame considered. 
When circular motion problems are solved from a rotating frame of 
reference, while drawing free body diagram of a particle, the centrifugal 
force should necessarily be included as shown in the Figure 3.45. 
 
Effects of Centrifugal Force 
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 Although centrifugal force is a pseudo force, its effects are real. 
When a car takes a turn in a curved road, person inside the car feels an 
outward force which pushes the person away. This outward force is also 
called centrifugal force. If there is sufficient friction between the person 
and the seat, it will prevent the person from moving outwards. When a 
car moving in a straight line suddenly takes a turn, the objects not fixed 
to the car try to continue in linear motion due to their inertia of 
direction. While observing this motion from an inertial frame, it appears 
as a straight line as shown in Figure 3.46. But, when it is observed from 
the rotating frame it appears to move outwards. 
 
 A person standing on a rotating platform feels an outward 
centrifugal force and is likely to be pushed away from the platform. 
Many a time the frictional force between the platform and the person is 
not sufficient to overcome outward push. To avoid this, usually the 
outer edge of the platform is little inclined upwards which exerts a 
normal force on the person which prevents the person from falling as 
illustrated in Figures 3.47. 
 
Centrifugal Force due to Rotation of the Earth 
 
 Even though Earth is treated as an inertial frame, it is actually not 
so. Earth spins about its own axis with an angular velocity ω. Any object 
on the surface of Earth (rotational frame) experiences a centrifugal force. 
The centrifugal force appears to act exactly in opposite direction from 
the axis of rotation. It is shown in the Figure 3.48. 
 
The centrifugal force on a man standing on the surface of the Earth is Fc 

=mω2r 
 
 where r is perpendicular distance of the man from the axis of 
rotation. By using right angle triangle as shown in the Figure 3.48, the 
distance r = Rcos θ 
 
Here R = radius of the Earth 
 
and θ = latitude of the Earth where the man is standing.  
 
EXAMPLE  
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 Calculate the centrifugal force experienced by a man of 60 kg 
standing at Chennai? (Given: Latitude of Chennai is 13° 
 
Solution 
 
The centrifugal force is given by Fc= m ω2 R cosθ 
 

The angular velocity (ω) of Earth 
2

r


  where T is time period of the 

Earth (24 hours) 
 

 
 
 The radius of the Earth R = 6400 Km = 6400 × 103 m 
 
Latitude of Chennai = 13° 
 

 
 
 A 60 kg man experiences centrifugal force of approximately 2 
Newton. But due to Earth‟s gravity a man of 60 kg experiences a force = 
mg = 60 × 9.8 = 588N. This force is very much larger than the centrifugal 
force. 
 
Centripetal Force Versus Centrifugal Force 
 
Salient features of centripetal and centrifugal forces are compared in 
Table 3.4. 
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UNIT- 3 MOTION OF SYSTEM OF PARTICLES 
AND RIGID BODIES 

 
 
INTRODUCTION 
 
 Most of the objects that we come across in our day to day life 
consist of large number of particles. In the previous Units, we studied 
the motion of bodies without considering their size and shape. So far we 
have treated even the bulk bodies as only point objects. In this section, 
we will give importance to the size and shape of the bodies. These 
bodies are actually made up of a large number of particles. When such a 
body moves, we consider it as the motion of collection of particles as a 
whole. We define the concept of center of mass to deal with such a 
system of particles. 
 
 The forces acting on these bulk bodies are classified into internal 
and external forces. Internal forces are the forces acting among the 
particles within a system that constitute the body. External forces are the 
forces acting on the particles of a system from outside. In this unit, we 
deal with such system of particles which make different rigid bodies. A 
rigid body is the one which maintains its definite and fixed shape even 
when an external force acts on it. This means that, the interatomic 
distances do not change in a rigid body when an external force is 
applied. However, in real life situation, we have bodies which are not 
ideally rigid, because the shape and size of the body change when forces 
act on them. For the rigid bodies we study here, we assume that such 
deformations are negligible. The deformations produced on non-rigid 
bodies are studied separately in Unit 7 under elasticity of solids. 
 
CENTER OF MASS 
 
 When a rigid body moves, all particles that constitute the body 
need not take the same path. Depending on the type of motion, different 
particles of the body may take different paths. For example, when a 
wheel rolls on a surface, the path of the center point of the wheel and the 
paths of other points of the wheel are different. In this Unit, we study 
about the translation, rotation and the combination of these motions of 
rigid bodies in detail. 
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Center of Mass of a Rigid Body 
 
When a bulk object (say a bat) is thrown at an angle in air as shown in 
Figure 5.1; do all the points of the body take a parabolic path? Actually, 
only one point takes the parabolic path and all the other points take 
different paths. 
 The one point that takes the parabolic path is a very special point 
called center of mass (CM) of the body. Its motion is like the motion of a 
single point that is thrown. The center of mass of a body is defined as a 
point where the entire mass of the body appears to be concentrated. 
Therefore, this point can represent the entire body. 
 
 For bodies of regular shape and uniform mass distribution, the 
center of mass is at the geometric center of the body. As examples, for a 
circle and sphere, the center of mass is at their centers; for square and 
rectangle, at the point their diagonals meet; for cube and cuboid, it is at 
the point where their body diagonals meet. For other bodies, the center 
of mass has to be determined using some methods. The center of mass 
could be well within the body and in some cases outside the body as 
well. 
 
Center of Mass for Distributed Point Masses 
 
 A point mass is a hypothetical point particle which has nonzero 
mass and no size or shape. To find the center of mass for a collection of n 
point masses, say, m1, m2, m3 . . . mn we have to first choose an origin 
and an appropriate coordinate system as shown in Figure 5.2. Let, x1, x2, 
x3 . . . xn be the X-coordinates of the positions of these point masses in 
the X direction from the origin. 
 
The equation for the x coordinate of the center of mass is, 
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where, i m    is the total mass M of all the particles,  i m  .m  

 

 
 Similarly, we can also find y and z coordinates of the center of 
mass for these distributed point masses as indicated in Figure (5.2). 
 

 

 
 
 Hence, the position of center of mass of these point masses in a 
Cartesian coordinate system is (xCM, yCM, zCM). In general, the position of 
center of mass can be written in a vector form as, 
 

 
 

 where, ˆˆ ˆ
CM CM CM CM

r x i y j z k    is the position vector of the center 

of mass and ˆˆ ˆ
i i i

r x i y j z k     is the position vector of the distributed 

point mass; where, ˆ ˆ,i j and k̂  are the unit vectors along X, Y and Z-axes 

respectively. 
 
Center of Mass of Two Point Masses 
 
 With the equations for center of mass, let us find the center of mass 
of two point masses m1 and m2, which are at positions x1 and x2 
respectively on the X-axis. For this case, we can express the position of 
center of mass in the following three ways based on the choice of the 
coordinate system. 
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When the masses are on positive X-axis:  
 
The origin is taken arbitrarily so that the masses m1 and m2 are at 
positions x1 and x2 on the positive X-axis as shown in Figure 5.3(a). The 
center of mass will also be on the positive X-axis at xCM as given by the 
equation, 
 

 
 
When the origin coincides with any one of the masses: 
 
 The calculation could be minimised if the origin of the coordinate 
system is made to coincide with any one of the masses as shown in 
Figure 5.3(b). When the origin coincides with the point mass m1, its 
position x1 is zero, (i.e. x1 = 0). Then, 
 

 
 
The equation further simplifies as, 
 

 
 
When the origin coincides with the center of mass itself: 
 
 If the origin of the coordinate system is made to coincide with the 
center of mass, then, xCM = 0 and the mass m1 is found to be on the 
negative X-axis as shown in Figure 5.3(c). Hence, its position x1 is 
negative, (i.e. -x1). 
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The equation given above is known as principle of moments. 
 
EXAMPLE 
 
 Two point masses 3 kg and 5 kg are at 4 m and 8 m from the origin 
on X-axis. Locate the position of center of mass of the two point masses 
(i) from the origin and (ii) from 3 kg mass. 
 
Solution 
 
Let us take, m1 = 3 kg and m2= 5 kg 
 
To find center of mass from the origin: 
 
The point masses are at positions, x1 = 4 m, x2 = 8 m from the origin 
along X axis. 

 
 
The center of mass xCM can be obtained using equation 
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The center of mass is located 6.5 m from the origin on X-axis. 
 
To find the center of mass from 3 kg mass: 
 
 The origin is shifted to 3 kg mass along X-axis. The position of 3 kg 
point mass is zero (x1 = 0) and the position of 5 kg point mass is 4 m 
from the shifted origin (x2 = 4 m). 
 

 
 

 
 
 
 The center of mass is located 2.5 m from 3 kg point mass, (and 1.5 
m from the 5 kg point mass) on X-axis. 
 
 When we compare case (i) with case (ii), the xCM = 2.5 m  from 3 kg 
mass could also be obtained by subtracting 4 m (the position of 3 kg 
mass) from 6.5 m, where the center of mass was located in case (i) 
 



 

75 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

EXAMPLE 

 From a uniform disc of radius R, a small disc of radius 
2

R
 is cut 

and removed as shown in the diagram. Find the center of mass of the 
remaining portion of the disc. 
 
Solution 
 
 Let us consider the mass of the uncut full disc be M. Its center of 
mass would be at the geometric center of the disc on which the origin 
coincides. 
 
 Let the mass of the small disc cut and removed be m and its center 

of mass is at a position 
2

R
 to the right of the origin as shown in the 

figure. 
 
 Hence, the remaining portion of the disc should have its center of 
mass to the left of the origin; say, at a distance x. We can write from the 
principle of moments, 
 

 
 
 If σ is the surface mass density (i.e. mass per unit surface area), 

2

M

R



  then, the mass m of small disc is, 

 
m = surface mass density × surface area 
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substituting m in the expression for x 
 

 
 

 The center of mass of the remaining portion is at a distance 
6

R
to 

the left from the center of the disc. 
 
EXAMPLE 
 
 The position vectors of two point masses 10 kg and 5 kg are 

 ˆˆ ˆ3 2 4i j k    m and  ˆˆ ˆ3 6 5i j k   m respectively. Locate the position of 

center of mass. 
 
Solution 
 

 



 

77 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 

 
 

The center of mass is located at position r  
 
Center of mass for uniform distribution of mass 
 
 If the mass is uniformly distributed in a bulk object, then a small 
mass (Δm) of the body can be treated as a point mass and the 
summations can be done to obtain the expressions for the coordinates of 
center of mass. 
 

 
 
 On the other hand, if the small mass taken is infinitesimally * 
small (dm) then, the summations can be replaced by integrations as 
given below. 
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EXAMPLE 
 

Locate the center of mass of a uniform rod of mass M and length . 
 
Solution 
 

 Consider a uniform rod of mass M and length whose one end 
coincides with the origin as shown in Figure. The rod is kept along the x 
axis. To find the center of mass 
 

 
 
of this rod, we choose an infinitesimally small mass dm of elemental 
length dx at a distance x from the origin. 
 
λ is the linear mass density (i.e. mass  per unit length) of the rod 

M   

The mass of small element (dm) is, dm
M

dx  
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Now, we can write the center of mass equation for this mass distribution 
as, 
 

 
 

 As the position 
2

 is the geometric center of the rod, it is 

concluded that the center of mass of the uniform rod is located at its 
geometric center itself. 
 
Motion of Center of Mass 
 
 When a rigid body moves, its center of mass will also move along 
with the body. For kinematic quantities like velocity (vCM ) and 
acceleration (aCM ) of the center of mass, we can differentiate the 
expression for position of center of mass with respect to time once and 
twice respectively. For simplicity, let us take the motion along X 
direction only. 
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 In the absence of external force, i.e. 0extF   the individual rigid 
bodies of a system can move or shift only due to the internal forces. This 
will not affect the position of the center of mass. This means that the 

center of mass will be in a state of rest or uniform motion. Hence, CMv  
will be zero when center of mass is at rest and constant when center of 

mass has uniform motion  0 constant .CM CMv or v   There will be no 

acceleration of center of mass,  0CMa  . 

 
From equation 
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 Here, the individual particles may still move with their respective 
velocities and accelerations due to internal forces. In the presence of 

external force, (i.e. 0extF  ), the center of mass of the system will 
accelerate as given by the following equation. 
 

 
 
EXAMPLE 
 
 A man of mass 50 kg is standing at one end of a boat of mass 300 
kg floating on still water. He walks towards the other end of the boat 
with a constant velocity of 2 m s-1 with respect to a stationary observer 
on land. What will be the velocity of the boat, (a) with respect to the 
stationary observer on land? (b) with respect to the man walking in the 
boat? 
 
[Given: There is friction between the man and the boat and no friction 
between the 
boat and water.] 
 
Solution 
 
Mass of the man (m1) is, m1= 50 kg 
Mass of the boat (m2) is, m2 = 300 kg 
 
With respect to a stationary observer: 
 
 The man moves with a velocity, v1 = 2 m s-1 and the boat moves 
with a velocity v2 (which is to be found) 
 
To determine the velocity of the boat with respect to a stationary 
observer on land: 
 
 As there is no external force acting on the system, the man and 
boat move due to the friction, which is an internal force in the boat-man 
system. Hence, the velocity of the center of mass is zero (vCM = 0). 
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 The negative sign in the answer implies that the boat moves in a 
direction opposite to that of the walking man on the boat to a stationary 
observer on land. 
 
To determine the velocity of the boat with respect to the walking man: 
 
We can find the relative velocity as, 
 

 
where, v21 is the relative velocity of the boat with respect to the walking 
man. 
 

 
 The negative sign in the answer implies that the boat appears to 
move in the opposite direction to the man walking in the boat. 
 
Center of mass in explosions: 
 
 Many a times rigid bodies are broken in to fragments. If an 
explosion is caused by the internal forces in a body which is at rest or in 
motion, the state of the center of mass is not affected. It continues to be 
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in the same state of rest or motion. But, the kinematic quantities of the 
fragments get affected. If the explosion is caused by an external agency, 
then the kinematic quantities of the center of mass as well as the 
fragments get affected. 
 
 
EXAMPLE 
 
 A projectile of mass 5 kg, in its course of motion explodes on its 
own into two fragments. One fragment of mass 3 kg falls at three fourth 
of the range R of the projectile. Where will the other fragment fall? 
 
Solution 
 
 It is an explosion of its own without any external influence. After 
the explosion, the center of mass of the projectile will continue to 
complete the parabolic path even though the fragments are not 
following the same parabolic path. After the fragments have fallen on 
the ground, the center of mass rests at a distance R (the range) from the 
point of projection as shown in the diagram. 
 

 
 
 If the origin is fixed to the final position of the center of mass, the 
principle of moments holds good. 
 

 
 

 where, m1 = 3 kg, m2 = 2 kg, x1 = 
1

4
R. The value of x2 = d 
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The distance between the point of launching and the position of 2 kg 
mass is R+d. 
 

 
 The other fragment falls at a distance of 1.375R from the point of 
launching. (Here R is the range of the projectile.) 
 
TORQUE AND ANGULAR MOMENTUM 
 
 When a net force acts on a body, it produces linear motion in the 
direction of the applied force. If the body is fixed to a point or an axis, 
such a force rotates the body depending on the point of application of 
the force on the body. This ability of the force to produce rotational 
motion in a body is called torque or moment of force. Examples for such 
motion are plenty in day to day life. To mention a few; the opening and 
closing of a door about the hinges and turning of a nut using a wrench. 
 
 The extent of the rotation depends on the magnitude of the force, 
its direction and the distance between the fixed point and the point of 
application. When torque produces rotational motion in a body, its 
angular momentum changes with respect to time. In this Section we will 
learn about the torque and its effect on rigid bodies. 
 
Definition of Torque 
 
 Torque is defined as the moment of the external applied force 
about a point or axis of rotation. The expression for torque is, 
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 where, r  is the position vector of the point where the force F  is 
acting on the body as shown in Figure 5.4. 
 
 Here, the product of r  and F is called the vector product or cross 
product. The vector product of two vectors results in another vector that 
is perpendicular to both the vectors (refer Section 2.5.2). Hence, torque (

 ) is a vector quantity. 
 
 Tor que has a magnitude (rFsinθ ) and direction perpendicular to r  
and F . Its unit is N m. 
 

 
 
 Here, θ is the angle between r and F , and ˆn is the unit vector in the 
direction of  . Torque ( ) is sometimes called as a pseudo vector as it 
needs the other two vectors r  and F for its existence. 
 The direction of torque is found using right hand rule. This rule 
says that if fingers of right hand are kept along the position vector with 
palm facing the direction of the force and when the fingers are curled 
the thumb points to the direction of the torque. This is shown in Figure 
5.5. 
 
 The direction of torque helps us to find the type of rotation caused 
by the torque. For example, if the direction of torque is out of the paper, 
then the rotation produced by the torque is anticlockwise. On the other 
hand, if the direction of the torque is into the paper, then the rotation is 
clockwise as shown in Figure 
 
 In many cases, the direction and magnitude of the torque are 
found separately. For direction, we use the vector rule or right hand 
rule. For magnitude, we use scalar form as, 
 

 
 
 The expression for the magnitude of torque can be written in two 
different ways by associating sin θ either with r or F in the following 
manner. 
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 Here, (F sinθ) is the component of F perpendicular to r . Similarly, 
(r sinθ) is the component of r  perpendicular to F . 
 
Based on the angle θ between r  and F  the torque takes different values. 
 
 The torque is maximum when, r  and F are perpendicular to each 
other. That is when θ = 90o and sin 90o = 1, Hence, τmax = rF. 
 
 The torque is zero when r  and F are parallel or antiparallel. If 
parallel, then θ =0o and sin 0o = 0. If antiparallel, then θ = 180o and sin 
180o = 0. Hence, τ = 0. 
 
The torque is zero if the force acts at the reference point. i.e. as r =0, τ = 0. 
 
The Value of τ for different cases. 
 

 
 
EXAMPLE 
 
 If the force applied is perpendicular to the handle of the spanner 
as shown in the diagram, find the (i) torque exerted by the force about 
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the center of the nut, (ii) direction of torque and (iii) type of rotation 
caused by the torque about the nut. 
 
Solution 
 
Arm length of the spanner, r = 15 cm = 15×10−2m 
 
Force, F = 2.5 N 
Angle between r and F, θ = 90o 

 

 
 
Torque, τ = rF sinθ 
 

 
 
As per the right hand rule, the direction of torque is out of the page. 
 
The type of rotation caused by the torque is anticlockwise. 
 
 
EXAMPLE 

 A force of  ˆˆ ˆ4 3 5i j k   N is applied at a point whose position 

vector is  ˆˆ ˆ7 4 2i j k   m. Find the torque of force about the origin. 

 
Solution 
 

 
 



 

88 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 

 
 
EXAMPLE 
 
 A crane has an arm length of 20 m inclined at 30o with the vertical. 
It carries a container of mass of 2 ton suspended from the top end of the 
arm. Find the torque produced by the gravitational force on the 
container about the point where the arm is fixed to the crane. [Given: 1 
ton = 1000 kg; neglect the weight of the arm. g = 10 m s-2] 
 
Solution 
 
 The force F at the point of suspension is due to the weight of the 
hanging mass. 
 

 
 
We can solve this problem by three different methods. 
 
Method – I 
 
The angle (θ) between the arm length (r) and the force (F) is, θ = 150o 
The torque (τ) about the fixed point of the arm is, 
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Method – II 
 
 Let us take the force and perpendicular distance from the point 
where the arm is fixed to the crane. 
 

 
 
Method – III 
 
Let us take the distance from the fixed point and perpendicular force. 
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All the three methods, give the same answer. 
 
Torque about an Axis 
 
 In the earlier sections, we have dealt with the torque about a point. 
In this section we will deal with the torque about an axis. Let us consider 
a rigid body capable of rotating about an axis AB as shown in Figure 5.8. 
Let the force F act at a point P on the rigid body. The force F may not be 
on the plane ABP. We can take the origin O at any random point on the 
axis AB. 
 

 The torque of the force F  about O is, r F   . The component of 
the torque along the axis is the torque of F about the axis. To find it, we 

should first find the vector r F    and then find the angle φ between τ 
and AB. (Remember here, F is not on the plane ABP). The torque about 

AB is the parallel component of the torque along AB, which is r F  cos 

φ. And the torque perpendicular to the axis AB is r F sin φ. 
 
 The torque about the axis will rotate the object about it and the 
torque perpendicular to the axis will turn the axis of rotation. When both 
exist simultaneously on a rigid body, the body will have a precession. 
One can witness the precessional motion in a spinning top when it is 
about to come to rest as shown in Figure 5.9. 
 
 Study of precession is beyond the scope of the higher secondary 
physics course. Hence, it is assumed that there are constraints to cancel 
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the effect of the perpendicular components of the torques, so that the 
fixed position of the axis is maintained. Therefore, perpendicular 
components of the torque need not be taken into account. 
 
Hereafter, for the calculation of torques on rigid bodies we will: 

1. Consider only those forces that lie on planes perpendicular to the 
axis (and do not intersect the axis). 

2. Consider position vectors which are perpendicular to the axis 
 
EXAMPLE 
 
 Three mutually perpendicular beams AB, OC, GH are fixed to 
form a structure which is fixed to the ground firmly as shown in the 
Figure. One string is tied to the point C and its free end D is pulled with 
a force F. Find the magnitude and direction of the torque produced by 
the force, 
 
Solution 
 

1. Torque about point D is zero. (as F passes through D). 
Torque about point C is zero. (as F passes through C). 

Torque about point O is  OC F  and direction is along GH. 

Torque about point B is  BD F and direction is along GH. 

 
 

2. Torque about axis CD is zero (as F is parallel to CD). 
Torque about axis OC is zero (as F intersects OC). 
Torque about axis AB is zero (as F is parallel to AB). 

Torque about axis GH is  OC F and direction is along GH. 

 
 The torque of a force about an axis is independent of the choice of 
the origin as long as it is chosen on that axis itself. This can be shown as 
below. 
 
 Let O be the origin on the axis AB, which is the rotational axis of a 
rigid body. F is the force acting at the point P. Now, choose another 
point O‟ anywhere on the axis as shown in Figure 5.10 
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The torque of F about O‟ is, 
 

 
 

 As 'O O F is perpendicular to 'O O , this term will not have a 

component along AB. Thus, the component of 'O P F is equal to that of 

OP F . 
 
Torque and Angular Acceleration 
 
 Let us consider a rigid body rotating about a fixed axis. A point 
mass m in the body will execute a circular motion about a fixed axis as 
shown in Figure 5.11. A tangential force F acting on the point mass 
produces the necessary torque for this rotation. This force F is 
perpendicular to the position vector r  of the point mass 
 
 The torque produced by the force on the point mass m about the 
axis can be written as, 
 

 
 

 
 
 Hence, the torque of the force acting on the point mass produces 
an angular acceleration (α) in the point mass about the axis of rotation. 
 
In vector notation, 
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 The directions of τ and α are along the axis of rotation. If the 
direction of τ is in the direction of α, it produces angular acceleration. 
On the other hand if, τ is opposite to α, angular deceleration or 
retardation is produced on the point mass. 
 
 The term mr2 in equations 5.14 and 5.15 is called moment of 
inertia (I) of the point mass. A rigid body is made up of many such point 
masses. Hence, the moment of inertia of a rigid body is the sum of 
moments of inertia of all such individual point masses that constitute the 

body  2 .
i i

I m r Hence, torque for the rigid body can be written as, 

 

 
 We will learn more about the moment of inertia and its 
significance for bodies with different shapes in section 5.4. 
 
Angular Momentum 
 
 The angular momentum in rotational motion is equivalent to 
linear momentum in translational motion. The angular momentum of a 
point mass is defined as the moment of its linear momentum. In other 
words, the angular momentum L of a point mass having a linear 
momentum p at a position r with respect to a point or axis is 
mathematically written as, 
 

 
The magnitude of angular momentum could be written as, 
 

 
 
 where, θ is the angle between r  and p . L is perpendicular to the 

plane containing r  and p . As we have written in the case of torque, here 

also we can associate sin θ with either r or p . 
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 where, p  is the component of linear momentum p perpendicular 
to r, and r  is the component of position r perpendicular to p. 
 
 The angular momentum is zero (L = 0), if the linear momentum is 
zero (p = 0) or if the particle is at the origin ( r = 0) or if r  and p are 

parallel or antiparallel to each other (θ= 00 or 1800). 
 
 There is a misconception that the angular momentum is a quantity 
that is associated only with rotational motion. It is not true. The angular 
momentum is also associated with bodies in the linear motion. Let us 
understand the same with the following example. 
 
EXAMPLE 
 
 A particle of mass (m) is moving with constant velocity (v). Show 
that its angular momentum about any point remains constant 
throughout the motion. 
 
Solution 
 

 
 

 Let the particle of mass m move with constant velocity v . As it is 
moving with constant velocity, its path is a straight line. Its momentum (

p  =m v  ) is also directed along the same path. Let us fix an origin (O) at a 

perpendicular distance (d) from the path. At a particular instant, we can 
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connect the particle which is at positon Q with a position vector  r QQ

). 
 
 Take, the angle between the r and p as θ. The magnitude of 
angular momentum of that particle at that instant is, 
 

 
 
 The term (OQ sinθ) is the perpendicular distance (d) between the 
origin and line along which the mass is moving. Hence, the angular 
momentum of the particle about the origin is, 
 

 
 
 The above expression for angular momentum L, does not have the 
angle θ. As the momentum (p = mv) and the  perpendicular distance (d) 
are constants, the angular momentum of the particle is also constant. 
Hence, the angular momentum is associated with bodies with linear 
motion also. If the straight path of the particle passes through the origin, 
then the angular momentum is zero, which is also a constant 
 
Angular Momentum and Angular Velocity 
 
 Let us consider a rigid body rotating about a fixed axis. A point 
mass m in the body will execute a circular motion about the fixed axis as 
shown in Figure 
 
 
 The point mass m is at a distance r from the axis of rotation. Its 
linear momentum at any instant is tangential to the circular path. Then 
the angular momentum L is perpendicular to r  and p . Hence, it is 

directed along the axis of rotation. The angle θ between r and p in this 

case is 90o. The magnitude of the angular momentum L could be written 
as, 
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 where, v is the linear velocity. The relation between linear velocity 
v and angular velocity ω in a circular motion is, v = rω. Hence, 
 

 
 The directions of L and ω are along the axis of rotation. The above 
expression can be written in the vector notation as, 
 

 
 As discussed earlier, the term mr2 in equations 5.22 and 5.23 is 
called moment of inertia (I) of the point mass. A rigid body is made up 
of many such point masses. Hence, the moment of inertia of a rigid body 
is the sum of moments of inertia of all such individual point masses that 

constitute the body  2 .
i i

I m r Hence, the angular momentum of the 

rigid body can be written as, 
 

 
 
The study about moment of inertia (I) is reserved for Section 5.4. 
 
Torque Angular Momentum 
 
 We have the expression for magnitude of angular momentum of a 
rigid body as, L = Iω. The expression for magnitude of torque on a rigid 
body is, τ = Iα 
 
 We can further write the expression for torque as, 
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 Where, ω is angular velocity and α is angular acceleration. We can 
also write equation 5.26 as, 
 

 
 
 The above expression says that an external torque on a rigid body 
fixed to an axis produces rate of change of angular momentum in the 
body about that axis. This is the Newton‟s second law in rotational 

motion as it is in the form of 
dp

F
dt

 which holds good for translational 

motion. 
 
Conservation of angular momentum: 
 
 From the above expression we could conclude that in the absence 
of external torque, the angular momentum of the rigid body or system of 
particles is conserved. 
 

 
 
 The above expression is known as law of conservation of angular 
momentum. We will learn about this law further in section 5.5. 
 
EQUILIBRIUM OF RIGID BODIES 
 
 When a body is at rest without any motion on a table, we say that 
there is no force acting on the body. Actually it is wrong because, there 
is gravitational force acting on the body downward and also the normal 
force exerted by table on the body upward. These two forces cancel each 
other and thus there is no net force acting on the body. There is a lot of 
difference between the terms “no force” and “no net force” acting on a 
body. The same argument holds good for rotational conditions in terms 
of torque or moment of force. 
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 A rigid body is said to be in mechanical equilibrium when both its 
linear momentum and angular momentum remain constant. 
 
 When the linear momentum remains constant, the net force acting 
on the body is zero. 
 

 
 
 In this condition, the body is said to be in translational 
equilibrium. This implies that the vector sum of different forces 

1 2, 3,.......,F F F acting in different directions on the body is zero. 

 

 
 
 If the forces 1 2, 3,.......,F F F act in different directions on the body, we 

can resolve them into horizontal and vertical components and then take 
the resultant in the respective directions. In this case there will be 
horizontal as well as vertical equilibria possible. 
 
 Similarly, when the angular momentum remains constant, the net 
torque acting on the body is zero. 
 

 
 Under this condition, the body is said to be in rotational 
equilibrium. The vector sum of different torques 1 2 3, , ,.....   producing 

 different senses of rotation on the body is zero. 
 

 
 
 Thus, we can also conclude that a rigid body is in mechanical 
equilibrium when the net force and net torque acts on the body is zero. 
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 As the forces and torques are vector quantities, the directions are 
to be taken with proper sign conventions. 
 
 
Types of Equilibrium 
 
 Based on the above discussions, we come to a conclusion that 
different types of equilibrium are possible based on the different 
conditions. They are consolidated in Table 5.2. 
 
EXAMPLE 
 
 Arun and Babu carry a wooden log of mass 28 kg and length 10 m 
which has almost uniform thickness. They hold it at 1 m and 2 m from 
the ends respectively. Who will bear more weight of the log? [g = 10 ms-

2] 
 
Solution 
 
 Let us consider the log is in mechanical equilibrium. Hence, the net 
force and net torque on the log must be zero. The gravitational force acts 
at the center of mass of the log downwards. It is cancelled by the normal 
reaction forces RA and RB applied upwards by Arun and Babu at points 
A and B respectively. These reaction forces are the weights borne by 
them. 
 
 The total weight, W = mg = 28 × 10 = 280 N, has to be borne by 
them together. The reaction forces are the weights borne by each of them 
separately. Let us show all the forces acting on the log by drawing a free 
body diagram of the log. 
 
For translational equilibrium: 
 
The net force acting on the log must be zero. 
 

 
 
 Here, the forces RA an RB are taken positive as they act upward. 
The gravitational force acting downward is taken negative. 
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For rotational equilibrium: 
 
 The net torque acting on the log must be zero. For ease of 
calculation, we can take the torque caused by all the forces about the 
point A on the log. The\ forces are perpendicular to the distances. 
Hence, 
 

 
 Here, the reaction force RA cannot produce any torque as the 
reaction forces pass through the point of reference A. The torque of force 
mg produces a clockwise turn about the point A which is taken negative 
and torque of force RB causes anticlockwise turn about A which is taken 
positive. 
 

 
 
By substituting for RB we get, 
 

 
 
 As RB is greater than RA, it is concluded that Babu bears more 
weight than Arun. The one closer to center of mass of the log bears more 
weight. 
 
Couple 
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 Consider a thin uniform rod AB. Its center of mass is at its 
midpoint C. Let two forces which are equal in magnitude and opposite 
in direction be applied at the two ends A and B of the rod perpendicular 
to it. The two forces are separated by a distance of 2r as shown in Figure 
5.13. 
 
 As the two equal forces are opposite in direction, they cancel each 
other and the net force acting on the rod is zero. Now the rod is in 
translational equilibrium. But, the rod is not in rotational equilibrium. 
Let us see how it is not in rotational equilibrium. The moment of the 
force applied at the end A taken with respect to the center point C, 
produces an anticlockwise rotation. Similarly, the moment of the force 
applied at the end B also produces an anticlockwise rotation. The 
moments of both the forces cause the same sense of rotation in the rod. 
Thus, the rod undergoes a rotational motion or turning even though the 
rod is in translational equilibrium. 
 
 A pair of forces which are equal in magnitude but opposite in 
direction and separated by a perpendicular distance so that their lines of 
action do not coincide that causes a turning effect is called a couple. We 
come across couple in many of our daily activities as shown in Figure 
5.14. 
 
Principle of Moments 
 
 Consider a light rod of negligible mass which is pivoted at a point 
along its length. Let two parallel forces F1 and F2 act at the two ends at 
distances d1 and d2 from the point of pivot and the normal reaction 
force N at the point of pivot as shown in Figure 5.15. If the rod has to 
remain stationary in horizontal position, it should be in translational and 
rotational equilibrium. Then, both the net force and net torque must be 
zero. 
 
For net force to be zero, −F1 + N − F2  =0 
 

 
 
For net torque to be zero, d1F1−  d2 F2= 0 
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 The above equation represents the principle of moments. This 
forms the principle for beam balance used for weighing goods with the 
condition d1 = d2; F1 = F2. We can rewrite the equation 5.33 as, 
 

 
 
 If F1 is the load and F2 is our effort, we get advantage when, d1< d2. 
This implies that F1> F2. Hence, we could lift a large load with small 

effort. The ratio 
2

1

d

d

 
 
 

is called mechanical advantage of the simple lever. 

The pivoted point is called fulcrum. 
 

Mechanical Advantage MA= 2

1

d

d
 

 There are many simple machines that work on the above 
mentioned principle. 
 
Center of Gravity 
 
 Each rigid body is made up of several point masses. Such point 
masses experience gravitational force towards the center of Earth. As the 
size of Earth is very large compared to any practical rigid body we come 
across in daily life, these forces appear to be acting parallelly 
downwards as shown in Figure 5.16 
 
 The resultant of these parallel forces always acts through a point. 
This point is called center of gravity of the body (with respect to Earth). 
The center of gravity of a body is the point at which the entire weight of 
the body acts irrespective of the position and orientation of the body. 
The center of gravity and center of mass of a rigid body coincide when 
the gravitational field is uniform across the body. The concept of 
gravitational field is dealt in Unit 6. 
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 We can also determine the center of gravity of a uniform lamina of 
even an irregular shape by pivoting it at various points by trial and 
error. The lamina remains horizontal when pivoted at the point where 
the net gravitational force acts, which is the center of gravity as shown in 
Figure 5.17. When a body is supported at the center of gravity, the sum 
of the torques acting on all the point masses of the rigid body becomes 
zero. Moreover the weight is compensated by the normal reaction force 
exerted by the pivot. The body is in static equilibrium and hence it 
remains horizontal. 
 
 There is also another way to determine the center of gravity of an 
irregular lamina. If we suspend the lamina from different points like P, 
Q, R as shown in Figure 5.18, the vertical lines PP', QQ', RR' all pass 
through the center of gravity. Here, reaction force acting at the point of 
suspension and the gravitational force acting at the center of gravity 
cancel each other and the torques caused by them also cancel each other. 
 
Bending of Cyclist in Curves 
 
 Let us consider a cyclist negotiating a circular level road (not 
banked) of radius r with a speed v. The cycle and the cyclist are 
considered as one system with mass m. The center gravity of the system 
is C and it goes in a circle of radius r with center at O. Let us choose the 
line OC as X-axis and the vertical line through O as Z-axis as shown in 
Figure 5.19. 
 
 The system as a frame is rotating about Z-axis. The system is at 
rest in this rotating frame. To solve problems in rotating frame of 
reference, we have to apply a centrifugal force (pseudo force) on the 

system which will be 
2

mv

r
This force will act through the center of 

gravity. The forces acting on the system are, (i) gravitational force (mg), 
(ii) normal force (N), (iii) frictional force (f) and (iv) centrifugal force 

2
mv

r

 
 
 

. As the system is in equilibrium in the rotational frame of 

reference, the net external force and net external torque must be zero. 
Let us consider all torques about the point A in Figure 5.20. 
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 The torque due to the gravitational force about point A is (mgAB) 
which causes a clockwise turn that is taken as negative. The torque due 

to the centripetal force is 

2
mv

BC
r

 
 
 

which causes an anticlockwise turn 

that is taken as positive. 
 

 
 
From Δ ABC, 
AB = ACsinθ and BC = ACcosθ 
 

 
 
 While negotiating a circular level road of radius r at velocity v, a 
cyclist has to bend by an angle θ from vertical given by the above 
expression to stay in equilibrium (i.e. to avoid a fall). 
 
EXAMPLE 
 
 A cyclist while negotiating a circular path with speed 20 m s-1 is 
found to bend an angle by 30o with vertical. What is the radius of the 
circular path? (given, g = 10 m s-2) 
 
Solution 
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Speed of the cyclist, v = 20 m s-1 
Angle of bending with vertical, θ = 30o 

Equation for angle of bending, tanθ=

2
V

rg
 

 
Rewriting the above equation for radius 
 

 
Substituting, 
 

 
 
MOMENT OF INERTIA 
 
 In the expressions for torque and angular momentum for rigid 
bodies (which are considered as bulk objects), we have come across a 

term 
2

i i
m r This quantity is called moment of inertia (I) of the bulk 

object. For point mass mi at a distance ri from the fixed axis, the moment 

of inertia is given as 
2

i i
m r  

 
Moment of inertia for point mass, 
 

 
Moment of inertia for bulk object 
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 In translational motion, mass is a measure of inertia; in the same 
way, for rotational motion, moment of inertia is a measure of rotational 
inertia. The unit of moment of inertia is, kg m2. Its dimension is M L2. In 
general, mass is an invariable quantity of matter (except for motion 
comparable to that of light). But, the moment of inertia of a body is not 
an invariable quantity. It depends not only on the mass of the body, but 
also on the way the mass is distributed around the axis of rotation. 
 
 To find the moment of inertia of a uniformly distributed mass; we 
have to consider an infinitesimally small mass (dm) as a point mass and 
take its position (r) with respect to an axis. The moment of inertia of this 
point mass can now be written as, 
 

 
 
 We get the moment of inertia of the entire bulk object by 
integrating the above expression. 
 

 
 
 We can use the above expression for determining the moment of 
inertia of some of the common bulk objects of interest like rod, ring, disc, 
sphere etc. 
 
Moment of Inertia of a Uniform Rod 
 

 Let us consider a uniform rod of mass (M) and length ( ) as 
shown in Figure 5.21. Let us find an expression for moment of inertia of 
this rod about an axis that passes through the center of mass and 
perpendicular to the rod. First an origin is to be fixed for the coordinate 
system so that it coincides with the center of mass, which is also the 
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geometric center of the rod. The rod is now along the x axis. We take an 
infinitesimally small mass (dm) at a distance (x) from the origin. The 
moment of inertia (dI) of this mass (dm) about the axis is, 
 

 
 
 As the mass is uniformly distributed, the mass per unit length (λ) 

of the rod is 
M    

 The (dm) mass of the infinitesimally small length as, dm 
M

dx dx   

 
The moment of inertia (I) of the entire rod can be found by integrating 
dI, 
 

 
 
 As the mass is distributed on either side of the origin, the limits for 
integration are taken from - /2 to /2. 
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EXAMPLE 
 
 Find the moment of inertia of a uniform rod about an axis which is 
perpendicular to the rod and touches any one end of the rod. 
 
Solution 
 
 The concepts to form the integrand to find the moment of inertia 
could be borrowed from the earlier derivation. Now, the origin is fixed 
to the left end of the rod and the limits are to be taken from 0 to . 
 
 

 
 
Moment of Inertia of a Uniform Ring 
 
 Let us consider a uniform ring of mass M and radius R. To find the 
moment of inertia of the ring about an axis passing through its center 
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and perpendicular to the plane, let us take an infinitesimally small mass 
(dm) of length (dx) of the ring. This (dm) is located at a distance R, 
which is the radius of the ring from the axis. 
 
The moment of inertia (dI) of this small mass (dm) is, 
 

 
 
 The length of the ring is its circumference (2 R). As the mass is 
uniformly distributed, the mass per unit length (λ) is,  
 

mass M

length 2 R



   

 

The mass (dm) of the infinitesimally small length is, dm
M

2 R
dx dx


   

Now, the moment of inertia (I) of the entire ring is, 
 

 
 
 
 To cover the entire length of the ring, the limits of integration are 
taken from 0 to 2 R. 
 
 

 



 

110 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
Moment of Inertia of a Uniform Disc 
 
 Consider a disc of mass M and radius R. This disc is made up of 
many infinitesimally small rings as shown in Figure 5.23. Consider one 
such ring of mass (dm) and thickness (dr) and radius (r). The moment of 
inertia (dI) of this small ring is, 
 

 
 
 As the mass is uniformly distributed, the mass per unit area (σ) is, 

2

mass

area

M

R



   

 
The mass of the infinitesimally small ring is, 
 

 
 
 where, the term (2 r dr) is the area of this elemental ring (2 r is 

the length and dr is the thickness). 2

2M
dm rdr

R
  

 

 
 
The moment of inertia (I) of the entire disc is, 
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Radius of Gyration 
 
 For bulk objects of regular shape with uniform mass distribution, 
the expression for moment of inertia about an axis involves their total 
mass and geometrical features like radius, length, breadth, which take 
care of the shape and the size of the objects. But, we need an expression 
for the moment of inertia which could take care of not only the mass, 
shape and size of objects, but also its orientation to the axis of rotation. 
Such an expression should be general so that it is applicable even for 
objects of irregular shape and non-uniform distribution of mass. The 
general expression for moment of inertia is given as, 
 

 
 where, M is the total mass of the object and K is called the radius 
of gyration. 
 
 The radius of gyration of an object is the perpendicular distance 
from the axis of rotation to an equivalent point mass, which would have 
the same mass as well as the same moment of inertia of the object. 
 
As the radius of gyration is distance, its unit is m. Its dimension is L. 
 
 A rotating rigid body with respect to any axis, is considered to be 
made up of point masses m1, m2, m3, . . .mn at perpendicular distances 
(or positions) r1, r2, r3 . . . rn respectively as shown in Figure 5.24. 
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The moment of inertia of that object can be written as, 
 

 
If we take all the n number of individual masses to be equal, 
 

 
 

 
 
where, nm is the total mass M of the body and K is the radius of 
gyration. 
 

 
 
 The expression for radius of gyration indicates that it is the root 
mean square (rms) distance of the particles of the body from the axis of 
rotation. 
 
 In fact, the moment of inertia of any object could be expressed in 
the form,     I = MK2 
 
 For example, let us take the moment of inertia of a uniform rod of 
mass M and length . Its moment of inertia with respect to a 

perpendicular axis passing through the center of mass is, 
21

12
I M  
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In terms of radius of gyration, I =MK2 
 

 
EXAMPLE 
 
 Find the radius of gyration of a disc of mass M and radius R 
rotating about an axis passing through the center of mass and 
perpendicular to the plane of the disc. 
 
Solution 
 
The moment of inertia of a disc about an axis passing through the center 

of mass and perpendicular to the disc is, 
21

2
I MR  

 
In terms of radius of gyration, I=MK2 
 

 
 
 From the case of a rod and also a disc, we can conclude that the 
radius of gyration of the rigid body is always a geometrical feature like 
length, breadth, radius or their combinations with a positive numerical 
value multiplied to it. 
 

Obesity and associated ailments like back pain, joint pain etc. are due to 
the shift in center of mass of the body. Due to this shift in center of mass, 
unbalanced torque acting on the body leads to ailments. As the mass is 
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spread away from center of the body the moment of inertia is more and 
turning will also be diffi cult. 

 
 Obesity and associated ailments like back pain, joint pain etc. are 
due to the shift in center of mass of the body. Due to this shift in center 
of mass, unbalanced torque acting on the body leads to ailments. As the 
mass is spread away from center of the body the moment of inertia is 
more and turning will also be diffi cult. 
 
Parallel axis theorem: 
 
 Parallel axis theorem states that the moment of inertia of a body 
about any axis is equal to the sum of its moment of inertia about a 
parallel axis through its center of mass and the product of the mass of 
the body and the square of the perpendicular distance between the two 
axes. 
 
 If IC is the moment of inertia of the body of mass M about an axis 
passing through the center of mass, then the moment of inertia I about a 
parallel axis at a distance d from it is given by the relation, 
 

 
 
 Let us consider a rigid body as shown in Figure 5.25. Its moment 
of inertia about an axis AB passing through the center of mass is IC. DE 
is another axis parallel to AB at a perpendicular distance d from AB. The 
moment of inertia of the body about DE is I. We attempt to get an 
expression for I in terms of IC. For this, let us consider a point mass m on 
the body at position x from its center of mass. 
 
The moment of inertia of the point mass about the axis DE is, m(x + d)2. 
 
 The moment of inertia I of the whole body about DE is the 
summation of the above expression. 
 

 
This equation could further be written as, 



 

115 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 

 
 
 Here, Σmx2 is the moment of inertia of the body about the center of 

mass. Hence, 
2

C
I mx  

 
 The term, Σmx = 0 because, x can take positive and negative values 
with respect to the axis AB. The summation (Σmx) will be zero. 
 

 
Here, Σm is the entire mass M of the object (Σm =M) 
 

 
Hence, the parallel axis theorem is proved. 
 
Perpendicular axis theorem: 
 
 This perpendicular axis theorem holds good only for plane 
laminar objects. The theorem states that the moment of inertia of a plane 
laminar body about an axis perpendicular to its plane is equal to the 
sum of moments of inertia about two perpendicular axes lying in the 
plane of the body such that all the three axes are mutually perpendicular 
and have a common point. 
 
 Let the X and Y-axes lie in the plane and Z-axis perpendicular to 
the plane of the laminar object. If the moments of inertia of the body 
about X and Y-axes are IX and IY respectively and IZ is the moment of 
inertia about Z-axis, then the perpendicular axis theorem could be 
expressed as, 
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 To prove this theorem, let us consider a plane laminar object of 
negligible thickness on which lies the origin (O). The X and Y-axes lie on 
the plane and Z-axis is perpendicular to it as shown in Figure 5.26. The 
lamina is considered to be made up of a large number of particles of 
mass m. Let us choose one such particle at a point P which has 
coordinates (x, y) at a distance r from O. 
 
The moment of inertia of the particle about Z-axis is, mr2 
 
The summation of the above expression gives the moment of inertia of 

the entire lamina about Z-axis as, 
2

Z
I mr  

 

 

 
 
 In the above expression, the term 2

mx  is the moment of inertia of 

the body about the Y-axis and similarly the term 2
my  is the moment of 

inertia about X-axis. Thus, 

 
Substituting in the equation for Iz gives, 
 

 
 
Thus, the perpendicular axis theorem is proved. 
 
EXAMPLE 
 
 Find the moment of inertia of a disc of mass 3 kg and radius 50 cm 
about the following axes. 
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1. axis passing through the center and perpendicular to the plane of 

the disc, 
2. axis touching the edge and perpendicular to the plane of the disc 

and 
3. axis passing through the center and lying on the plane of the disc. 

 
Solution 
 
The mass, M = 3 kg, radius R = 50 cm = 50 × 10−2 m = 0.5 m 
 
 The moment of inertia (I) about an axis passing through the center 
and perpendicular to the plane of the disc is, 
 

 
 
 The moment of inertia (I) about an axis touching the edge and 
perpendicular to the plane of the disc by parallel axis theorem is, 
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 The moment of inertia (I) about an axis passing through the center 
and lying on the plane of the disc is, 

 

 

 
 
EXAMPLE 
 
 Find the moment of inertia about the geometric center of the given 
structure made up of one thin rod connecting two similar solid spheres 
as shown in Figure. 
 
Solution 
 
The structure is made up of three objects; one thin rod and two solid 
spheres. 
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The mass of the rod, M = 3 kg and the total length of the rod, ℓ = 80 cm = 
0.8 m 
 
The moment of inertia of the rod about its center of mass is, 
 

 

 
 
 The mass of the sphere, M = 5 kg and the radius of the sphere, R = 

10 cm = 0.1m 
22

5
C

I MR  

 
 The moment of inertia of the sphere about geometric center of the 
structure is, 
 

 
Where, d = 40 cm + 10 cm = 50 cm = 0.5 m 
 

 
 
 As there are one rod and two similar solid spheres we can write 
the total moment of inertia (I) of the given geometric structure as, 
 

 
 

 
 
Moment of Inertia of Different Rigid Bodies 
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 The moment of inertia of different objects about different axes is 
given in the Table 5.3. 
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ROTATIONAL DYNAMICS 
 
 The relations among torque, angular acceleration, angular 
momentum, angular velocity and moment of inertia were seen in Section 
5.2. In continuation to that, in this section, we will learn the relations 
among the other dynamical quantities like work, kinetic energy in 
rotational motion of rigid bodies. Finally a comparison between the 
translational and rotational quantities is made with a tabulation. 
 
Effect of Torque on Rigid Bodies 
 
 A rigid body which has non zero external torque (τ) about the axis 
of rotation would have an angular acceleration (α) about that axis. The 
scalar relation between the torque and angular acceleration is, 
 

 
 
 where, I is the moment of inertia of the rigid body. The torque in 
rotational motion is equivalent to the force in linear motion. 
 
EXAMPLE 
 
 A disc of mass 500 g and radius 10 cm can freely rotate about a 
fixed axis as shown in figure. light and inextensible string is wound 
several turns around it and 100 g body is suspended at its free end. Find 
the acceleration of this mass. [Given: The string makes the disc to rotate 
and does not slip over it. g = 10 m s-2.] 
 
Solution 
 
 Let the mass of the disc be m1 and its radius R. The mass of the 
suspended body is m2. 
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 As the light inextensible string is wound around the disc several 
times it makes the disc rotate without slipping over it. The translational 
acceleration of m2 and tangential acceleration of m1 will be the same. Let 
us draw the free body diagram (FBD) of m1 and m2 separately. 
 
 Its gravitational force (m1g) acts downward and normal force N 
exerted by the fixed support at the center acts upward. The tension T 
acts downward at the edge. The gravitational force (m1g) and the normal 
force (N) cancel each other. m1g= N 
 
 The tension T produces a torque (R T), which produces a rotational 

motion in the disc with angular acceleration, 2

a

R
  
 

. Here, a is the 

linear acceleration of a point at the edge of the disc. If the moment of 
inertia of the disc is I and its radius of gyration is K, then  
 

 
 
FBD of the body: 
 
 Its gravitational force (m2g) acts downward and the tension T acts 
upward. As (T < m2g), there is a resultant force (m2a) acting on it 
downward. 
 
Substituting for T from the equation for disc, 
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The expression 
2

2

K

R

 
 
 

   for a disc rotating about an axis passing through 

the center and perpendicular to the plane is 
2

2

1
.

2

K

R
  Now the expression 

for acceleration further simplifies as, 
 

 
 
substituting the values, 
 

 
 
Conservation of Angular Momentum 
 
 When no external torque acts on the body, the net angular 
momentum of a rotating rigid body remains constant. This is known as 
law of conservation of angular momentum. 
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 As the angular momentum is L = Iω, the conservation of angular 
momentum could further be written for initial and final situations as, 
 

 
 
 The above equations say that if I increases ω will decrease and 
vice-versa to keep the angular momentum constant. 
 
 There are several situations where the principle of conservation of 
angular momentum is applicable. One striking example is an ice dancer 
as shown in Figure 5.27. The dancer spins slowly when the hands are 
stretched out and spins faster when the hands are brought close to the 
body. Stretching of hands away from body increases moment of inertia, 
thus the angular velocity decreases resulting in slower spin. When the 
hands are brought close to the body, the moment of inertia decreases, 
and thus the angular velocity increases resulting in faster spin. 
 
 A diver while in air as in Figure 5.28 curls the body close to 
decrease the moment of inertia, which in turn helps to increase the 
number of somersaults in air. 
 
EXAMPLE 
 
 A jester in a circus is standing with his arms extended on a turn 
table rotating with angular velocity ω. He brings his arms closer to his 
body so that his moment of inertia is reduced to one third of the original 
value. Find his new angular velocity. [Given: There is no external torque 
on the turn table in the given situation.] 
 
Solution 
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 Let the moment of inertia of the jester with his arms extended be I. 
As there is no external torque acting on the jester and the turn table, his 
total angular momentum is conserved. We can write the equation, 
 

 
 
 The above result tells that the final angular velocity is three times 
that of initial angular velocity. 
 
Work done by Torque 
 
 Let us consider a rigid body rotating about a fixed axis. Figure 5.29 
shows a point P on the body rotating about an axis perpendicular to the 
plane of the page. A tangential force F is applied on the body. 
 
 It produces a small displacement ds on the body. The work done 
(dw) by the force is, 
 

dw=Fds 
 As the distance ds, the angle of rotation dθ and radius r are related 
by the expression, 
 

ds = r dθ 
 
The expression for work done now becomes, 
 

dw = F ds; dw = F r dθ 
 
The term (Fr) is the torque τ produced by the force on the body. 
 

dw = τdθ 
 
 This expression gives the work done by the external torque τ, 
which acts on the body rotating about a fixed axis through an angle dθ. 
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 The corresponding expression for work done in translational 
motion is, 
 

dw=Fds 
 
Kinetic Energy in Rotation 
 
 Let us consider a rigid body rotating with angular velocity ω about 
an axis as shown in Figure 5.30. Every particle of the body will have the 
same angular velocity ω and different tangential velocities v based on its 
positions from the axis of rotation. 
 
 Let us choose a particle of mass mi situated at distance ri from the 
axis of rotation. It has a tangential velocity vi given by the relation, vi = ri 
ω. The kinetic energy KEi of the particle is, 
 

 
 
Writing the expression with the angular velocity, 
 

 
 
 For the kinetic energy of the whole body, which is made up of 
large number of such particles, the equation is written with summation 
as, 
 

 
 where, the term 

2

i i
m r is the moment of inertia I of the whole 

body. 
2

i i
I m r  

 
Hence, the expression for KE of the rigid body in rotational motion is, 
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This is analogous to the expression for kinetic energy in translational 
motion. 
 

 
Relation between rotational kinetic energy and angular momentum 
 
 Let a rigid body of moment of inertia I rotate with angular velocity 
ω. 
 
The angular momentum of a rigid body is, L = Iω 
 
The rotational kinetic energy of the rigid body is 
 

 
 By multiplying the numerator and denominator of the above 
equation with I, we get a relation between L and KE as, 
 

 
 
EXAMPLE 
 
 Find the rotational kinetic energy of a ring of mass 9 kg and radius 
3 m rotating with 240 rpm about an axis passing through its center and 
perpendicular to its plane. (rpm is a unit of speed of rotation which 
means revolutions per minute) 
 
Solution 
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 The rotational kinetic energy is, 21

2
KE I  The moment of inertia 

of the ring is, I=MR2 
 

 
 
The angular speed of the ring is, 
 

 
 
 
Power Delivered by Torque 
 
 Power delivered is the work done per unit time. If we differentiate 
the expression for work done with respect to time, we get the 
instantaneous power (P). 
 

 
 
 The analogous expression for instantaneous power delivered in 
translational motion is, 
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Comparison of Translational and Rotational Quantities 
 
 Many quantities in rotational motion have expressions similar to 
that of translational motion. The rotational terms are compared with the 
translational equivalents in Table 5.4. 
 

 
 
ROLLING MOTION 
 
 The rolling motion is the most commonly observed motion in daily 
life. The motion of wheel is an example of rolling motion. Round objects 
like ring, disc, sphere etc. are most suitable for rolling . 
 
 Let us study the rolling of a disc on a horizontal surface. Consider 
a point P on the edge of the disc. While rolling, the point undergoes 
translational motion along with its center of mass and rotational motion 
with respect to its center of mass. 
 
Combination of Translation and Rotation 
 
 We will now see how these translational and rotational motions 
are related in rolling. If the radius of the rolling object is R, in one full 
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rotation, the center of mass is displaced by 2 R (its circumference). One 
would agree that not only the center of mass, but all the points on the 
disc are displaced by the same 2 R after one full rotation. The only 
difference is that the center of mass takes a straight path; but, all the 
other points undergo a path which has a combination of the translational 
and rotational motion. Especially the point on the edge undergoes a path 
of a cycloid as shown in the Figure 5.31. 
 
 As the center of mass takes only a straight line path, its velocity 
vCM is only translational velocity vTRANS (vCM = vTRANS). All the other 
points have two velocities. One is the translational velocity vTRANS, 
(which is also the velocity of center of mass) and the other is the 
rotational velocity vROT (vROT = rω). Here, r is the distance of the point 
from the center of mass and ω is the angular velocity. The rotational 
velocity vROT is perpendicular to the instantaneous position vector from 
the center of mass as shown in Figure 5.32(a). The resultant of these two 
velocities is v. This resultant velocity v is perpendicular to the position 
vector from the point of contact of the rolling object with the surface on 
which it is rolling as shown in Figure 5.32(b). 
 
 We shall now give importance to the point of contact. In pure 
rolling, the point of the rolling object which comes in contact with the 
surface is at momentary rest. This is the case with every point that is on 
the edge of the rolling object. As the rolling proceeds, all the points on 
the edge, one by one come in contact with the surface; remain at 
momentary rest at the time of contact and then take the path of the 
cycloid as already mentioned. 
 
Hence, we can consider the pure rolling in two different ways. 
 

1. The combination of translational motion and rotational motion 
about the center of mass. 

(or) 
2. The momentary rotational motion about the point of contact 

 
 As the point of contact is at momentary rest in pure rolling, its 
resultant velocity v is zero (v = 0). For example, in Figure 5.33, at the 
point of contact, vTRANS is forward (to right) and vROT is backwards (to 
the left). 
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 That implies that, vTRANS and vROT are equal in magnitude and 
opposite in direction (v = vTRANS– vROT = 0). Hence, we conclude that in 
pure rolling, for all the points on the edge, the magnitudes of vTRANS and 
vROT are equal (vTRANS= vROT). As vTRANS = vCM and vROT = Rω, in pure 
rolling we have, 
 

 
 
 We should remember the special feature of the equation 5.55. In 
rotational motion, as per the relation v = rω, the center point will not 
have any velocity as r is zero. But in rolling motion, it suggests that the 
center point has a velocity vCM given by equation 5.55. 
 
 For the topmost point, the two velocities vTRANS and vROT are equal 
in magnitude and in the same direction (to the right). Thus, the resultant 
velocity v is the sum of these two velocities, v = vTRANS + vROT. In other 
form, v = 2 vCM as shown in Figure 5.34. 
 
Slipping and Sliding 
 
 When the round object moves, it always tends to roll on any 
surface which has a coefficient of friction any value greater than zero (μ 
> 0). The friction that enabling the rolling motion is called rolling 
friction. In pure rolling, there is no relative motion of the point of contact 
with the surface. When the rolling object speeds up or slows down, it 
must accelerate or decelerate respectively. If this suddenly happens it 
makes the rolling object to slip or slide. 
 
Sliding 
 
 Sliding is the case when vCM > Rω (or vTRANS > vROT). The 
translation is more 
than the rotation. This kind of motion happens when sudden break is 
applied in a moving vehicles, or when the vehicle enters into a slippery 
road. In this case, the point of contact has more of vTRANS than vROT. 
Hence, it has a resultant velocity v in the forward direction as shown in 
Figure 5.35. The kinetic frictional force (fk) opposes the relative motion. 
Hence, it acts in the opposite direction of the relative velocity. This 
frictional force reduces the translational velocity and increases the 
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rotational velocity till they become equal and the object sets on pure 
rolling. Sliding is also referred as forward slipping. 
 
Slipping 
 
 Slipping is the case when vCM < Rω (or vTRANS < vROT). The rotation 
is more 
than the translation. This kind of motion happens when we suddenly 
start the vehicle from rest or the vehicle is stuck in mud. In this case, the 
point of contact has more of vROT than vTRANS. It has a resultant velocity v 
in the backward direction as shown in Figure 5.36. The kinetic frictional 
force (fk) opposes the relative motion. Hence it acts in the opposite 
direction of the relative velocity. This frictional force reduces the 
rotational velocity and increases the translational velocity till they 
become equal and the object sets pure rolling. Slipping is sometimes 
empahasised as backward slipping. 
 
EXAMPLE 
 
 A rolling wheel has velocity of its center of mass as 5 m s-1. If its 
radius is 1.5 m and angular velocity is 3 rad s-1, then check whether it is 
in pure rolling or not. 
 
Solution 
 
Translational velocity (vTRANS) or velocity of center of mass, vCM = 5 m s-1 
 
The radius is, R = 1.5 m and the angular velocity is, ω = 3 rad s-1 

 
Rotational velocity, vROT = Rω 
 

 
vCM > Rω (or) vTRANS > Rω, It is not in pure rolling, but sliding. 
 
Kinetic Energy in Pure Rolling 
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 As pure is the combination of translational and rotational motion, 
we can write the total kinetic energy (KE) as the sum of kinetic energy 
due to translational motion (KETRANS) and kinetic energy due to 
rotational motion (KEROT). 
 

 
 
 If the mass of the rolling object is M, the velocity of center of mass 
is vCM, its moment of inertia about center of mass is ICM and angular 
velocity is ω, then 
 

 
 
 With center of mass as reference: The moment of inertia (ICM) of a 
rolling object about the center of mass is, 
 
ICM=MK2 and vCM = Rω. Here, K is radius of gyration. 
 

 
 
With point of contact as reference: 
 
 We can also arrive at the same expression by taking the 
momentary rotation happening with respect to the point of contact 
(another approach to rolling). If we take the point of contact as O, then, 
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 Here, Io is the moment of inertia of the object about the point of 
contact. By parallel axis theorem, Io= ICM+  MR2. Further we can write, 
Io=  MK2 +MR2. With vCM = Rω or 
 

 
 

 
 
 As the two equations 5.59 and 5.60 are the same, it is once again 
confirmed that the pure rolling problems could be solved by considering 
the motion as any one of the following two cases. 
 

1. The combination of translational motion and rotational motion 
about the center of mass. 

2. The momentary rotational motion about the point of contact. 
 
EXAMPLE 
 
 A solid sphere is undergoing pure rolling. What is the ratio of its 
translational kinetic energy to rotational kinetic energy? 
 
Solution 
 
The expression for total kinetic energy in pure rolling is, 
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For any object the total kinetic energy as per equation 5.58 and 5.59 is, 
 

 
 
Then, 
 

 
 
 The above equation suggests that in pure rolling the ratio of total 
kinetic energy, translational kinetic energy and rotational kinetic energy 
is given as, 
 
 

 
 

 
 
Rolling on Inclined Plane 
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 Let us assume a round object of mass m and radius R is rolling 
down an inclined plane without slipping as shown in Figure 5.37. There 
are two forces acting on the object along the inclined plane. One is the 
component of gravitational force (mg sinθ) and the other is the static 
frictional force (f). The other component of gravitation force (mg cosθ) is 
cancelled by the normal force (N) exerted by the plane. As the motion is 
happening along the incline, we shall write the equation for motion from 
the free body diagram (FBD) of the object. 
 
 For translational motion, mg sinθ is the supporting force and f is 
the opposing force 
 

 
 
 For rotational motion, let us take the torque with respect to the 
center of the object. Then mg sinθ cannot cause torque as it passes 
through it but the frictional force f can set torque of Rf. 
 

Rf = Iα 
 
By using the relation, a = r α, and moment of inertia I=mK2, we get, 
 

 
 
Now equation (5.59) becomes, 
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After rewriting it for acceleration, we get, 
 

 
 We can also find the expression for final velocity of the rolling 
object by using third equation of motion for the inclined plane. v2 = u2 + 
2as. If the body starts rolling from rest, u=0. When h is the vertical 

height of the incline, the length of the incline s is, 
sin

h
s


  

 

 
 
By taking square root, 
 

 
 
 The time taken for rolling down the incline could also be written 
from first equation of motion as, v = u + at. For the object which starts 
rolling from rest, u=0. Then, 
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 The equation suggests that for a given incline, the object with the 
least value of radius of gyration K will reach the bottom of the incline 
first. 
 
 
EXAMPLE 
 
 Four round objects namely a ring, a disc, a hollow sphere and a 
solid sphere with same radius R start to roll down an incline at the same 
time. Find out which object will reach the bottom first. 
 
Solution 
 
 For all the four objects namely the ring, disc, hollow sphere and 

solid sphere, the radii of gyration K are R, 
1 2 2

, , ,
2 3 5

R R R  ref Table 

(5.3)). With numerical values the radius of gyration K are 1R, 0.707R, 
0.816R, 0.632R respectively. The expression for time taken for rolling has 
the radius of gyration K in the numerator as per equation 5.63 
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 The one with least value of radius of gyration K will take the 
shortest time to reach the bottom of the inclined plane. The order of 
objects reaching the bottom is first, solid sphere; second, disc; third, 
hollow sphere and last, ring. 
 
 
 


