
 

1 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 

FORCE AND MOTION 
 

PART – IV 
 

11TH VOL - II 
UNIT – 6 GRAVITATION 

 
INTRODUCTION 
 
 We are amazed looking at the glittering sky; we wonder how the 
Sun rises in the East and sets in the West, why there are comets or why 
stars twinkle. The sky has been an object of curiosity for human beings 
from time immemorial. We have always wondered about the motion of 
stars, the Moon, and the planets. From Aristotle to Stephen Hawking, 
great minds have tried to understand the movement of celestial objects 
in space and what causes their motion.  
 
 The „Theory of Gravitation‟ was developed by Newton in the late 
17th century to explain the motion of celestial objects and terrestrial 
objects and answer most of the queries raised. In spite of the study of 
gravitation and its effect on celestial objects, spanning last three 
centuries, “gravitation” is still one of the active areas of research in 
physics today. In 2017, the Nobel Prize in Physics was given for the 
detection of „Gravitational waves‟ which was theoretically predicted by 
Albert Einstein in the year 1915. Understanding planetary motion, the 
formation of stars and galaxies, and recently massive objects like black 
holes and their life cycle have remained the focus of study for the past 
few centuries in physics. 
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Geocentric Model of Solar System 
 
 In the second century, Claudius Ptolemy, a famous Greco-Roman 
astronomer, developed a theory to explain the motion of celestial objects 
like the Sun, the Moon, Mars, Jupiter etc. This theory was called the 
geocentric model. According to the geocentric model, the Earth is at the 
center of the universe and all celestial objects including the Sun, the 
Moon, and other planets orbit the Earth. Ptolemy‟s model closely 
matched with the observations of the sky with our naked eye. But later, 
astronomers found that even though Ptolemy‟s model successfully 
explained the motion of the Sun and the Moon up to a certain level, the 
motion of Mars and Jupiter could not be explained effectively. 
 
Heliocentric Model of Nicholas Copernicus 
 
 In the 15th century, a Polish astronomer, Nicholas Copernicus 
(1473-1543) proposed a new model called the „Heliocentric model‟ in 
which the Sun was considered to be at the center of the solar system and 
all planets including the Earth orbited the Sun in circular orbits. This 
model successfully explained the motion of all celestial objects. 
 
 Around the same time, Galileo, a famous Italian physicist 
discovered that all objects close to Earth were accelerated towards the 
Earth at the same rate. Meanwhile, a noble man called Tycho Brahe 
(1546-1601) spent his entire lifetime in recording the observations of the 
stellar and planetary positions with his naked eye. The data that he 
compiled were analyzed later by his assistant Johannes Kepler (1571–
1630) and eventually the analysis led to the deduction of the laws of the 
planetary motion. These laws are termed as „Kepler‟s laws of planetary 
motion‟. 
 
Kepler’s Laws of Planetary Motion 
Law of orbits: 
 
 Each planet moves around the Sun in an elliptical orbit with the 
Sun at one of the foci. 
 
 The closest point of approach of the planet to the Sun „P‟ is called 
perihelion and the farthest point „A‟ is called aphelion (Figure 6.1). The 
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semi-major axis is „a‟ and semi-minor axis is „b‟. In fact, both Copernicus 
and Ptolemy considered planetary orbits to be circular, but Kepler 
discovered that the actual orbits of the planets are elliptical. 
 
Law of area: 
 
 The radial vector (line joining the Sun to a planet) sweeps equal 
areas in equal intervals of time. 
 
 In Figure 6.2, the white shaded portion is the area DA swept in a 
small interval of time Dt, by a planet around the Sun. Since the Sun is 
not at the center of the ellipse, the planets travel faster when they are 
nearer to the Sun and slower when they are farther from it, to cover 
equal area in equal intervals of time. Kepler discovered the law of area 
by carefully noting the variation in the speed of planets. 
 
Law of period: 
 
 The square of the time period of revolution of a planet around the 
Sun in its elliptical orbit is directly proportional to the cube of the semi-
major axis of the ellipse. It can be written as: 
 

 
 
 where, T is the time period of revolution for a planet and a is the 
semi-major axis. Physically this law implies that as the distance of the 
planet from the Sun increases, the time period also increases but not at 
the same rate. 
 
 In Table 6.1, the time period of revolution of planets around the 
Sun along with their semi-major axes are given. From column four, we 

can realize that 
2

3

T

a
 is nearly a constant endorsing Kepler‟s third law. 
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Universal Law of Gravitation 
 
 Even though Kepler‟s laws were able to explain the planetary 
motion, they failed to explain the forces responsible for it. It was Isaac 
Newton who analyzed Kepler‟s laws, Galileo‟s observations and 
deduced the law of gravitation. 
 
 Newton‟s law of gravitation states that a particle of mass M1 
attracts any other particle of mass M2 in the universe with an attractive 
force. The strength of this force of attraction was found to be directly 
proportional to the product of their masses and is inversely proportional 
to the square of the distance between them. In mathematical form, it can 
be written as: 
 

 
 

 where r̂ is the unit vector from M1 towards M2 as shown in Figure 
6.3, and G is the Gravitational constant that has the value of 6.626×10−11. 
Nm2kg−2, and r is the distance between the two masses M1 and M2. In 
Figure 6.3, the vector F denotes the gravitational force experienced by 
M2 due to M1. Here the negative sign indicates that the gravitational 
force is always attractive in nature and the direction of the force is along 
the line joining the two masses. 
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 In cartesian coordinates, the square of the distance is expressed as 
r2=(x2+y2+z2) This is dealt in unit 2. 
 
EXAMPLE 
 
 Consider two point masses m1 and m2 which are separated by a 
distance of 10 meter as shown in the following figure. Calculate the force 
of attraction between them and draw the directions of forces on each of 
them. Take m1= 1 kg and m2 = 2 kg 
 
Solution 
 
The force of attraction is given by 
 

 
 

From the figure, r =10 m. 
 
First, we can calculate the magnitude of the force 
 

 
 
 It is to be noted that this force is very small. This is the reason we 
do not feel the gravitational force of attraction between each other. The 
small value of G plays a very crucial role in deciding the strength of the 
force. 
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 The force of attraction ( 21F ) experienced by the mass m2 due to m1 
is in the negative „y‟ direction ie., ˆr̂ j  .According to Newton‟s third 
law, the mass m2 also exerts equal and opposite force on m1. So the force 

of attraction ( 12F ) experienced by m1 due to m2 is in the direction of 

positive „y‟ axis ie., ˆr̂ j . 

 

 
The direction of the force is shown in the figure, 
Gravitational force of attraction between m1 and m2 

12F =- 21F  which confirms Newton‟s third law. 
 
Important features of gravitational force: 
„„ 
 As the distance between two masses increases, the strength of the 
force tends to decrease because of inverse dependence on r2. Physically it 
implies that the planet Uranus experiences less gravitational force from 
the Sun than the Earth since Uranus is at larger distance from the Sun 
compared to the Earth. 
 
 The gravitational forces between two particles always constitute 
an action- reaction pair. It implies that the gravitational force exerted by 
the Sun on the Earth is always towards the Sun. The reaction-force is 
exerted by the Earth on the Sun. The direction of this reaction force is 
towards Earth. 
 
 The torque experienced by the Earth due to the gravitational force 
of the Sun is given by  
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 So 0
d L

dt
   . It implies that angular momentum L is a constant 

vector. The angular momentum of the Earth about the Sun is 
constant throughout the motion. It is true for all the planets. In 
fact, this constancy of angular momentum leads to the Kepler‟s 
second law. 

 The expression 1 2

2
ˆGM M

F r
r

   has one inherent assumption that 

both M1 and M2 are treated as point masses. When it is said that 
Earth orbits around the Sun due to Sun‟s gravitational force, we 
assumed Earth and Sun to be point masses. This assumption is a 
good approximation because the distance between the two bodies 
is very much larger than their diameters. For some irregular and 
extended objects separated by a small distance, we cannot directly 
use the equation (6.3). Instead, we have to invoke separate 
mathematical treatment which will be brought forth in higher 
classes. 

 However, this assumption about point masses holds even for small 
distance for one special case. To calculate force of attraction 
between a hollow sphere of mass M with uniform density and 
point mass m kept outside the hollow sphere, we can replace the 
hollow sphere of mass M as equivalent to a point mass M located 
at the center of the hollow sphere. The force of attraction between 
the hollow sphere of mass M and point mass m can be calculated 
by treating the hollow sphere also as another point mass. 
Essentially the entire mass of the hollow sphere appears to be 
concentrated at the center of the hollow sphere. 

 There is also another interesting result. Consider a hollow sphere 
of mass M. If we place another object of mass „m‟ inside this 
hollow sphere as in Figure 6.5(b), the force experienced by this 
mass „m‟ will be zero. This calculation will be dealt with in higher 
classes. 

 The triumph of the law of gravitation is that it concludes that the 
mango that is falling down and the Moon orbiting the Earth are 
due to the same gravitational force. 

 
Newton’s inverse square Law: 
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 Newton considered the orbits of the planets as circular. For 
circular orbit of radius r, the centripetal acceleration towards the center 
is 
 

 
 Here v is the velocity and r, the distance of the planet from the 
center of the orbit 
 
The velocity in terms of known quantities r and T, is 
 

 
 
 Here T is the time period of revolution of the planet. Substituting 
this value of v in equation (6.4) we get, 
 

 
 
 Substituting the value of „a‟ from (6.6) in Newton‟s second law, 
F=ma, where „m‟ is the mass of the planet. 
 

 
From Kepler‟s third law, 
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 By substituting equation 6.9 in the force expression, we can arrive 
at the law of gravitation. 
 

 
 Here negative sign implies that the force is attractive and it acts 
towards the center. In equation (6.10), mass of the planet „m‟ comes 
explicitly. But Newton strongly felt that according to his third law, if 
Earth is attracted by the Sun, then the Sun must also be attracted by the 
Earth with the same magnitude of force. So he felt that the Sun‟s mass 
(M) should also occur explicitly in the expression for force (6.10). From 
this insight, he equated the constant 4 2 k to GM which turned out to be 
the law of gravitation 
 

 
 
 Again the negative sign in the above equation implies that the 
gravitational force is attractive. 
 
 In the above discussion we assumed that the orbit of the planet to 
be circular which is not true as the orbit of the planet around the Sun is 
elliptical. But this circular orbit assumption is justifiable because planet‟s 
orbit is very close to being circular and there is only a very small 
deviation from the circular shape. 
 
EXAMPLE 
 
 Moon and an apple are accelerated by the same gravitational force 
due to Earth. Compare the acceleration of the two. 
 
The gravitational force experienced by the apple due to Earth 
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 Here MA– Mass of the apple, ME– Mass of the Earth and R – 
Radius of the Earth. 
 
Equating the above equation with Newton‟s second law, 
 

 
 
Simplifying the above equation we get, 
 

 
 
 Here aA is the acceleration of apple that is equal to „g‟. Similarly 
the force experienced by Moon due to Earth is given by 
 

 
Here Rm- distance of the Moon from the Earth, Mm – Mass of the Moon 
 
The acceleration experienced by the Moon is given by 
 

 
 
The ratio between the apple‟s acceleration to Moon‟s acceleration is 
given by 
 

 
 
 From the Hipparchrus measurement, the distance to the Moon is 
60 times that of Earth radius. Rm = 60R. 
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The apple‟s acceleration is 3600 times the acceleration of the Moon. 
 
 The same result was obtained by Newton using his gravitational 
formula. The apple‟s acceleration is measured easily and it is 9.8 m s−2. 
Moon orbits the Earth once in 27.3 days and by using the centripetal 
acceleration formula, (Refer unit 3). 
 

 
 
which is exactly what he got through his law of gravitation. 
 
Gravitational Constant 
 
 In the law of gravitation, the value of gravitational constant G 
plays a very important role. The value of G explains why the 
gravitational force between the Earth and the Sun is so great while the 
same force between two small objects (for example between two human 
beings) is negligible. 
 
 The force experienced by a mass „m‟ which is on the surface of the 
Earth (Figure 6.7) is given by 
 

 
 
ME-mass of the Earth, m - mass of the object, RE- radius of the Earth. 
 
 
Equating Newton‟s second law, F =mg, to equation (6.11) we get, 
 



 

12 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 
 Now the force experienced by some other object of mass M at a 
distance r from the center of the Earth is given by, 
 

 
Using the value of g in equation (6.12), the force F will be, 
 

 
 
 From this it is clear that the force can be calculated simply by 
knowing the value of g. It is to be noted that in the above calculation G is 
not required. 
 

In the year 1798, Henry Cavendish experimentally determined the value 
of gravitational constant „G‟ by using a torsion balance. He calculated 
the value of „G‟ to be equal to 6.75 ×10−11Nm2kg−2 . Using modern 
techniques a more accurate value of G could be measured. Th e 
currently accepted value of G is 6.67259 ×10−11Nm2kg−2 . 

 
GRAVITATIONAL FIELD AND GRAVITATIONAL POTENTIAL 
Gravitational field 
 
 Force is basically due to the interaction between two particles. 
Depending upon the type of interaction we can have two kinds of forces: 
Contact forces and 
Non-contact forces (Figure 6.8). 
 
 Contact forces are the forces applied where one object is in 
physical contact with the other. The movement of the object is caused by 



 

13 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

the physical force exerted through the contact between the object and the 
agent which exerts force. 
 
 Consider the case of Earth orbiting around the Sun. Though the 
Sun and the Earth are not physically in contact with each other, there 
exists an interaction between them. This is because of the fact that the 
Earth experiences the gravitational force of the Sun. This gravitational 
force is a non-contact force. 
 
 It sounds mysterious that the Sun attracts the Earth despite being 
very far from it and without touching it. For contact forces like push or 
pull, we can calculate the strength of the force since we can feel or see. 
But how do we calculate the strength of non-contact force at different 
distances? To understand and calculate the strength of non-contact 
forces, the concept of „field‟ is introduced. 
 
 The gravitational force on a particle of mass „m2‟ due to a particle 
of mass „m1‟ is 

 
 where r̂  is a unit vector that points from m1 to m2 along the line 
joining the masses m1 and m2. 
 

 The gravitational field intensity 1E  (here after called as 
gravitational field) at a point which is at a distance r from m1 is defined 
as the gravitational force experienced by unit mass placed at that point. 

It given by the ratio 
21

2

F

m
(where m2 is the mass of the object on which 21F

acts) 
 

Using 1E = 21

2

F

m
in equation (6.14) we get, 

 

 
 1E  is a vector quantity that points towards the mass m1 and is 
independent of mass m2, Here m2 is taken to be of unit magnitude . The 
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unit is r̂  along the line between m1 and the point in question. The field 

1E is due to the mass m1. In general, the gravitational field intensity due 
to a mass M at a distance r is given by 
 

 
 
 Now in the region of this gravitational field, a mass „m‟ is placed at 
a point P (Figure 6.9). Mass „m‟ interacts with the field 1E and 
experiences an attractive force due to M as shown in Figure 6.9. The 
gravitational force experienced by „m‟ due to „M‟ is given by 
 

 
Now we can equate this with Newton‟s second law F ma  
 

 
 
 In other words, equation (6.18) implies that the gravitational field 
at a point is equivalent to the acceleration experienced by a particle at 
that point. However, it 

is to be noted that a and E are separate physical quantities that have the 
same magnitude and direction. The gravitational field E is the property 

of the source and acceleration a is the effect experienced by the test mass 
(unit mass) which is placed in the gravitational field E . The noncontact 
interaction between two masses can now be explained using the concept 
of “Gravitational field”. 
 
Points to be noted: 
 
 The strength of the gravitational field decreases as we move away 
from the mass M as depicted in the Figure 6.10. The magnitude of E

decreases as the distance r increases. 
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 Figure 6.10 shows that the strength of the gravitational field at 

points P, Q, and R is given by P Q RE E E  . It can be understood by 

comparing the length of the vectors at points P, Q, and R. 
 
 The “field” concept was introduced as a mathematical tool to 
calculate gravitational interaction. Later it was found that field is a real 
physical quantity and it carries energy and momentum in space. The 
concept of field is inevitable in understanding the behavior of charges. 
 
The unit of gravitational field is Newton per kilogram (N/kg) or m s-2. 
 
Superposition principle for Gravitational field 
 
 Consider „n‟ particles of masses 1 2 3, , ,......m m m distributed in space at 

positions 1 2 3, , ,......r r r etc, with respect to point P. The total gravitational 

field at a point P due to all the masses is given by the vector sum of the 
gravitational field due to the individual masses (Figure 6.11). This 
principle is known as superposition of gravitational fields. 
 

 

 
 
 Instead of discrete masses, if we have continuous distribution of a 
total mass M, then the gravitational field at a point P is calculated using 
the method of integration. 
 
EXAMPLE 
 
 Two particles of masses m1 and m2 are placed along the x and y 
axes respectively at a distance „a‟ from the origin. Calculate the 
gravitational field at a point P shown in figure below. 
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Solution 
 
Gravitational field due to m1 at a point P is given by 
 

 
 
Gravitational field due to m2 at the point p is given by, 
 

 
 
 
 The direction of the total gravitational field is determined by the 
relative value of m1 and m2 
 

When 1 2m m m   

 

 
 

( ˆ ˆ ˆ ˆi j j i   as vectors obeys commutation law). 
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 totalE  points towards the origin of the co-ordinate system and the 

magnitude of totalE is 2

Gm

a
.  

 
EXAMPLE 
 
 Qualitatively indicate the gravitational field of Sun on Mercury, 
Earth, and Jupiter shown in figure. 
 
 Since the gravitational field decreases as distance increases, Jupiter 
experiences a weak gravitational field due to the Sun. Since Mercury is 
the nearest to the Sun, it experiences the strongest gravitational field. 
 
Gravitational Potential Energy 
 
 The concept of potential energy and its physical meaning were 
dealt in unit 4. The gravitational force is a conservative force and hence 
we can define a gravitational potential energy associated with this 
conservative force field. 
 
 Two masses m1 and m2 are initially separated by a distance r′. 
Assuming m1 to be fixed in its position, work must be done on m2 to 
move the distance from r′ to r as shown in Figure 6.12(a). 
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 To move the mass m2 through an infinitesimal displacement dr

from r tor dr (shown in the Figure 6.12(b)), work has to be done 

externally. This infinitesimal work is given by 
 

 
 
The work is done against the gravitational force, therefore, 
 

 
 
Substituting Equation (6.22) in 6.21, we get 
 

 
Also we know, 
 

 
 
Thus the total work done for displacing the particle from r‟ to r is 
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 This work done W gives the gravitational potential energy 
difference of the system of masses m1 and m2 when the separation 
between them are r and r′ respectively. 
 
Case 1: If r<r’ 
 
 Since gravitational force is attractive, m2 is attracted by m1.Then m2 
can move from r to r′ without any external work (Figure 6.13). Here 
work is done by the system spending its internal energy and hence the 
work done is said to be negative. 
 
Case 2: If r>r’ 
 
 Work has to be done against gravity to move the object from r to r′. 
Therefore work is done on the body by external force and hence work 
done is positive. 
 
 It is to be noted that only potential energy difference has physical 
significance. Now gravitational potential energy can be discussed by 
choosing one point as the reference point 
 
Let us choose r‟= . Then the second term in the equation (6.28) becomes 
zero. 
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 Now we can define gravitational potential energy of a system of 
two masses m1 and m2 separated by a distance r as the amount of work 
done to bring the mass m2 from infinity to a distance r assuming m1 to 

be fixed in its position and is written as 
1 2( ) .

Gm m
U r

r
  It is to be noted 

that the gravitational potential energy of the system consisting of two 
masses m1 and m2 separated by a distance r, is the gravitational potential 
energy difference of the system when the masses are separated by an 

infinite distance and by distance r. ( ) ( ) ( ).U r U r U    Here we choose 

( )U  =0 as the reference point. The gravitational potential energy ( )U r is 

always negative because when two masses come together slowly from 
infinity, work is done by the system. 
 
 The unit of gravitational potential energy ( )U r is Joule and it is a 

scalar quantity. The gravitational potential energy depends upon the 
two masses and the distance between them. 
 
Gravitational potential energy near the surface of the Earth 
 
 It is already discussed in chapter 4 that when an object of mass m 
is raised to a height h, the potential energy stored in the object is mgh 
(Figure 6.14). This can be derived using the general expression for 
gravitational potential energy 
 
 Consider the Earth and mass system, with r, the distance between 
the mass m and the Earth‟s centre. Then the gravitational potential 
energy, 
 

 
 Here r = Re+h, where Re is the radius of the Earth. h is the height 
above the Earth‟s surface 
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If h << Re, equation (6.31) can be modified as 
 

 
 
By using Binomial expansion and neglecting the higher order terms, we 
get 
 

 
 
We know that, for a mass m on the Earth‟s surface, 
 

 
Substituting equation (6.34) in (6.33) we get, 
 

 
 
 It is clear that the first term in the above expression is independent 
of the height h. For example, if the object is taken from height h1 to 
h2,then the potential energy at h1 is 
 

 
 
and the potential energy at h2 is 
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The potential energy difference between h1 and h2 is 
 

 
 
 The term mgRe in equations (6.36) and (6.37) plays no role in the 
result. Hence in the equation (6.35) the first term can be omitted or taken 
to zero. Thus it can be stated that The gravitational potential energy 
stored in the particle of mass m at a height h from the surface of the 
Earth is U =mgh. On the surface of the Earth, U = 0, since h is zero. 
 
 It is to be noted that mgh is the work done on the particle when we 
take the mass m from the surface of the Earth to a height h. This work 
done is stored as a gravitational potential energy in the mass m. Even 
though mgh is gravitational potential energy of the system (Earth and 
mass m), we can take mgh as the gravitational potential energy of the 
mass m since Earth is stationary when the mass moves to height h. 
Gravitational potential V(r) 
 
 It is explained in the previous sections that the gravitational field E

depends only on the source mass which creates the field. It is a vector 
quantity. We can also define a scalar quantity called “gravitational 
potential” which depends only on the source mass. 
 
 The gravitational potential at a distance r due to a mass is defined 
as the amount of work required to bring unit mass from infinity to the 
distance r and it is denoted as V(r). In other words, the gravitational 
potential at distance r is equivalent to gravitational potential energy per 
unit mass at the same distance r. It is a scalar quantity and its unit is J kg-

1 
 
 We can determine gravitational potential from gravitational 
potential energy. Consider two masses m1 and m2 separated by a distance 
r which has gravitational potential energy U (r) - (Figure 6.15). The 
gravitational potential due to mass m1 at a point P which is at a distance 
r from m1 is obtained by making m2 equal to unity (m2 = 1kg). Thus the 
gravitational potential V r - due to mass m1 at a distance r is 
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 Gravitational field and gravitational force are vector quantities 
whereas the gravitational potential and gravitational potential energy 
are scalar quantities. The motion of particles can be easily analyzed 
using scalar quantities than vector quantities. Consider the example of a 
falling apple: 
 
 Figure 6.16 shows an apple which falls on Earth due to Earth‟s 
gravitational force. This can be explained using the concept of 
gravitational potential V (r) - as follows. 
 
 The gravitational potential V (r) - at a point of height h from the 
surface of the Earth is given by, 
 

 
The gravitational potential V (r) - on the surface of Earth is given by, 
 

 
 
Thus we see that 
 

 
 
 It is already discussed in the previous section that the gravitational 
potential energy near the surface of the Earth at height h is mgh. The 
gravitational potential at this point is simply V(h)= U(h)/m = gh. In fact, 
the gravitational potential on the surface of the Earth is zero since h is 
zero. So the apple falls from a region of a higher gravitational potential 
to a region of lower gravitational potential. In general, the mass will 
move from a region of higher gravitational potential to a region of lower 
gravitational potential. 
 
EXAMPLE 



 

24 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
Water falls from the top of a hill to the ground. Why? 
 
This is because the top of the hill is a point of higher gravitational 
potential than the surface of the Earth i.e. Vhill Vground 

 
 The motion of particles can be analysed more easily using scalars 
like U(r) or V(r) than vector quantities like F  or E . In modern theories of 
physics, the concept of potential plays a vital role. 
 
EXAMPLE 
 
 Consider four masses m1, m2, m3, and m4 arranged on the 
circumference of a circle as shown in figure below 
 
Calculate 
(a) The gravitational potential energy of the system of 4 masses shown in 
figure. 
(b) The gravitational potential at the point O due to all the 4 masses 
 
Solution 
 
 The gravitational potential energy U(r) can be calculated by 
finding the sum of gravitational potential energy of each pair of 
particles. 
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If all the masses are equal, then m1= m2= m3= m4= M 
 

 
 

 
 
 The gravitational potential V(r) at a point O is equal to the sum of 
the gravitational potentials due to individual mass. Since potential is a 
scalar, the net potential at point O is the algebraic sum of potentials due 
to each mass. 
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ACCELERATION DUE TO GRAVITY OF THE EARTH 
 
 When objects fall on the Earth, the acceleration of the object is 
towards the Earth. From Newton‟s second law, an object is accelerated 
only under the action of a force. In the case of Earth, this force is the 
gravitational pull of Earth. This force produces a constant acceleration 
near the Earth‟s surface in all bodies, irrespective of their masses. The 
gravitational force exerted by Earth on the mass m near the surface of 
the Earth is given by 
 

 
Now equating Gravitational force to Newton‟s second law, 
 

 
 
hence, acceleration is, 
 

 
 
 The acceleration experienced by the object near the surface of the 
Earth due to its gravity is called acceleration due to gravity. It is denoted 
by the symbol g. The magnitude of acceleration due to gravity is 
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 It is to be noted that the acceleration experienced by any object is 
independent of its mass. The value of g depends only on the mass and 
radius of the Earth. Infact, Galileo arrived at the same conclusion 400 
years ago that all objects fall towards the Earth with the same 
acceleration through various quantitative experiments. The acceleration 
due to gravity g is found to be 9.8 m s−2 on the surface of the Earth near 
the equator. 
 
Variation of g with altitude, depth and latitude 
 
 Consider an object of mass m at a height h from the surface of the 
Earth. Acceleration experienced by the object due to Earth is 
 

 
 

 
 
If h <<Re 
 
We can use Binomial expansion. Taking the terms upto first order 
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 We find that g‟<g . This means that as altitude h increases the 
acceleration due to gravity g decreases 
 
EXAMPLE 
 
Calculate the value of g in the following two cases: 
(a) If a mango of mass ½ kg falls from a tree from a height of 15 meters, 
what is the acceleration due to gravity when it begins to fall? 
Solution 
 

 
Therefore g‟=g 
 
(b) Consider a satellite orbiting the Earth in a circular orbit of radius 
1600 km above the surface of the Earth. What is the acceleration 
experienced by the satellite due to Earth‟s gravitational force? 
 
Solution 
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 The above two examples show that the acceleration due to gravity 
is a constant near the surface of the Earth. 
 
Variation of g with depth: 
 
 Consider a particle of mass m which is in a deep mine on the 
Earth. (Example: coal mines in Neyveli). Assume the depth of the mine 
as d. To calculate g′ at a depth d, consider the following points. 
 The part of the Earth which is above the radius (Re −d) do not 
contribute to the acceleration. The result is proved earlier and is given as 
 

 
 
Here M‟ is the mass of the Earth of radius (Re −d)  
Assuming the density of Earth ρ to be constant 
 

 
where M is the mass of the Earth and V its volume, Thus, 
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Thus 
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 Here also g ′ < g . As depth increases, g′ decreases. It is very 
interesting to know that acceleration due to gravity is maximum on the 
surface of the Earth but decreases when we go either upward or 
downward. 
 
Variation of g with latitude: 
 
 Whenever we analyze the motion of objects in rotating frames 
[explained in chapter 3] we must take into account the centrifugal force. 
Even though we treat the Earth as an inertial frame, it is not exactly 
correct because the Earth spins about its own axis. So when an object is 
on the surface of the Earth, it experiences a centrifugal force that 
depends on the latitude of the object on Earth. If the Earth were not 
spinning, the force on the object would have been mg. However, the 
object experiences an additional centrifugal force due to spinning of the 
Earth. 
 
This centrifugal force is given by mω2R‟. 
 

 
 
 where λ is the latitude. The component of centrifugal acceleration 
experienced by the object in the direction opposite to g is 
 

 
 
Therefore, 
 

 
 
 From the expression (6.52), we can infer that at equator, λ=0; g‟=g- 
 2R. The acceleration due to gravity is minimum. At poles λ= 90; g‟=g, it 
is maximum. At the equator, g‟is minimum. 
 
EXAMPLE 
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Find out the value of g′ in your school laboratory? 
 
Solution 
 
 Calculate the latitude of the city or village where the school is 
located. The information is available in Google search. For example, the 
latitude of Chennai is approximately 13 degree. 
 

 
 
Here ω2R = (2x3.14/86400)2 x (6400x103) = 3.4x10−2 m s−2. 
 
 It is to be noted that the value of λ should be in radian and not in 
degree. 13 degree is equivalent to 0.2268 rad. 
 

 
 
ESCAPE SPEED AND ORBITAL SPEED 
 
 Hydrogen and helium are the most abundant elements in the 
universe but Earth‟s atmosphere consists mainly of nitrogen and 
oxygen. The following discussion brings forth the reason why hydrogen 
and helium are not found in abundance on the Earth‟s atmosphere. 
When an object is thrown up with some initial speed it will reach a 
certain height after which it will fall back to Earth. If the same object is 
thrown again with a higher speed, it reaches a greater height than the 
previous one and falls back to Earth. This leads to the question of what 
should be the speed of an object thrown vertically up such that it escapes 
the Earth‟s gravity and would never come back. 
 
 Consider an object of mass M on the surface of the Earth. When it 
is thrown up with an initial speed vi, the initial total energy of the object 
is 
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where, ME is the mass of the Earth and RE- the radius of the Earth. The 

term 
E

E

GMM

R
  is the potential energy of the mass M. 

 
 When the object reaches a height far away from Earth and hence 
treated as approaching infinity, the gravitational potential energy 

becomes zero [ ( ) 0]U   and the kinetic energy becomes zero as well. 

Therefore the final total energy of the object becomes zero. This is for 
minimum energy and for minimum speed to escape. Otherwise Kinetic 
energy can be nonzero. 
 

 
According to the law of energy conservation, 
 

 
Substituting (6.53) in (6.54) we get, 
 

 
 
 Consider the escape speed, the minimum speed required by an 
object to escape Earth‟s gravitational field, hence replace vi with ve . i.e, 
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Using 2

E

e

GM
g

R
  

 
 From equation (6.56) the escape speed depends on two factors: 
acceleration due to gravity and radius of the Earth. It is completely 
independent of the mass of the object. By substituting the values of g (9.8 
m s−2) and Re = 6400 km , the escape speed of the Earth is ve = 11.2 kms-1 
. The escape speed is independent of the direction in which the object is 
thrown. Irrespective of whether the object is thrown vertically up, 
radially outwards or tangentially it requires the same initial speed to 
escape Earth‟s gravity. It is shown in Figure 6.19 
 
 Lighter molecules such as hydrogen and helium have enough 
speed to escape from the Earth, unlike the heavier ones such as nitrogen 
and oxygen. (The average speed of hydrogen and helium atoms 
compaired with the escape speed of the Earth,is presented in the kinetic 
theory of gases, unit 9). 
 
Satellites, orbital speed and time period 
 
 We are living in a modern world with sophisticated technological 
gadgets and are able to communicate to any place on Earth. This 
advancement was made possible because of our understanding of solar 
system. Communication mainly depends on the satellites that orbit the 
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Earth (Figure 6.20). Satellites revolve around the Earth just like the 
planets revolve around the Sun. Kepler‟s laws are applicable to 
manmade satellites also. 
 
 For a satellite of mass M to move in a circular orbit, centripetal 
force must be acting on the satellite. This centripetal force is provided by 
the Earth‟s gravitational force. 
 

 
As h increases, the speed of the satellite decreases. 
 
Time period of the satellite: 
 
 The distance covered by the satellite during one rotation in its 

orbit is equal to 2 ( )
E

R h   and time taken for it is the time period, T. 

Then 
 

 
 
From equation (6.58) 
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Squaring both sides of the equation (6.60), we get 
 

 
 
 Equation (6.61) implies that a satellite orbiting the Earth has the 
same relation between time and distance as that of Kepler‟s law of 
planetary motion. For a satellite orbiting near the surface of the Earth, h 
is negligible compared to the radius of the Earth RE. Then, 
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 By substituting the values of RE= 6.4 ×106 m and g = 9.8 m s−2, the 
orbital time period is obtained as T ≅ 85 minutes. 
 
EXAMPLE 
 
 Moon is the natural satellite of Earth and it takes 27 days to go 
once around its orbit. Calculate the distance of the Moon from the 
surface of the Earth assuming the orbit of the Moon as circular. 
 
Solution 
 
We can use Kepler‟s third law, 
 

 
 

 
 
Here h is the distance of the Moon from the surface of the Earth. Here, 
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 By substituting these values, the distance to the Moon from the 
surface of the Earth is calculated to be 3.77 ×105 km. 
 
Energy of an Orbiting Satellite 
 
 The total energy of a satellite orbiting the Earth at a distance h 
from the surface of Earth is calculated as follows; The total energy of the 
satellite is the sum of its kinetic energy and the gravitational potential 
energy. The potential energy of the satellite is, 
 

 
 
Here Ms - mass of the satellite, ME - mass of the Earth, RE - radius of the 
Earth. 
The Kinetic energy of the satellite is 
 

 
 
Here v is the orbital speed of the satellite and is equal to 
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Substituting the value of v in (6.64), the kinetic energy of the satellite 
becomes, 
 

 
 
Therefore the total energy of the satellite is 

 
 
 The negative sign in the total energy implies that the satellite is 
bound to the Earth and it cannot escape from the Earth. 
 
 As h approaches   , the total energy tends to zero. Its physical 
meaning is that the satellite is completely free from the influence of 
Earth‟s gravity and is not bound to Earth at large distances. 
 
EXAMPLE 
 
 Calculate the energy of the (i) Moon orbiting the Earth and (ii) 
Earth orbiting the Sun. 
 
Solution 
 
 Assuming the orbit of the Moon to be circular, the energy of Moon 
is given by, 
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 where ME is the mass of Earth 6.02 ×1024 kg; Mm is the mass of 
Moon 7.35 ×1022 kg; and Rm is the distance between the Moon and the 
center of the Earth 3.84 ×105km 
 

 

 
 
 The negative energy implies that the Moon is bound to the Earth. 
 
 Same method can be used to prove that the energy of the Earth is 
also negative. 
 
Geo-stationary and polar satellite 
 
 The satellites orbiting the Earth have different time periods 
corresponding to different orbital radii. Can we calculate the orbital 
radius of a satellite if its time period is 24 hours? 
 
Kepler‟s third law is used to find the radius of the orbit. 
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 Substituting for the time period (24 hrs = 86400 seconds), mass, 
and radius of the Earth, h turns out to be 36,000 km. Such satellites are 
called “geo-stationary satellites”, since they appear to be stationary 
when seen from Earth. 
 
 
 India uses the INSAT group of satellites that are basically geo-
stationary satellites for the purpose of telecommunication. Another type 
of satellite which is placed at a distance of 500 to 800 km from the 
surface of the Earth orbits the Earth from north to south direction. This 
type of satellite that orbits Earth from North Pole to South Pole is called 
a polar satellite. The time period of a polar satellite is nearly 100 minutes 
and the satellite completes many revolutions in a day. A Polar satellite 
covers a small strip of area from pole to pole during one revolution. In 
the next revolution it covers a different strip of area since the Earth 
would have moved by a small angle. In this way polar satellites cover 
the entire surface area of the Earth. 
 
Weightlessness Weight of an object 
 
 Objects on Earth experience the gravitational force of Earth. The 
gravitational force acting on an object of mass m is mg. This force always 
acts downwards towards the center of the Earth. When we stand on the 
floor, there are two forces acting on us. One is the gravitational force, 
acting downwards and the other is the normal force exerted by the floor 

upwards on us to keep us at rest. The weight of an object W  is defined 
as the downward force whose magnitude W is equal to that of upward 
force that must be applied to the object to hold it at rest or at constant 
velocity relative to the earth. The direction of weight is in the direction 
of gravitational force. So the magnitude of weight of an object is denoted 
as, W=N=mg. Note that even though magnitude of weight is equal to 
mg, it is not same as gravitational force acting on the object. 
 
Apparent weight in elevators 
 
 Everyone who used an elevator would have felt a jerk when the 
elevator takes off or stops. Why does it happen? Understanding the 
concept of weight is crucial for explaining this effect. Let us consider a 
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man inside an elevator in the following scenarios. When a man is 
standing in the elevator, there are two forces acting on him. 
 

1. Gravitational force which acts downward. If we take the vertical 
direction as positive y direction, the gravitational force acting on 

the man is ˆ
GF mgj   

2. The normal force exerted by floor on the man which acts vertically 

upward, N Nj  

 
Case (i) When the elevator is at rest 
 
 The acceleration of the man is zero. Therefore the net force acting 
on the man is zero. With respect to inertial frame (ground), applying 
Newton‟s second law on the man, 
 

 
 
By comparing the components, we can write 
 

 
 
 Since weight, W =N, the apparent weight of the man is equal to his 
actual weight. 
 
Case (ii) When the elevator is moving uniformly in the upward or 
downward direction 
 
 In uniform motion (constant velocity), the net force acting on the 
man is still zero. Hence, in this case also the apparent weight of the man 
is equal to his actual weight. It is shown in Figure 6.23(a) 
 
Case (iii) When the elevator is accelerating upwards 
 

 If an elevator is moving with upward acceleration ( )a a j  with 

respect to inertial frame (ground), applying Newton‟s second law on the 
man, 
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Writing the above equation in terms of unit vector in the vertical 
direction, 
 

 
By comparing the components, 
 

 
 
 Therefore, apparent weight of the man is greater than his actual 
weight. It is shown in Figure 6.23(b) 
 
 
Case (iv) When the elevator is accelerating downwards 
 

 If the elevator is moving with downward acceleration ( )a a j  by 

applying Newton‟s second law on the man, we can write 
 

 
Writing the above equation in terms of unit vector in the vertical 
direction 
 

 
 
By comparing the components, 
 

 
 
 Therefore, apparent weight W = N = m(g-a) of the man is lesser 
than his actual weight. It is shown in Figure 6.23(c) 
 
Weightlessness of freely falling bodies 
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 Freely falling objects experience only gravitational force. As they 
fall freely, they are not in contact with any surface (by neglecting air 
friction). The normal force acting on the object is zero. The downward 
acceleration is equal to the acceleration due to the gravity of the Earth. 
i.e (a = g). From equation (6.69) we get. 
 

 
 
 This is called the state of weightlessness. When the lift falls (when 
the lift wire cuts) with downward acceleration a = g, the person inside 
the elevator is in the state of weightlessness or free fall. It is shown in 
Figure 6.23(d) 
 
 When the apple was falling from the tree it was weight less. As 
soon as it hit Newton‟s head, it gained weight! and Newton gained 
physics! 
 
Weightlessness in satellites: 
 
 There is a wrong notion that the astronauts in satellites experience 
no gravitational force because they are far away from the Earth. Actually 
the Earth satellites that orbit very close to Earth experience only 
gravitational force. The astronauts inside the satellite also experience the 
same gravitational force. Because of this, they cannot exert any force on 
the floor of the satellite. Thus, the floor of the satellite also cannot exert 
any normal force on the astronaut. Therefore, the astronauts inside a 
satellite are in the state of weightlessness. Not only the astronauts, but 
all the objects in the satellite will be in the state of weightlessness which 
is similar to that of a free fall. It is shown in the Figure 6.24. 
 
ELEMENTARY IDEAS OF ASTRONOMY 
 
 Astronomy is one of the oldest sciences in the history of mankind. 
In the olden days, astronomy was an inseparable part of physical 
science. It contributed a lot to the development of physics in the 16th 
century. In fact Kepler‟s laws and Newton‟s theory of gravitation were 
formulated and verified using astronomical observations and data 
accumulated over the centuries by famous astronomers like Hippachrus, 
Aristachrus, Ptolemy, Copernicus and Tycho Brahe. Without Tycho 
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Brahe‟s astronomical observations, Kepler‟s laws would not have 
emerged. Without Kepler‟s laws, Newton‟s theory of gravitation would 
not have been formulated. 
 
 It was mentioned in the beginning of this chapter that Ptolemy‟s 
geocentric model was replaced by Copernicus‟ heliocentric model. It is 
important to analyze and explain the shortcoming of the geocentric 
model over heliocentric model. 
 
Heliocentric system over geocentric system 
 
 When the motion of the planets are observed in the night sky by 
naked eyes over a period of a few months, it can be seen that the planets 
move eastwards and reverse their motion for a while and return to 
eastward motion again. This is called “retrograde motion” of planets. 
 
 Figure 6.25 shows the retrograde motion of the planet Mars. 
Careful observation for a period of a year clearly shows that Mars 
initially moves eastwards (February to June), then reverses its path and 
moves backwards (July, August, September). It changes its direction of 
motion once again and continues its forward motion (October onwards). 
In olden days, astronomers recorded the retrograde motion of all  visible 
planets and tried to explain the motion. According to Aristotle, the other 
planets and the Sun move around the Earth in the circular orbits. If it 
was really a circular orbit it was not known how the planet could 
reverse its motion for a brief interval. To explain this retrograde motion, 
Ptolemy introduced the concept of “epicycle” in his geocentric model. 
According to this theory, while the planet orbited the Earth, it also 
underwent another circular motion termed as “epicycle”. A combination 
of epicycle and circular motion around the Earth gave rise to retrograde 
motion of the planets with respect to Earth (Figure 6.26). Essentially 
Ptolemy retained the Earth centric idea of Aristotle and added the 
epicycle motion to it. 
 But Ptolemy‟s model became more and more complex as every 
planet was found to undergo retrograde motion. In the 15th century, the 
Polish astronomer Copernicus proposed the heliocentric model to 
explain this problem in a simpler manner. According to this model, the 
Sun is at the center of the solar system and all planets orbited the Sun. 
The retrograde motion of planets with respect to Earth is because of the 
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relative motion of the planet with respect to Earth. The retrograde 
motion from the heliocentric point of view is shown in Figure 6.27. 
 
 Figure 6.27 shows that the Earth orbits around the Sun faster than 
Mars. Because of the relative motion between Mars and Earth, Mars 
appears to move backwards from July to October. In the same way the 
retrograde motion of all other planets was explained successfully by the 
Copernicus model. It was because of its simplicity, the heliocentric 
model slowly replaced the geocentric model. Historically, if any natural 
phenomenon has one or more explanations, the simplest one is usually 
accepted. Though this was not the only reason to disqualify the 
geocentric model, a detailed discussion on correctness of the Copernicus 
model over to Ptolemy‟s model can be found in astronomy books 
 
Kepler’s Third Law and The Astronomical Distance 
 
 When Kepler derived his three laws, he strongly relied on Tycho 
Brahe‟s astronomical observation. In his third law, he formulated the 
relation between the distance of a planet from the Sun to the time period 
of revolution of the planet. Astronomers cleverly used geometry and 
trigonometry to calculate the distance of a planet from the Sun in terms 
of the distance between Earth and Sun. Here we can see how the 
distance of Mercury and Venus from the Sun were measured. The Venus 
and Mercury, being inner planets with respect to Earth, the maximum 
angular distance they can subtend at a point on Earth with respect to the 
Sun is 46 degree for Venus and 22.5 degree for Mercury. It is shown in 
the Figure 6.28 
 
 Figure 6.29 shows that when Venus is at maximum elongation (i.e., 
46 degree) with respect to Earth, Venus makes 90 degree to Sun. This 
allows us to find the distance between Venus and Sun. The distance 
between Earth and Sun is taken as one Astronomical unit (1 AU). 
 
 The trigonometric relation satisfied by this right angled triangle is 
shown in Figure 6.29. 
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where R = 1 AU. 

 
 
 Here sin46 - 0.77. Hence Venus is at a distance of 0.77 AU from 
Sun. Similarly, the distance between Mercury (θ is 22.5 degree) and Sun 
is calculated as 0.38 AU. To find the distance of exterior planets like 
Mars and Jupiter, a slightly different method is used. The distances of 
planets from the Sun is given in the table below. 
 

 
 
 It is to be noted that to verify the Kepler‟s law we need only high 
school level geometry and trigonometry. 
 
Measurement of radius of the Earth 
 
 Around 225 B.C a Greek librarian “Eratosthenes” who lived at 
Alexandria measured the radius of the Earth with a small error when 
compared with results using modern measurements. The technique he 
used involves lower school geometry and brilliant insight. He observed 
that during noon time of summer solstice the Sun‟s rays cast no shadow 
in the city Syne which was located 500 miles away from Alexandria. At 
the same day and same time he found that in Alexandria the Sun‟s rays 
made 7.2 degree with local vertical as shown in the Figure 6.30. He 
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realized that this difference of 7.2 degree was due to the curvature of the 
Earth. 
 

 
 

 If S is the length of the arc between the cities of Syne and 
Alexandria, and if R is radius of Earth, then 
 

 
 
 1 mile is equal to 1.609 km. So, he measured the radius of the Earth 
to be equal to R = 6436 km, which is amazingly close to the correct value 
of 6378 km. 
 
 The distance of the Moon from Earth was measured by a famous 
Greek astronomer Hipparchus in the 3rd century BC. 
 
Interesting Astronomical Facts 
Lunar eclipse and measurement of shadow of Earth 
 
 On January 31, 2018 there was a total lunar eclipse which was 
observed from various places including Tamil Nadu. It is possible to 
measure the radius of shadow of the Earth at the point where the Moon 
crosses. Figure 6.31 illustrates this.  
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 When the Moon is inside the umbra shadow, it appears red in 
color. As soon as the Moon exits from the umbra 1737shadow, it appears 
in crescent shape. Figure 6.32 is the photograph taken by digital camera 
during Moon‟s exit from the umbra shadow. 
 
 By finding the apparent radii of the Earth‟s umbra shadow and the 
Moon, the ratio of the these radii can be calculated. This is shown in 
Figures 6.33 and 6.34. 
 
The apparent radius of Earth‟s umbra shadow = Rs = 13.2 cm 
 
The apparent radius of the Moon = Rm= 5.15 cm 
 

 
 
The radius of the Earth‟s umbra shadow is Rs=2.56Rm 

 
The radius of Moon Rm=1737 km 
 

 
 
 The error will reduce if the pictures taken using a high quality 
telescope are used. It is to be noted that this calculation is done using 
very simple mathematics. 
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 Early astronomers proved that Earth is spherical in shape by 
looking at the shape of the shadow cast by Earth on the Moon during 
lunar eclipse 
 
Why there are no lunar eclipse and solar eclipse every month? 
 
 If the orbits of the Moon and Earth lie on the same plane, during 
full Moon of every month, we can observe lunar eclipse. If this is so 
during new Moon we can observe solar eclipse. But Moon‟s orbit is 
tilted 5° with respect to Earth‟s orbit. Due to this 5° tilt, only during 
certain periods of the year, the Sun, Earth and Moon align in straight 
line leading to either lunar eclipse or solar eclipse depending on the 
alignment. This is shown in Figure 6.35 
 
Why do we have seasons on Earth? 
 
 The common misconception is that „Earth revolves around the 
Sun, so when the Earth is very far away, it is winter and when the Earth 
is nearer, it is summer‟. Actually, the seasons in the Earth arise due to 
the rotation of Earth around the Sun with 23.5° tilt. This is shown in 
Figure 6.36 
 
 Due to this 23.5° tilt, when the northern part of Earth is farther to 
the Sun, the southern part is nearer to the Sun. So when it is summer in 
the northern hemisphere, the southern hemisphere experience winter. 
 
Star’s apparent motion and spinning of the Earth 
 
 The Earth‟s spinning motion can be proved by observing star‟s 
position over a night. Due to Earth‟s spinning motion, the stars in sky 
appear to move in circular motion about the pole star as shown in Figure 
6.37 
 
Recent developments of astronomy and gravitation 
 
 Till the 19th century astronomy mainly depended upon either 
observation with the naked eye or telescopic observation. After the 
discovery of the electromagnetic spectrum at the end of the 19th  century, 
our understanding of the universe increased enormously. Because of this 
development in the late 19th century it was found that Newton‟s law of 
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gravitation could not explain certain phenomena and showed some 
discrepancies. Albert Einstein formulated his „General theory of 
relativity‟ which was one of the most successful theories of 20th  century 
in the field of gravitation. 
 
 In the twentieth century both astronomy and gravitation merged 
together and have grown in manifold. The birth and death of stars were 
more clearly understood. Many Indian physicists made very important 
contributions to the field of astrophysics and gravitation. 
 
 Subramanian Chandrasekar formulated the theory of black holes 
and explained the life of stars. These studies brought him the Nobel 
prize in the year 1983. Another very notable Indian astrophysicist 
Meghnad Saha discovered the ionization formula which was useful in 
classifying stars. This formula is now known as “Saha ionization 
formula”. In the field of gravitation Amal Kumar Raychaudhuri solved 
an equation now known as “Raychaudhuri equation” which was a very 
important contribution. Another notable Indian Astrophysicist Jayant V 
Narlikar made pioneering contribution in the field of astrophysics and 
has written interesting books on astronomy and astrophysics. IUCAA 
(Inter University Center for Astronomy and Astrophysics) is one of the 
important Indian research institutes where active research in 
astrophysics and gravitation are conducted. The institute was founded 
by Prof. J.V. Narlikar. Students are encouraged to read more about the 
recent developments in these fields. 
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 UNIT - 10 OSCILLATIONS 
 
 
INTRODUCTION 
 
 Have you seen the Thanjavur Dancing Doll (In Tamil, it is called 
„Thanjavur thalayattibommai‟)?. It is a world famous Indian cultural doll 
(Figure 10.1). What does this doll do when disturbed? It will dance such 
that the head and body move continuously in a to and fro motion, until 
the movement gradually stops. Similarly, when we walk on the road, 
our hands and legs will move front and back. Again similarly, when a 
mother swings a cradle to make her child sleep, the cradle is made to 
move in to and fro motion. All these motions are diff erent from the 
motion that we have discussed so far. Th ese motions are shown in 
Figure 10.2. Generally, they are known as oscillatory motion or vibratory 
motion. A similar motion occurs even at atomic levels. When the 
temperature is raised, the atoms in a solid vibrate about their rest 
position (mean position or equilibrium position). Th e study of 
vibrational motion is very important in engineering applications, such 
as, designing the structure of building, mechanical equipments, etc. 
 
Periodic and nonperiodic motion 
 
 Motion in physics can be classified as repetitive (periodic motion) 
and non- repetitive (non-periodic motion). 
 
Periodic motion 
 
 Any motion which repeats itself in a fixed time interval is known 
as periodic motion. 
 
Examples : Hands in pendulum clock, swing of a cradle, the revolution 
of the Earth around the Sun, waxing and waning of Moon, etc. 
 
Non-Periodic motion 
 
 Any motion which does not repeat itself after a regular interval of 
time is known as non-periodic motion. 
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Example : Occurance of Earth quake, eruption of volcano, etc. 
 
E X A M P L E 
 
 Classify the following motions as periodic and non-periodic 
motions?. 
 

a. Motion of Halley‟s comet. 
b. Motion of clouds. 
c. Moon revolving around the Earth 

 
Solution 
 

a. Periodic motion 
b. Non-periodic motion 
c. Periodic motion 

 
E X A M P L E 
 
 Which of the following functions of time represent periodic and 
non-periodic motion?. 
 

a. sin ωt + cos ωt 
b. ln ωt 

 
Solution 
 

a. Periodic 
b. Non-periodic 

 
Oscillatory motion 
 
 When an object or a particle moves back and forth repeatedly for 
some duration of time its motion is said to be oscillatory (or vibratory). 
Examples; our heart beat, swinging motion of the wings of an insect, 
grandfather‟s clock (pendulum clock), etc. Note that all oscillatory 
motion are periodic whereas all periodic motions need not be oscillation 
in nature. see Figure 10.3 
 
SIMPLE HARMONIC MOTION (SHM) 
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 Simple harmonic motion is a special type of oscillatory motion in 
which the acceleration or force on the particle is directly proportional to 
its displacement from a fixed point and is always directed towards that 
fixed point. In one dimensional case, let x be the displacement of the 
particle and ax be the acceleration of the particle, then 
 

 
 where b is a constant which measures acceleration per unit 
displacement and dimensionally it is equal to T−2. By multiplying by 
mass of the particle on both sides of equation (10.2) and from Newton‟s 
second law, the force is 
 

 
where k is a force constant which is defined as force per unit length. The 
negative sign indicates that displacement and force (or acceleration) are 
in opposite directions. This means that when the displacement of the 
particle is taken towards right of equilibrium position (x takes positive 
value), the force (or acceleration) will point towards equilibrium 
(towards left ) and similarly, when the displacement of the particle is 
taken towards left of equilibrium position (x takes negative value), the 
force (or acceleration) will point towards equilibrium (towards right). 
This type of force is known as restoring force because it always directs 
the particle executing simple harmonic motion to restore to its original 
(equilibrium or mean) position. This force (restoring force) is central and 
attractive whose center of attraction is the equilibrium position. 
 
 In order to represent in two or three dimensions, we can write 
using vector notation 
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where r the displacement of the particle from the chosen origin. Note 
that the force and displacement have a linear relationship. This means 
that the exponent of force 

F and the exponent of displacement r are unity. The sketch between 

cause (magnitude of force F ) and effect (magnitude of displacement r ) 

is a straight line passing through second and fourth quadrant as shown 

in. By measuring slope 
1

k
one can find the numerical value of force 

constant k. 
 
The projection of uniform circular motion on a diameter of SHM 
 
 Consider a particle of mass m moving with uniform speed v along 
the circumference of a circle whose radius is r in anti-clockwise direction 
(as shown in Figure 10.6). Let us assume that the origin of the coordinate 
system coincides with the center O of the circle. If ω is the angular 
velocity of the particle and θ the angular displacement of the particle at 
any instant of time t, then θ = ωt. By projecting the uniform circular 
motion on its diameter gives a simple harmonic motion. This means that 
we can associate a map (or a relationship) between uniform circular (or 
revolution) motion to vibratory motion. Conversely, any vibratory 
motion or revolution can be mapped to uniform circular motion. In 
other words, these two motions are similar in nature. 
 
 Let us first project the position of a particle moving on a circle, on 
to its vertical diameter or on to a line parallel to vertical diameter as 
shown in Figure 10.7. Similarly, we can do it for horizontal axis or a line 
parallel to horizontal axis. 
 
 As a specific example, consider a spring mass system (or 
oscillation of pendulum) as shown in Figure 10.8. When the spring 
moves up and down (or pendulum moves to and fro), the motion of the 
mass or bob is mapped to points on the circular motion. 
 
 Thus, if a particle undergoes uniform circular motion then the 
projection of the particle on the diameter of the circle (or on a line 
parallel to the diameter ) traces straight line motion which is simple 
harmonic in nature. The circle is known as reference circle of the simple 
harmonic motion. The simple harmonic motion can also be defined as 
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the motion of the projection of a particle on any diameter of a circle of 
reference. 
 
Displacement, velocity, acceleration and its graphical representation – 
SHM 
 
 The distance travelled by the vibrating particle at any instant of 
time t from its mean position is known as displacement. Let P be the 
position of the particle on a circle of radius A at some instant of time t as 
shown in Figure 10.9. Then its displacement y at that instant of time t 
can be derived as follows In ΔOPN 
 

 

 

 
 
 The displacement y takes maximum value (which is equal to A) 
when sin ωt=1.This maximum displacement from the mean positionis 
known as amplitude (A) of the vibrating particle. For simple harmonic 
motion, the amplitude is constant. But, in general, for any motion other 
than simple harmonic, the amplitude need not be constant, it may vary 
with time. 
 
Velocity 
 
 The rate of change of displacement is velocity. Taking derivative of 
equation (10.6) with respect to time, we get 
 

 
 
 For circular motion (of constant radius), amplitude A is a constant 
and further, for uniform circular motion, angular velocity ω is a 
constant. Therefore, 
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Using trigonometry identity, 
 

 
 
From equation (10.6), 
 

 
 
 From equation (10.8), when the displacement y = 0, the velocity v 
= ωA (maximum) and for the maximum displacement y = A, the velocity 
v = 0 (minimum). 
 
 As displacement increases from zero to maximum, the velocity 
decreases from maximum to zero. This is repeated. 
 
 Since velocity is a vector quantity, equation (10.7) can also be 
deduced by resolving in to components. 
 
Acceleration 
 
The rate of change of velocity is acceleration. 
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From the Table 10.1 and figure 10.10, we observe that at the mean 
position 
 

 
 
 (y = 0), velocity of the particle is maximum but the acceleration of 
the particle is zero. At the extreme position (y = ±A), the velocity of the 
particle is zero but the acceleration is maximum ±Aω2 acting in the 
opposite direction. 
 
E X A M P L E 
 
Which of the following represent simple harmonic motion? 
 

a. x = A sin ωt + B cos ωt 
b. x = A sin ωt+ B cos 2ωt 
c. x = A eiωt 
d. x = A ln ωt 

 
Solution 
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a. x = A sin ωt + B cos ωt 
 

 
 

 
 

This differential equation is similar to the differential equation of 
SHM (equation 10.10). Therefore, x = A sin ωt + B cos ωt represents 
SHM. 
 

b. x =A sin ωt + B cos2ωt 
 

 
This differential equation is not like the differential equation of a 
SHM (equation 10.10). Therefore, x = A sin ωt + B cos 2ωt does not 
represent SHM. 
 

c. x = A eiωt 
 

 
This differential equation is like the differential equation of SHM 
(equation 10.10). Therefore, x = A eiωt represents SHM. 



 

60 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
d. x = A ln ωt 

 

 
This differential equation is not like the differential equation of a 
SHM (equation 10.10). Therefore, x = A ln ωt does not represent 
SHM. 

E X A M P L E  
 
 Consider a particle undergoing simple harmonic motion. The 
velocity of the particle at position x1 is v1 and velocity of the particle at 
position x2 is v2. Show that the ratio of time period and amplitude is 
 

 
 
Solution 
 

 
Therefore, at position x1, 

 
Similarly, at position x2, 
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Time period, frequency, phase, phase difference and epoch in SHM. 
Time period 
 
 The time period is defined as the time taken by a particle to 
complete one oscillation. It is usually denoted by T. For one complete 
revolution, the time taken is t = T, therefore 
 

 
 Then, the displacement of a particle executing simple harmonic 
motion can be written either as sine function or cosine function. 
 

 
 
 where T represents the time period. Suppose the time t is replaced 
by t + T, then the function 
 

 
 
 Thus, the function repeats after one time period. This y(t) is an 
example of periodic function. 
 
Frequency and angular frequency 
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 The number of oscillations produced by the particle per second is 
called frequency. It is denoted by f. SI unit for frequency is s−1 or hertz 
(In symbol, Hz). Mathematically, frequency is related to time period by 
 

 
 
 The number of cycles (or revolutions) per second is called angular 
frequency. It is usually denoted by the Greek small letter „omega‟, ω. 
Comparing equation (10.11) and equation (10.12), angular frequency and 
frequency are related by 
 

 
SI unit for angular frequency is rad s−1. (read it as radian per second) 
 
Phase 
 
 The phase of a vibrating particle at any instant completely 
specifies the state of the particle. It expresses the position and direction 
of motion of the particle at that instant with respect to its mean position 
(Figure 10.11). 

 
 
 where ωt + φ0 = φ is called the phase of the vibrating particle. At 
time t = 0 s (initial time), the phase φ = φ0 is called epoch (initial phase) 
where φ0 is called the angle of epoch. Phase difference: Consider two 
particles executing simple harmonic motions. Their equations are y1 = A 
sin(ωt + φ1) and y2 = A sin(ωt + φ2), then the phase difference Δφ= (ωt + 
φ2) − (ωt + φ1) = φ2 −φ1. 
 
E X A M P L E 
 
 A nurse measured the average heart beats of a patient and 
reported to the doctor in terms of time period as 0.8 s. Express the heart 
beat of the patient in terms of number of beats measured per minute. 
 
Solution 
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 Let the number of heart beats measured be f. Since the time period 
is inversely proportional to the heart beat, then 
 

 
 
One minute is 60 second, 
 

 
 

 
 
E X A M P L E 
 
 Calculate the amplitude, angular frequency, frequency, time 
period and initial phase for the simple harmonic oscillation given below 
 

a. y = 0.3 sin (40πt + 1.1) 
b. y = 2 cos (πt) 
c. y = 3 sin (2πt − 1.5) 

 
Solution 
 
Simple harmonic oscillation equation is y = A sin(ωt + φ0) or y =A cos(ωt 
+ φ0) 
 

a. For the wave, y = 0.3 sin(40 t +1.1) 
Amplitude is A = 0.3 unit 
Angular frequency ω = 40  rad s−1 

Frequency 
40

20
2 2

f Hz
 
 

    

Time period 
1 1

0.05
20

T s
f

    

Initial phase is φ0 = 1.1 rad 
 

b. For the wave, y = 2 cos ( t) 
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Amplitude is A = 2 unit 
Angular frequency ω =  rad s−1 

Frequency 0.5
2 2

f Hz
 
 

    

Time period 
1 1

2
0.5

T s
f

    

Initial phase is φ0 = 0 rad 
 

c. For the wave, y = 3 sin(2 t + 1.5) 
Amplitude is A = 3 unit 
Angular frequency ω = 2  rad s−1 

Frequency
2

1
2 2

f Hz
 
 

    

Time period
1 1

1
1

T s
f

    

Initial phase is φ0 = 1.5 rad 
 
E X A M P L E 
 
Show that for a simple harmonic motion, the phase difference between 
 

a. displacement and velocity is
2


 radian or 90°. 

b. velocity and acceleration is
2


radian or 90 

c. displacement and acceleration is radian or 180°. 
 
Solution 
 

a. The displacement of the particle executing simple harmonic 
motion y=A sinωt 
Velocity of the particle is 

cos sin
2

v A t A t
       

 
 

The phase difference between displacement and velocity is 
2


 

 
b. The velocity of the particle is v = A ω cos ωt 

Acceleration of the particle is 
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2 2sin cos
2

a A t A t
        

 
 

The phase difference between velocity and acceleration is 
2


 

 
c. The displacement of the particle is y = A sinωt 

Acceleration of the particle is 
2 2sin sin( )a A t A t         

The phase difference between displacement and acceleration is  . 
 

ANGULAR SIMPLE HARMONIC MOTION 
Time period and frequency of angular SHM 
 
 When a body is allowed to rotate freely about a given axis then the 
oscillation is known as the angular oscillation. The point at which the 
resultant torque acting on the body is taken to be zero is called mean 
position. If the body is displaced from the mean position, then the 
resultant torque acts such that it is proportional to the angular 
displacement and this torque has a tendency to bring the body towards 
the mean position. (Note: Torque is explained in unit 5) 
 

 Let  be the angular displacement of the body and the resultant 

torque   acting on the body is 
 

 
 
 K is the restoring torsion constant, which is torque per unit 

angular displacement. If I is the moment of inertia of the body and   is 
the angular acceleration then 

 

But 

2

2

d

dt

  and therefore, 
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 This differential equation resembles simple harmonic differential 
equation. 
 So, comparing equation (10.17) with simple harmonic motion 
given in equation (10.10), we have 
 

 
The frequency of the angular harmonic motion (from equation 10.13) is 
 

 
 
The time period (from equation 10.12) is 
 

 
 
Comparison of Simple Harmonic Motion and Angular Simple 
Harmonic Motion 
 
 In linear simple harmonic motion, the displacement of the particle 

is measured in terms of linear displacement r The restoring force is 

F kr  , where k is a spring constant or force constant which is force 
per unit displacement. In this case, the inertia factor is mass of the body 
executing simple harmonic motion. 
 
 In angular simple harmonic motion, the displacement of the 

particle is measured in terms of angular displacement . Here, the 
spring factor stands for torque constant i.e., the moment of the couple to 
produce unit angular displacement or the restoring torque per unit 
angular displacement. In this case, the inertia factor stands for moment 
of inertia of the body executing angular simple harmonic oscillation. 
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LINEAR SIMPLE HARMONIC OSCILLATOR (LHO) 
Horizontal oscillations of a spring-mass system 
 
 Consider a system containing a block of mass m attached to a 
massless spring with stiffness constant or force constant or spring 
constant k placed on a smooth horizontal surface (frictionless surface) as 
shown in Figure 10.13. Let x0 be the equilibrium position or mean 
position of mass m when it is left undisturbed. Suppose the mass is 
displaced through a small displacement x towards right from its 
equilibrium position and then released, it will oscillate back and forth 
about its mean position x0. Let F be the restoring force (due to stretching 
of the spring) which is proportional to the amount of displacement of 
block. For one dimensional motion, mathematically, we have 
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 where negative sign implies that the restoring force will always act 
opposite to the direction of the displacement. This equation is called 
Hooke‟s law (refer to unit 7). Notice that, the restoring force is linear 
with the displacement (i.e., the exponent of force and displacement are 
unity). This is not always true; in case if we apply a very large stretching 
force, then the amplitude of oscillations becomes very large (which 
means, force is proportional to displacement containing higher powers 
of x) and therefore, the oscillation of the system is not linear and hence, 
it is called non-linear oscillation. We restrict ourselves only to linear 
oscillations throughout our discussions, which means Hooke‟s law is 
valid (force and displacement have a linear relationship). 
 
 From Newton‟s second law, we can write the equation for the 
particle executing simple harmonic motion 
 

 
 Comparing the equation (10.21) with simple harmonic motion 
equation (10.10), we get 
 

 
 
which means the angular frequency or natural frequency of the oscillator 
is 
 

 
The frequency of the oscillation is 
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and the time period of the oscillation is 
 

 
 
 Notice that in simple harmonic motion, the time period of 
oscillation is independent of amplitude. This is valid only if the 
amplitude of oscillation is small. The solution of the differential equation 
of a SHM may be written as 
 

 
or 

 
 
where A, ω and ϕ are constants. General solution for differential 
equation 10.21 is x(t) = A sin(ωt +φ)+ B cos(ωt +φ) where A and B are 
contants. 
 
Vertical oscillations of a spring 
 
 Let us consider a massless spring with stiff ness constant or force 
constant k attached to a ceiling as shown in Figure 10.15. Let the length 
of the spring before loading mass m be L. If the block of mass m is 
attached to the other end of spring, then the spring elongates by a length 
l. Let F1 be the restoring force due to stretching of spring. Due to mass 
m, the gravitational force acts vertically downward. We can draw free-
body diagram for this system as shown in Figure 10.15. When the 
system is under equilibrium, 
 

 
 
But the spring elongates by small displacement l, therefore 
 

 
 
Substituting equation (10.28) in equation (10.27), we get 
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 Suppose we apply a very small external force on the mass such 
that the mass further displaces downward by a displacement y, then it 
will oscillate up and down. Now, the restoring force due to this 
stretching of spring (total extension of spring is y + l ) is 
 

 
 

Since, the mass moves up and down with acceleration 
2

2

d y

dt
 by drawing 

the free body diagram for this case, we get 
 

 
 
The net force acting on the mass due to this stretching is 
 

 
 
 The gravitational force opposes the restoring force. Substituting 
equation (10.29) in equation (10.32), we get 
 

 
Applying Newton‟s law, we get 
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 The above equation is in the form of simple harmonic differential 
equation. Therefore, we get the time period as 
 

 
 
The time period can be rewritten using equation (10.29) 
 

 
The acceleration due to gravity g can be computed from the formula 
 

 
 
E X A M P L E 
 
 A spring balance has a scale which ranges from 0 to 25 kg and the 
length of the scale is 0.25m. It is taken to an unknown planet X where the 
acceleration due to gravity is 11.5 m s−1. Suppose a body of mass M kg is 
suspended in this spring and made to oscillate with a period of 0.50 s. 
Compute the gravitational force acting on the body. 
 
Solution 
 
 Let us first calculate the stiff ness constant of the spring balance by 
using equation (10.29), 
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 The time period of oscillations is given by 2
M

T
k

  where M is 

the mass of the body. Since, M is unknown, rearranging, we get 
 

 
 
 The gravitational force acting on the body is W = Mg = 7.3 × 11.5 = 
83.95 N ≈ 84 N 
 
Combinations of springs 
 
 Spring constant or force constant, also called as stiffness constant, 
is a measure of the stiffness of the spring. Larger the value of the spring 
constant, stiffer is the spring. This implies that we need to apply more 
force to compress or elongate the spring. Similarly, smaller the value of 
spring constant, the spring can be stretched (elongated) or compressed 
with lesser force. Springs can be connected in two ways. Either the 
springs can be connected end to end, also known as series connection, or 
alternatively, connected in parallel. In the following subsection, we 
compute the effective spring constant when 
 

a. Springs are connected in series 
b. Springs are connected in parallel 

 
 
Springs connected in series 
 
 When two or more springs are connected in series, we can replace 
(by removing) all the springs in series with an equivalent spring 
(effective spring) whose net effect is the same as if all the springs are in 
series connection. Given the value of individual spring constants k1, k2, 
k3,... (known quantity), we can establish a mathematical relationship to 
find out an effective (or equivalent) spring constant ks (unknown 
quantity). For simplicity, let us consider only two springs whose spring 
constant are k1 and k2 and which can be attached to a mass m as shown 
in Figure 10.17. The results thus obtained can be generalized for any 
number of springs in series. 
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 Let F be the applied force towards right as shown in Figure 10.18. 
Since the spring constants for different spring are different and the 
connection points between them is not rigidly fixed, the strings can 
stretch in different lengths. Let x1 and x2 be the elongation of springs 
from their equilibrium position (un-stretched position) due to the 
applied force F. Then, the net displacement of the mass point is 
 

 
 

 
For springs in series connection 

 
 

 
 
 Therefore, substituting equation (10.39) in equation (10.38), the 
effective spring constant can be calculated as 
 

 
 

 Suppose we have n springs connected in series, the effective spring 
constant in series is 
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 This means that the effective spring constant reduces by the factor 
n. Hence, for springs in series connection, the effective spring constant is 
lesser than the individual spring constants. 
 
From equation (10.39), we have, 
 

k1x1 = k2x2 

 
Then the ratio of compressed distance or elongated distance x1 and x2 is 
 

 
The elastic potential energy stored in first and second springs are 

2

1 1 1

1

2
V k x  and 

2

2 2 2

1

2
V k x respectively. Then, their ratio is 

 

 
 
E X A M P L E 
 
 Consider two springs whose force constants are 1 N m−1 and 2 N 
m−1 which are connected in series. Calculate the effective spring constant 
(ks ) and comment on ks. 
 
Solution 
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Therefore, the effective spring constant is lesser than both k1 and k2. 
 
Springs connected in parallel 
 
 When two or more springs are connected in parallel, we can 
replace (by removing) all these springs with an equivalent spring 
(effective spring) whose net effect is same as if all the springs are in 
parallel connection. Given the values of individual spring constants to 
be k1,k2,k3, ... (known quantities), we can establish a mathematical 
relationship to find out an effective (or equivalent) spring constant kp 
(unknown quantity). For simplicity, let us consider only two springs of 
spring constants k1and k2 attached to a mass m as shown in Figure 10.19. 
The results can be generalized to any number of springs in parallel 
 
 Let the force F be applied towards right as shown in Figure 10.20. 
In this case, both the springs elongate or compress by the same amount 
of displacement. Therefore, net force for the displacement of mass m is 
 

 
 
 where kp is called effective spring constant. Let the first spring be 
elongated by a displacement x due to force F1 and second spring be 
elongated by the same displacement x due to force F2, then the net force 
 

 
Equating equations (10.46) and (10.45), we get 
 

 

Generalizing, for n springs connected in parallel, 
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If all spring constants are identical i.e., k1 = k2= ... = kn = k then 
 

kp = n k 
 
 This implies that the effective spring constant increases by a factor 
n. Hence, for the springs in parallel connection, the effective spring 
constant is greater than individual spring constant. 
 
E X A M P L E 
 
 Consider two springs with force constants 1 N m−1 and 2 N m−1 
connected in parallel. Calculate the effective spring constant (kp) and 
comment on kp. 
 
Solution 
 

 
 
Therefore, the effective spring constant is greater than both k1 and k2. 
 
E X A M P L E 
 
 Calculate the equivalent spring constant for the following systems 
and also compute if all the spring constants are equal: 
 



 

78 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 
Solution 
 

a. Since k1 and k2 are parallel, ku = k1 + k2 Similarly, k3 and k4 are 
parallel, therefore, kd = k3 + k4 But ku and kd are in series, 

 
 

therefore, 
u d

eq

u d

k k
k

k k


 If all the spring constants are equal then, k1 

= k2 = k3 = k4 = k 
Which means, ku = 2k and kd = 2k 

 

Hence, 
24

4
eq

k
k k

k
   

 
b. Since k1 and k2 are parallel, kA = k1 + k2 Similarly, k4 and k5 are 

parallel, therefore, kB = k4 + k5 But kA, k3, kB, and k6 are in series, 
therefore, 
 

 
If all the spring constants are equal then, k1 = k2 = k3 = k4 = k5 = k6 
= k which means, kA = 2k and kB = 2k 
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E X A M P L E 
 
 A mass m moves with a speed v on a horizontal smooth surface 
and collides with a nearly massless spring whose spring constant is k. If 
the mass stops after collision, compute the maximum compression of the 
spring. 
 
Solution 
 
 When the mass collides with the spring, from the law of 
conservation of energy “the loss in kinetic energy of mass is gain in 
elastic potential energy by spring”.  
 
 Let x be the distance of compression of spring, then the law of 
conservation of energy 
 

 
 
Oscillations of a simple pendulum in SHM and laws of simple 
pendulum 
Simple pendulum 
 
 A pendulum is a mechanical system which exhibits periodic 
motion. It has a bob with mass m suspended by a long string (assumed 
to be massless and inextensible string) and the other end is fixed on a 
stand as shown in Figure 10.21 (a). At equilibrium, the pendulum does 
not oscillate and hangs vertically downward. Such a position is known 
as mean position or equilibrium position. When a pendulum is 
displaced through a small displacement from its equilibrium position 
and released, the bob of the pendulum executes to and fro motion. Let l 
be the length of the pendulum which is taken as the distance between 
the point of suspension and the centre of gravity of the bob. Two forces 
act on the bob of the pendulum at any displaced position, as shown in 
the Figure 10.21 (d), 
 

1. The gravitational force acting on the body  F mg  which acts 

vertically 
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downwards. 

2. The tension in the string T which acts along the string to the point 
of suspension 

 
Resolving the gravitational force into its components: 
 
Normal component:  
 
 The component along the string but in opposition to the direction 
of tension, Fas = mg cosθ. 
 
Tangential component: 
 
 The component perpendicular to the string i.e., along tangential 
direction of arc of swing, Fps = mg sinθ. 
Therefore, The normal component of the force is, along the string, 
 

 
 From the Figure 10.21, we can observe that the tangential 
component Wps of the gravitational force always points towards the 
equilibrium position i.e., the direction in which it always points opposite 
to the direction of displacement of the bob from the mean position. 
Hence, in this case, the tangential force is nothing but the restoring force. 
Applying Newton‟s second law along tangential direction, we have 
 

 
 
 where, s is the position of bob which is measured along the arc. 
Expressing arc length in terms of angular displacement i.e., 
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then its acceleration, 
 

 
Substituting equation (10.53) in equation (10.51), we get 
 

 
 
 Because of the presence of sin θ in the above differential equation, 
it is a non-linear differential equation (Here, homogeneous second 
order). Assume “the small oscillation approximation”, sin θ ≈ θ, the 
above differential equation becomes linear differential equation. 
 

 
 
 This is the well known oscillatory diff erential equation. Therefore, 
the angular frequency of this oscillator (natural frequency of this system) 
is 
 

 
 
The frequency of oscillations is 
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and time period of oscillations is 
 

 
 
Laws of simple pendulum 
 
The time period of a simple pendulum 
 

a. Depends on the following laws 
Law of length 
 
For a given value of acceleration due to gravity, the time period of 
a simple pendulum is directly proportional to the square root of 
length of the pendulum. 
 

 
Law of acceleration 
 
For a fi xed length, the time period of a simple pendulum is 
inversely proportional to square root of acceleration due to 
gravity. 
 

 
 
b. Independent of the following factors 

Mass of the bob 
 
Th e time period of oscillation is independent of mass of the 
simple pendulum. This is similar to free fall. Therefore, in a 
pendulum of fixed length, it does not matter whether an elephant 
swings or an ant swings. Both of them will swing with the same 
time period. 
 
Amplitude of the oscillations 
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For a pendulum with small angle approximation (angular 
displacement is very small), the time period is independent of 
amplitude of the oscillation. 

 
E X A M P L E 
 
 In simple pendulum experiment, we have used small angle 
approximation . Discuss the small angle approximation. 
 

 
 
For θ in radian, sin θ ≈ θ for very small angles 
 

 
 



 

84 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 This means that “for θ as large as 10 degrees, sin θ is nearly the 
same as θ when θ is expressed in radians”. As θ increases in value sinθ 
gradually becomes different from θ 
 
Pendulum length due to effect of temperature 
 
 Suppose the suspended wire is affected due to change in 
temperature. The rise in temperature affects length by 
 

 
 
 where lo is the original length of the wire and l is final length of 
the wire when the temperature is raised. Let Δt is the change in 
temperature and α is the co-efficient of linear expansion. 
 

 
 
 where ΔT is the change in time period due to the effect of 
temperature and T0 is the time period of the simple pendulum with 
original length l0. 
 
E X A M P L E 
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 If the length of the simple pendulum is increased by 44% from its 
original length, calculate the percentage increase in time period of the 
pendulum. 
 
Solution 
 
Since 

 
Therefore, 
 

 
 

 
Therefore, Tf = 1.2 Ti = Ti + 20% Ti 

 
Oscillation of liquid in a U-tube: 
 
 Consider a U-shaped glass tube which consists of two open arms 
with uniform crosssectional area A. Let us pour a non-viscous uniform 
incompressible liquid of density ρ in the U-shaped tube to a height h as 
shown in the Figure 10.22. If the liquid and tube are not disturbed then 
the liquid surface will be in equilibrium position O. It means the 
pressure as measured at any point on the liquid is the same and also at 
the surface on the arm (edge of the tube on either side), which balances 
with the atmospheric pressure. Due to this the level of liquid in each arm 
will be the same. By blowing air one can provide sufficient force in one 
arm, and the liquid gets disturbed from equilibrium position O, which 
means, the pressure at blown arm is higher than the other arm. This 
creates difference in pressure which will cause the liquid to oscillate for 
a very short duration of time about the mean or equilibrium position 
and finally comes to rest. 
 
Time period of the oscillation is 
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ENERGY IN SIMPLE HARMONIC MOTION 
 

a. Expression for Potential Energy 
 
For the simple harmonic motion, the force and the displacement 
are related by Hooke‟s law 
 

 
Since force is a vector quantity, in three dimensions it has three 
components. Further, the force in the above equation is a 
conservative force field; such a force can be derived from a scalar 
function which has only one component. In one dimensional case 
 

 
As we have discussed in unit 4 of volume I, the work done by the 
conservative force field is independent of path. The potential 
energy U can be calculated from the following expression. 
 

 
Comparing (10.63) and (10.64), we get 
 

 
This work done by the force F during a small displacement dx 
stores as potential energy 
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From equation (10.22), we can substitute the value of force 
constant k = m ω2 in equation (10.65), 
 

 
where ω is the natural frequency of the oscillating system. For the 
particle executing simple harmonic motion from equation (10.6), 
we get 
 

x = A sin ωt 

 
b. Expression for Kinetic Energy 

Kinetic energy 

 
Since the particle is executing simple harmonic motion, from 
equation (10.6) 

 
x = A sin ωt 

Therefore, velocity is 
 

 
Hence, 
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c. Expression for Total Energy 
 
Total energy is the sum of kinetic energy and potential energy 
 

 
Hence, cancelling x2 term, 
 

 
Alternatively, from equation (10.67) and equation (10.72), we get 
the total energy as 
 

 
From trigonometry identity, (sin2 ωt + cos2 ωt) = 1 
 

 
Thus the amplitude of simple harmonic oscillator, can be 
expressed in terms of total energy. 
 

 
E X A M P L E 
 
 Write down the kinetic energy and total energy expressions in 
terms of linear momentum, For one-dimensional case. 
 
Solution 

Kinetic energy is 
21

2
x

KE mv  
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Multiply numerator and denominator by m 
 

 
 
 where, px is the linear momentum of the particle executing simple 
harmonic motion. 
 
 Total energy can be written as sum of kinetic energy and potential 
energy, therefore, from equation (10.73) and also from equation (10.75), 
we get 
 

 
 
E X A M P L E 
 
 Compute the position of an oscillating particle when its kinetic 
energy and potential energy are equal. 
 
Solution 
 
 Since the kinetic energy and potential energy of the oscillating 
particle are equal, 
 

 

 
 
TYPES OF OSCILLATIONS: 
Free oscillations 
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 When the oscillator is allowed to oscillate by displacing its position 
from equilibrium position, it oscillates with a frequency which is equal 
to the natural frequency of the oscillator. Such an oscillation or vibration 
is known as free oscillation or free vibration. In this case, the amplitude, 
frequency and the energy of the vibrating object remains constant. 
 
Examples 
 

a. Vibration of a tuning fork. 
b. Vibration in a stretched string. 
c. Oscillation of a simple pendulum. 
d. Oscillationsof a spring-mass system. 

 
Damped oscillations 
 
 During the oscillation of a simple pendulum (in previous case), we 
have assumed that the amplitude of the oscillation is constant and also 
the total energy of the oscillator is constant. But in reality, in a medium, 
due to the presence of friction and air drag, the amplitude of oscillation 
decreases as time progresses. It implies that the oscillation is not 
sustained and the energy of the SHM decreases gradually indicating the 
loss of energy. Th e energy lost is absorbed by the surrounding medium. 
Th is type of oscillatory motion is known as damped oscillation. In other 
words, if an oscillator moves in a resistive medium, its amplitude goes 
on decreasing and the energy of the oscillator is used to do work against 
the resistive medium. Th e motion of the oscillator is said to be damped 
and in this case, the resistive force (or damping force) is proportional to 
the velocity of the oscillator. 
 
Examples 
 

a. Th e oscillations of a pendulum (including air friction) or 
pendulum oscillating inside an oil fi lled container. 

b. Electromagnetic oscillations in a tank circuit. 
c. Oscillations in a dead beat and ballistic galvanometers. 

 
Maintained oscillations 
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 While playing in swing, the oscillations will stop aft er a few 
cycles, this is due to damping. To avoid damping we have to supply a 
push to sustain oscillations. By supplying energy from an external 
source, the amplitude of the oscillation can be made constant. Such 
vibrations are known as maintained vibrations. 
 
Example: 
 
 The vibration of a tuning fork getting energy from a battery or 
from external power supply. 
 
Forced oscillations 
 
 Any oscillator driven by an external periodic agency to overcome 
the damping is known as forced oscillator or driven oscillator. In this 
type of vibration, the body executing vibration initially vibrates with its 
natural frequency and due to the presence of external periodic force, the 
body later vibrates with the frequency of the applied periodic force. 
Such vibrations are known as forced vibrations. 
 
Example: 
 
 Sound boards of stringed instruments. 
 
Resonance 
 
 It is a special case of forced vibrations where the frequency of 
external periodic force (or driving force) matches with the natural 
frequency of the vibrating body (driven). As a result the oscillating body 
begins to vibrate such that its amplitude increases at each step and 
ultimately it has a large amplitude. Such a phenomenon is known as 
resonance and the corresponding vibrations are known as resonance 
vibrations. 
 
Example 
 
The breaking of glass due to sound 
 

Soliders are not allowed to march on a bridge. This is to avoid resonant 
vibration of the bridge. While crossing a bridge, if the period of stepping 
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on the ground by marching soldiers equals the natural frequency of the 
bridge, it may result in resonance vibrations. This may be so large that 
the bridge may collapse. 

 
 

 
 
 
 
 
 
 


