APPOLD

Force, Motion and Energy

Motion and Rest

- Motion is the change in the position of object with respect to its surroundings.
- An object which do not change their position is said to be at rest.
- Motion is a relative phenomenon

An object appearing to be in motion to one person can appear to be at rest as viewed by another person.

Example: Trees on road side

- Force is a push or pull.

Newton's law of motion:

This law states that a body continues to be in its state of rest or the state of uniform motion along a straight line unless it is acted upon by some external force.

It gives the definition of force and inertia

Inertia

The inherent property of a body to resist any change in its state of rest or state of Uniform motion unless it is influenced upon by an external unbalanced force is known as inertia.

$2^{\text {nd }}$ law of motion:

The force acting on a body is directly proportional to the rate of change of linear momentum of the body and change in momentum tooks place in the direction of force

$$
\text { Force }=\text { Mass } \times \text { acceleration }
$$

Linear Momentum:

The impact of force is more of the velocity and mass of the body is more to quantity the impact of a force a physical quantity linear momentum is defined.

P = Mass \times Velocity
$\mathrm{P}=\mathrm{M} \times \mathrm{V}$
Unit is $\mathrm{Kg} \mathrm{m} / \mathrm{s}$

Impulse:

A large force acting for a very short interval of time is called impulsive force.

$$
\mathrm{J}=\mathrm{F} \times \mathrm{t}
$$

$3^{\text {rd }}$ law of motion:

For every action there is as equal and opposite reaction. They always act on two different bodies.

$$
\mathrm{F}_{\mathrm{B}}=-\mathrm{F}_{\mathrm{A}}
$$

Principle of Linear Momentum

There is no change in the linear momentum of a system of bodies as long as not net external force acts on them.

Rocket Propulsion:

- Newton's third law of motion
- Principle of linear momentum

While in motion, the mass of the rocket gradually decreases until the fuel is completely burnt out. Since, there is no net external force acting on it, the linear momentum of the system is conserved. The mass of the rocket decreases with the attitude which increases velocity of the rocket and at one stage it just escapes from the gravitational pull of the earth. This velocity is called escape velocity.

$$
V_{e}=\sqrt{\frac{2 G M}{r}}
$$

1. Which of the following law undergoes rocket propulsion?
a. Newton $1^{\text {st }}$ law of motion
b. Newton $2^{\text {nd }}$ law of motion
c. Newton $3^{\text {rd }}$ law of motion
d. None of these
(Group 2, 2013)
2. Inertia of a body depends upon
a. weight of the object
b. Acceleration due to gravity of planet
c. mass of the object
d. Both a \& b
3. Newton's III law is applicable
a. for a body is at rest
b. for a body is motion
c. Both a \& b
d. only for bodies with equal masses

Distance and Displacement

The actual length of the path travelled by a moving body irrespective of the direction is called distance travelled by the body.

S.I Unit is meter

Displacement is defined as the change in position of a moving body in a particular direction. It is a vector quantity.
S.I Unit is meter

Speed, Velocity and Acceleration:

i) Speed $=\frac{\text { Distance }}{\text { Time }}$

SI Unit is ms^{-1}
ii) Velocity is the rate of change of displacement.

$$
\text { Velocity }=\frac{\text { Displacement }}{\text { Time Taken }}
$$

iii) Acceleration is the rate of change of velocity.

Acceleration $=$ Change in velocity

$$
a=\frac{\text { final velocity }- \text { initial velocity }}{\text { Time Taken }}
$$

SI Unit - ms ${ }^{-2}$

Distance - Time graph for uniform motion

Distance - Time graph for non- uniform motion

Time
Velocity - Time graph for Uniform acceleration

Velocity - Time graph for Non-Uniform acceleration

- There is no shape. It can have any shape.

Types of Forces:

(i) Parallel Force

(ii) Unlike Parallel Force

$$
\begin{aligned}
& \mathrm{F}=\mathrm{F}_{1}-\mathrm{F}_{2}\left(\mathrm{~F}_{1}>\mathrm{F}_{2}\right) \\
& \mathrm{F}=\mathrm{F}_{2}-\mathrm{F}_{1}\left(\mathrm{~F}_{2}>\mathrm{F}_{1}\right) \\
& \mathrm{F}=0\left(\mathrm{~F}_{1}=\mathrm{F}_{2}\right)
\end{aligned}
$$

(iii) Rotational effect of force.
(iv) Torque: The turning (or) rotating effect of a force about a fixed point (or) Fixed axis is called Torque.

$$
\mathrm{l}=\mathrm{F} \times \mathrm{d} \quad \text { It is a vector quantity }
$$

(v) Couple: two equal and unlike parallel forces applied simultaneously at two distinct points constitute a couple.

$$
\mathrm{M}=\mathrm{F} \times \mathrm{s} \quad \mathrm{Nm} \rightarrow \text { Unit }
$$

Factors affecting Force

- Value
- Area of contact

Thrust

It is a force acting perpendicular to an object.

Pressure

The Force per unit area acting on an object concerned is called pressure.

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

S.I Unit Pressure is Pascal.

1 Pascal $=1 \mathrm{Nm}^{-2}$
Pressure exerted by a force depends on the magnitude of the force and the area of content.

Atmosphere Pressure:

The amount of force or weight of the atmosphere air that acts downwards on unit surface area of the earth is known as Atmospheric Pressure.

It is measured by using barometer device. It is invented by 'Torvicelli'. S.I Unit Nm^{-2} (or) Pascal

$$
1 \text { atomic Pressure }=1.01 \times 10^{-5} \mathrm{Nm}^{-2}
$$

Factors affecting pressure exerted by liquids:
(i) Depth (h)
(ii) Density
(iii) It will exerts in all direction

PASCAL'S LAW:

Pressure applied at any point of a liquid at rest, in a closed system will be distributed equally through all regions of the liquid

Application:

- Hydraulic lift (in service station, JCB)
- Brake system (Car, Bus, Lorry etc)
- Hydraulic press (a large word, steel, sugarcane machine)

Surface Tension:

It is the property of a liquid where the molecules of a liquid experience a force, which contracts the extent of surface area so as to have the minimum value.

The amount of force acting per unit - length on the surface of the liquid. Unit is Nm^{-1}

Applications:

- Rains are spherical in shape
- In plants water from the grounds are absorbed through the xylem tissues.
- Water strides insects slides on the water easily.
- During a heavy storm sailors pour soap powder or oil into the sea to decrease the surface tension of sea water.

Viscosity:

Frictional force between successive layers of liquids to oppose relative motion of layer.

SI unit is Nsm^{-2}
CGS $\rightarrow \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$

Friction:

- When two or more bodies in contact tends to move relative to each other frictional forces arises.
- It is produced due to the geometrical dissimilarities of the surface of the bodies.

Effects:

- Opposes motion
- It causes wear and tear of the surface in contact.
- It produces heat.

Factors affecting Friction:

i) Area of contact
ii) Nature of a surface
iii) Weight of the body.

Types of Friction:

- Static - Friction experience by the bodies which are at rest.
- Kinetic - Friction existing during the motion of bodies.
- Sliding Friction - Friction between the surfaces in contact when a body slides over the surface of another body.
- Rolling Friction - Friction acting between the surfaces, when a body rolls over the surfaces.

Sliding Friction > Rolling Friction

Increasing and decreasing of Friction:

- Area of contact
- Using lubricants (oil)
- Using ball bearing

ARCHIMEDES PRINCIPLE:

It states that "a body immersed in a field experiences a vertical upward buoyant force equal to the weight of the fluid it displaces".

Laws of Flotation:

1. The weight of a floating body in a fluid is equal to the weight of the fluid displaced by the body.
2. The centre of gravity of the floating body and the centre of buoyancy are in the same vertical line.

Practice Questions

1. A man has to exert a force of 20 N at the edge of a door to push it open. How much force will the man have to exert if he pushes the centre of the door?
a. 30 N
b. 20 N
c. 40 N
d. 50 N

ஒரு நபர் ஒரு கதவை அதன் முயையில் (கைபிடியில்) 20 N அளவு விசையை செலுத்தி திறப்பா்், எனில் அதத கதவை அதன் மையப் பகுதியில் இருந்து திறக்க தேவைப்படும் விசையின் மதிப்பு என்ஊ?
a. 30 N
b. 20 N
c. 40 N
d. 50 N
2. An athlete completes one round of a circular track of diameter 200 m in 40 seconds. What is the distance covered at the end of 2 m and 20s?
a. 2300 m
b. 2200 m
c. 2500 m
d. 2000 m

ஒரு தடகள வீர் 200 மீட்டர் விட்டம் உடைய வட்டப் பாதையை 40 விநாடியில் கடக்கிறார். 2 நிமிடம் 20 விநாடிக்குப் பிறகு அவர் கடந்த தொலைவு எவ்வளவு?
a. 2300 m
b. 2200 m
c. 2500 m
d. 2000 m
3. When a body is thrown vertically upwards in space, at the highest point. What will be velocity and acceleration?
a. Finite velocity and finite acceleration
b. Zero velocity and finite acceleration
c. Zero velocity and Infinite acceleration
d. Infinite velocity and infinite acceleration

ஒரு பொருளை செங்குத்தாக மேல் நோக்கி எறிந்தால், பெரும் உயரத்தை அடைந்த நிலையில் அதன் திசைவேகம் மற்றும் முடுக்கம் என்ன?
a. வரையறுக்கப்பட்ட திசைவேகம் மற்றும் முடுக்கம்
b. சுழி திசைவேகம் மற்றும் வெையறுக்கப்பட்ட முடுக்கம்
c. சுழி திசைவேகம் மற்றும் வரையறுக்கப்படாத முடுக்கம்
d. வரையறுக்கப்படாத திசைவேகம் மற்றும் வரையறுக்கப்படாத முடுக்கம்
4. An object travels 16 m in 4 seconds and then another 16 m in 2 s . What is the average speed of the object?
a. $5.33 \mathrm{~m} / \mathrm{s}$
b. $6.33 \mathrm{~m} / \mathrm{s}$
c. $7.14 \mathrm{~m} / \mathrm{s}$
d. $7 \mathrm{~m} / \mathrm{s}$

ஒரு பொருள் 16 மீ தொலைவை 4 நநாாியிலும் மேலும் 16 மீ தொலைவை 2 ดநாடியிலும் கடக்கிறது. அப்பபாருளின் சராசாி வேகம் என்ன?
a. $5.33 \mathrm{~m} / \mathrm{s}$
b. $6.33 \mathrm{~m} / \mathrm{s}$
c. $7.14 \mathrm{~m} / \mathrm{s}$
d. $7 \mathrm{~m} / \mathrm{s}$
5. A door is pushed, at a point whose distance from the hinges is 90 cm , with a force of 40 N . Calculate the moment of the force about the hinges?
a. 34 Nm
b. 35 Nm
c. 36 Nm
d. 38 Nm

கீல் முனையில் இருந்து 90 சச.மீ தூரத்தில் கைப்பிட கொண்ட கதவவான்று 40 N விசை கொண்டு திறக்கப்படுகிறது. கதவின் கீல் முனைப் பகுதியில் ஏற்படும் திடுப்புத்திறன் மதிப்பிளை கணக்கிடு.
a. 34 Nm
b. 35 Nm
c. 36 Nm
d. 38 Nm
6. If a lift is going up with acceleration, the apparent weight of a body is
a. Equal to the actual weight
b. Less than the actual weight
c. More than the actual weight
d. Equal to zero

மின் உயா்த்தி, மேல் நோக்கி முடுக்கப்படும் போது மனிதனின் தோற்றற எடை
a. உண்மை எடைக்கு சமம்
b. உண்மை எடையை விட குறைவு
c. உண்மை எடையை விட அதிகம் சுழிக்கு சமம்
d. பஜ்றியத்திற்கு சமம்
7. When you vigorously shake the branches of a tree some of the leaves and fruits are detached and they fall down. It is an example of
a. Inertia of rest
b. Inertia of direction
c. Inertia of motion
d. Newton's $1^{\text {st }}$ law of motion

கிளைகளை உலுக்கிய பின் மரத்திலிருந்து கீழே விழும் இலைகள், பழுத்தபின் விழும் பழங்கள் இவையாவும் எதன் எடுத்துக்காட்டூ?
a. ஓய்வில் நிலைமம்
b. இயக்கத்தில் நிலைமம்
c. திசையில் நிலைமம்
d. நியூட்டனின் 1-ஆம் விதி
8. Why a small drop of water or mercury on a clean glass plate is spherical in shape?
a. Due to viscosity b. Due to capillarity
c. Due to surface tension
d. Due to tangential force

சிறிய நீ்த்துளி அல்லது பாதரசத்துளி தூய கண்ணாடித் தட்டில் இருக்கும் பொது கோளக வடிவய் ிபறக் காரணம் எது?
a. பாதநிலலயிளால்
b. நுண்புழையேற்றதிளால்
c. பரப்பு இழவிசையினால்
d. தொடு விசையினால்
9. In the absence of an external force, the algebraic sum of the momentum after collision is numerically equal to sum of the momentum before collision? It is known as
a. Linear Momentum
b. Principle of Conservation of linear momentum
c. Gravitation
d. Acceleration due to gravity

வேளிவிசசயின் தாக்கம் எதும் இல்லாதபோது, மோதலுக்கு பின் உள்ள மொத்த உந்த மதிப்பு, மோதலுக்கு முன் உள்ள மொத்த உந்த மதிப்பற்ற்கு சமம் என்பதை காட்டுகிறது. இது பபாருளின் மீது செயல்படும் மொத்த உந்தம் ஒரு மாறிலி எண்ற நேj்க்கோட்டு உந்த அழிவின்மை விதியி円ை நிரூபிக்கிறது?
a. நேj்்்கோட்டு உந்தம்
b. நேர்க்கோட்டு உந்த அழிவின்மை விதி
c. ஈர்ப்பியல்
d. புவிஈர்ப்பு முடுக்கம்
10.Assertion (A): The hard-boiled egg and raw egg can be distinguished on the basis of Spinning of both.
Reason (R): The moment of inertia of hard-boiled egg is more as compared to raw egg.
a. Both (A) and (R) are true and (R) is the correct explanation of (A)
b. Both (A) and (R) are true and (R) is the not the correct explanation of (A).
c. (A) is true but (R) is false
d. (A) is false but (R) is true

おூற்று (A): கடின, வேக வைத்த முட்டை மற்றும் மூல முட்டை இரண்டையும் சுழற்றுவதன் அடப்படையில் வேறுபடுத்தலாம்.
காரணம் (R): கடின, வேக வைத்த முட்மையின் சடத்துவ திருப்புதிறன் மூல முட்டையினை வ்ட அதிகம்.
a. (A) மற்றுய் (R) இரண்டும் சாி மற்றும் (R) ஆனது (A) விற்கு சரியான விளக்கமளிக்கிறது.
b. (A) மற்றுும் (R) இரண்டும் சாி ஆனால் (R) ஆனது (A) விற்கு சரியான விளக்கமளிக்கவில்லை.
c. (A)சாி ஆனால் (R) தவறு
d. (A)தவறு ஆனால் (R) சா
11.A boat having a length 3 m and breadth 2 m is floating on a lake. The boat sinks by 1 cm when a man gets on it. The mass of the man is
a. 12 kg
b. 60 kg
c. 72 kg
d. 96 kg

ஏரியில் மிதக்கும் ஒரு படகின் நீளம் 3 மீ மற்றுும் அகலம் 2 மீ. ஒரு மனிதன் அதில் ஏறும் போது படகு 1 சि.மீ நீில் அமழ்ந்தது எனில், அந்த மனிதனின் எடை என்ன?
a. 12 kg
b. 60 kg
c. 72 kg
d. 96 kg
12.The average weight of an elephant is 4000 N . The surface area of the sole of its foot is $0.1 \mathrm{~m}^{2}$. Calculate the pressure exerted by one foot of an elephant.
a. $10^{3} \mathrm{Nm}^{-2}$
b. $10^{4} \mathrm{Nm}^{-2}$
c. $10^{5} \mathrm{Nm}^{-2}$
d. $10^{2} \mathrm{Nm}^{-2}$

ஒரு யாணையின் சராசரி எடை 4000 N . அதன் ஒரு பாதத்தின் பரப்பு $0.1 \mathrm{~m}^{2}$. யானையின் ஒரு கால் மூலம் செலுத்தப்படும் அழுத்தத்றைக் கணக்கிடுக.
a. $10^{3} \mathrm{Nm}^{-2}$
b. $10^{4} \mathrm{Nm}^{-2}$
c. $10^{5} \mathrm{Nm}^{-2}$
d. $10^{2} \mathrm{Nm}^{-2}$
13.More number of wheels are provided for a heavy goods-carrier. This is done for
a. increasing the pressure
b. decreasing the pressure
c. equals the pressure
d. equal to zero
களரக சரக்கு வாகனங்களின் சக்கரங்கள்
அதிக எண்ணிக்கையில் கொண்டுள்ளன. இதற்கு காரணம்?
a. அழுத்தத்தை அதிகரிக்க
b. அழுத்தத்தை குறைக்க
c. அழுத்தத்தை சமம் செய்தல்
d. சுழிக்கு சமம் செய்தல்
14.Pressure exerted by a liquid is increased by
a. The density of the liquid
b. The height of the liquid column
c. Both a and b
d. None of the above

திரவத்திளால் பெறப்படும் அழுத்தம் எதனால் அதிகரிக்கிறது?
a. திரவத்தின் அட்்்்த
b. திரவ உயரம்
c. a மற்றும் b
d. மேற்கண்ட எதுவுமில்லை
15.The mass of a body is measured on planet earth as M kg . When it is taken to a planet of radius half that of the earth then its value will be
a. 4 M
b. 2 M
c. $\mathrm{M} / 4$
d. M

புவியில் M நிறை கொண்ட பொருள் ஒன்று புிியின் ஆரத்தில் பாதி அளவு ஆரம் கொண்ட கோள் ஒன்றிற்கு எடுத்துச் செல்லப்படுகிறது. அங்கு அதன் நிறை மதிப்ப.
a. 4 M
b. 2 M
c. $\mathrm{M} / 4$
d. M
16.Assertion (A): The value of ' g ' decreases as height and depth increases from the surface of the earth.
Reason (R): ' g ' depends on the mass of the object and the earth.
a. Both (A) and (R) are true and (R) is the correct explanation of (A)
b. Both (A) and (R) are true and (R) is the not the correct explanation of (A).
c. (A) is true but (R) is false
d. (A) is false but (R) is true

कூற்று (A): 'g' ன் மதிப்பு புவிப்பரப்பல்் இருந்து உயர செல்லவும் புவிப்பரப்பற்று கீழே செல்லவும் குறறுும்.
காரணம் (R : ' ' g ' மதிப்பானது புவிப்பரப்பில் பபாருளின் நிறையினைச் சா்்ந்து அமைகிறது.
a. (A) மற்றும் (R) இரண்டும் சரி மற்றும் (R) ஆனது (A) விற்கு சரியான விளக்கமளிக்கிறது.
b. (A) மற்றுய் (R) இரண்டும் சாி ஆனால் (R) ஆனது (A) விற்கு சரியான விளக்கமளிக்கவில்லை.
c. (A)சாி ஆனால் (R) தவறு
d. (A)தவறு ஆனால் (R) சா
17.Assertion (A): Sharp knives are used to cut the vegetables. Reason (R): Sharp edges exert more pressure.
a. Both (A) and (R) are true and (R) is the correct explanation of (A)
b. Both (A) and (R) are true and (R) is the not the correct explanation of (A).
c. (A) is true but (R) is false
d. (A) is false but (R) is true

கூற்று (A): கூர்மையான கத்தி காய்கறிகளை வவட்டப் பயன்படுகிறது.

காரணம் (R): கூர்மையான முளைகள் அதிக அழுத்தத்றைத் தருகின்றறன.
a. (A) மற்றும் (R) இரண்டும் சாி மற்றும் (R) ஆனது (A) விற்கு சரியான விளக்கமளிக்கிறதது.
b. (A) மற்றும் (R) இரண்டும் சாி ஆனால் (R) ஆனது (A) விற்கு சரியான விளக்கமளிக்கவில்லை.
c. (A)சாி ஆனால் (R) தவறு
d. (A)தவறு ஆனால் (R) சா
18.Which of the following is most likely not a case of uniform circular motion?
a. Motion of the earth around the sun.
b. Motion of a toy train on a circular track.
c. Motion of a racing car on a circular track.
d. Motion of hours hand on the dial of the clock.

கீழ்க்கண்டவற்றலல் எது பெரும்பாலும் சீரான வட்ட இயக்கம் அல்ல?
a. சூரியளைச் சுற்றி வரும் பூமியின் இயக்கம்
b. வட்டப் பாதையில் சாறறறி வரும் பொம்மை ரயிலின் இயக்கம்.
c. வட்டப் பாதையில் செல்லும் பந்தய மகிழுந்து
d. கடிகாரத்தில் மணி முள்ளின் இயக்கம்
19. You have a block of a mystery material, 12 cm long, 11 cm wide and 3.5 cm thick. Its mass is 1155 grams. What is the value of density?
a. $2.5 \mathrm{gcm}^{-2}$
b. $2.4 \mathrm{gcm}^{-3}$
c. $2.0 \mathrm{gcm}^{-3}$
d. $1.8 \mathrm{gcm}^{-3}$

12 செ.மீ நீளமும் 11 செ.மீ அகலமும், 3.5 செ.மீ தடிமனும் கொண்ட ஒரு விநோதமான பொருள் உன்னிடம் உள்ளது, அதன் நிறை 1155 கிராம் எனில் அதன் அட்த்தி என்ள?
a. $2.5 \mathrm{gcm}^{-2}$
b. $2.4 \mathrm{gcm}^{-3}$
c. $2.0 \mathrm{gcm}^{-3}$
d. $1.8 \mathrm{gcm}^{-3}$

Electricity

Electric charge:

Inside each atom there is a nucleus with positively charges protons and chargeless neutrons and negatively charged electrons orbiting the nucleus.

If an electron is removed from the atom, the atom becomes positively charged. It is called positive ion. If an electron is added in excess to an atom then the atom is negatively charged and it is called negative ion.

It is measured in coulomb.

$$
\begin{aligned}
& \mathrm{q}=1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{q}=\text { ne } \\
& \mathrm{n} \rightarrow \text { whole number } \\
& \mathrm{e}-\text { charge of an electron }
\end{aligned}
$$

Electric Force:

There are two types of electric force (F)
Attractive Force - Unlike charges are attract
Repulsive Force - like charges repel
The Force existing between the charges is called as 'electric force'.

Electric Field:

The region in which a charge experiences electric force forms the electric field around the charge. The lines representing the electric field are called 'electric lines of force'. They are imaginary lines.

Electrostatic force between two-point charges obeys Newton's third law. The force on one charge is the action and on the other is reaction and vice versa.

Electric Potential:

Electric potential is a measure of the work done on unit positive charge to bring it to that point against all electrical forces.

Electric Potential Difference:

It is the difference between two points and is defined as the amount of work done in moving a unit Positive charge from one point to another point against the electric force.
$\mathrm{V}=\frac{\text { Work done }(\mathrm{W})}{\text { Charge } \mathrm{Q}}$
SI unit is volt.

OHM's LAW:

At a constant temperature the steady current ' I ' flowing through a conductor is directly proportional to the potential difference ' v ' between the two ends of the conductor.
$\operatorname{I} \alpha \mathrm{v}, \frac{\mathrm{I}}{\mathrm{v}}=\mathrm{Constant}$
$\mathrm{I}=\frac{1}{\mathrm{R}} \mathrm{V}$
$\mathrm{V}=\mathrm{IR} \quad \mathrm{R} \rightarrow$ Resistance of the conductor

Resistance of a material:

It is its property to oppose the flow of charges and hence the passage of current through it. It is different for different materials.

$$
\frac{\mathrm{V}}{\mathrm{I}}=\mathrm{R} \text { Ohm (S.I Unit) }
$$

Electrical Resistivity and Electrical Conductivity:

Resistance of any conductor ' R ' is directly proportional to the length of the conductor ' L ' and is inversely proportional to its area of cross section ' A '.
$\mathrm{R} \alpha \mathrm{L}, \quad \mathrm{R} \alpha \frac{\mathrm{L}}{\mathrm{A}}$
$\mathrm{R}=\mathrm{P} \frac{\mathrm{L}}{\mathrm{A}}, \mathrm{P}=$ Constant called as electrical resistivity or specific resistance of the conductor

$$
\mathrm{P}=\frac{\mathrm{RA}}{\mathrm{~L}}
$$

Conductance of a material is mathematically defined as the reciprocal of its Resistance (R).

$$
\mathrm{G}=\frac{1}{\mathrm{R}} \text { Unit is ohm }{ }^{-1}
$$

The reciprocal of electrical resistivity of a material is called its electrical conductivity.

$$
\sigma=\frac{1}{\mathrm{p}} \text { Unit is ohm }{ }^{-1} \mathrm{~m}^{-1},
$$

Nichrome is a conductor with highest resistivity equal to $1.5 \times 10^{-6} \Omega$. Hence it is used in making heating elements.

Nature the material	Material	Resistivity
Conductor	Copper	1.62×10^{-8}
	Nickel	6.84×10^{-8}
	Chromium	12.9×10^{-8}
Insulator	Glass	10^{10} to 10^{14}
	Rubber	10^{13} to 10^{16}

System of Resistors:

i) Resistance in series

$$
\mathrm{R}_{3}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}
$$

ii) Resistance in Parallel

$$
\frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}
$$

Heating Effect of Current:

Generally, a source of electrical energy can develop a potential difference across a resistor which is connected to that source. This potential difference constitutes a current through the resistor. For continuous drawing of current, the source has to continuously spend its energy. A part of the energy from the source can be converted into useful work and the rest will be converted into heat energy. This effect is used in electric heater, electric iron, electric oven, toaster etc.,

CHENNAI
Joule's law of heating:

$$
\begin{array}{ll}
\mathrm{H}=\mathrm{W}=\mathrm{VQ} & \\
\mathrm{H}=\mathrm{VIt} & (\mathrm{Q}=\mathrm{It}) \\
\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt} & (\mathrm{~V}=\mathrm{IR})
\end{array}
$$

This is known as Joule's law of heating.

Applications:

i) Electric Heating device
ii) Fuse wire
iii) Filament in bulbs.

Electric Power - $\quad \mathrm{P}=\mathrm{V} \times \mathrm{I}$
S.I Unit is Watt

Practice Questions

1. A metal wire of resistance 5Ω was connected to a battery of 10 v . Then the current through the wire and the power spent on the wire are
a. $0.5 \mathrm{~A}, 5 \mathrm{~W}$
b. $2.0 \mathrm{~A}, 20 \mathrm{~W}$
c. $5 \mathrm{~A}, 0.5 \mathrm{~W}$
d. 20A, 2 W
5Ω மின்தடை கொண்ட உலோகக் கம்பியொன்று 10v மின்னியக்கு வியை கொண்ட மின்கலத்துடன் இணைக்கப்பட்டுள்ளது எனில், கம்பியில் பாயும் மின்னோட்ட்் மற்றும் கம்பியில் செலவழிக்கப்பட்ட திறன்
a. $0.5 \mathrm{~A}, 5 \mathrm{~W}$
b. $2.0 \mathrm{~A}, 20 \mathrm{~W}$
c. $5 \mathrm{~A}, 0.5 \mathrm{~W}$
d. $20 \mathrm{~A}, 2 \mathrm{~W}$
2. Nickel has resistivity \qquad
a. $6.02 \times 10^{-8} \Omega \mathrm{~m}$
b. $6.14 \times 10^{-7} \Omega \mathrm{~m}$
c. $6.84 \times 10^{-8} \Omega \mathrm{~m}$
d. $6.84 \times 10^{-7} \Omega \mathrm{~m}$
நிக்கல் என்ற பபாருளின் மின்தடை எண்?
a. $6.02 \times 10^{-8} \Omega \mathrm{~m}$
b. $6.14 \times 10^{-7} \Omega \mathrm{~m}$
c. $6.84 \times 10^{-8} \Omega \mathrm{~m}$
d. $6.84 \times 10^{-7} \Omega \mathrm{~m}$
3. The resistance of a wire of length 10 m is 2 ohm . If the area of cross section of the wire is $2 \times 10^{-7} \mathrm{~m}^{2}$ determine its resistivity.
a. $4 \times 10^{8} \Omega \mathrm{~m}$
b. $4 \times 10^{-7} \Omega \mathrm{~m}$
c. $4 \times 10^{7} \Omega \mathrm{~m}$
d. $6.84 \times 10^{-8} \Omega \mathrm{~m}$

10 மீட்டர் நீளமும் மின்தமை 2Ω எனில் அதன் மின்தடமை எண்-ஐ காண்க.
a. $4 \times 10^{8} \Omega \mathrm{~m}$
b. $4 \times 10^{-7} \Omega \mathrm{~m}$
c. $4 \times 10^{7} \Omega \mathrm{~m}$
d. $6.84 \times 10^{-8} \Omega \mathrm{~m}$
4. Filament in bulbs is based on the Principle of
a. Charles law
b. Newton's law of motion
c. Joule's law of heating
d. Newton's law of cooling
மின் விளக்கில் உள்ள மின் இழை எந்த விதியின் அடப்படையில் செயற்படுகிறது?
a. சார்லஸ் விதி
b. நியூட்டனின் இயக்க விதி
c. ஜீல் வெப்ப விளைவு விதி
d. நியூட்டனின் தளிர்வு விதி
5. In a simple circuit, why does the bulb glow when you close the switch?
a. The switch produces electricity
b. Closing the switch completes the circuit
c. Closing the switch breaks the circuit
d. The bulb is getting charged

ஒரு எளிய மின்ச்ற்றலல் சாவியை மூடியவுடன் மின்விளக்கு ஒளிர்வது ஏன்?
a. சாவி மின்சாரத்தை தயாரிக்கிறது.
b. சாவி மூடியிருக்கும் போது மின்ச்ற்றின் சுற்றுப்பாதையை மூடிவிடுகிறதுு.
c. சாவி மூடியிருக்கும் போது மின்ச்ற்றின் சுற்றுப்பாதை திறக்கிறது.
d. மின்விளக்கு மின்ஞோ்றமமையும்
6. Resistance of dry human body is about \qquad
a. $10^{5} \Omega$
b. $10^{6} \Omega$
c. $10^{7} \Omega$
d. $10^{8} \Omega$

உல்ந்்த நிலலயில் மனித உடலின் மின்தடை ஏறக்குறைய __ ஓம்
a. $10^{5} \Omega$
b. $10^{6} \Omega$
c. $10^{7} \Omega$
d. $10^{8} \Omega$
7. Measure of the work done on unit Positive charge to bring it to that point against all electrical forces are called \qquad -
a. Electric Field
b. Electrical Potential
c. Electric Current
d. Potential Difference

அளைத்து மின்விசைகளுக்கும் எதிராக ஓரலகு நேர் மின்னூட்டத்தை ஒரு புள்ளிக்குக் கொண்டு வர செய்யப்படும் வேலையை \qquad என்று கூறப்படுகிறது.
a. தங்க இலை நிலைமின்காட்டி
b. வெர் சோரியம்
c. மின்னிறக்கம்
d. மேற்கண்ட எதுவுமில்லை
8. The First electroscope developed in 1600 by William Gilbert was called as a. Gold leaf

b. Versorium

c. Electrical discharge
d. None of the above

1600 ஆம் ஆண்டு வில்லியம் கில்பர்ட் என்பவரால் உருவாக்கப்பட்ட நிலைமின் காட்டி \qquad என்றழைக்கப்பட்டது.
a. தங்க இலை நிலைமின்காட்டி
b. வெர்சோரியம்
c. மின்சிறக்கம்
d. மேற்கண்ட எதுவுமில்லை
9. The electrification of two different bodies on rubbing is because of the transfer of
a. neutrons
b. protons
c. electrons
d. protons and neutrons
இரண்டு பொருள்களைத் தேய்க்கும் போது எவை இடமாற்ற்் அடைவதால் மின்ஞேற்றம் ஏற்படுகிறது?
a. நியூட்ரான்கள்
b. புரோட்டான்கள்
c. எலக்ட்ராா்கள்
d. புரோட்டான்களும் எலக்ட்ரான்களும்
10.The Electric eel is species of fish which can give electric shocks of upto \qquad
a. 650 W
b. 640 W
c. 630 W
d. 660 W
ஈல் (Eel) எø்ற ஒரு வகையான விலங்கு மீன் உருவாக்கி மின்னதிர்ச்சியை ஏற்படுத்தும்.
a. 650 W
b. 640 W
c. 630 W
d. 660 W
___ அளவுக்கு மின்சாரத்றை
11. Calculate the current and resistance of $100 \mathrm{w}, 200 \mathrm{v}$ electric bulb in an electric circuit.
a. $0.4 \mathrm{~A} 400 \Omega$
b. $0.5 \mathrm{~A} 300 \Omega$
c. $0.5 \mathrm{~A} 400 \Omega$
d. $0.4 \mathrm{~A} 300 \Omega$

ஒரு மின்சுற்றில் பொருத்தப்பட்டுள்ள 100w, 200v மின்விளக்கில் பாயும் மின்லோட்டம் மற்றுப் மின்தடையை கணக்குடு?
a. $0.4 \mathrm{~A} 400 \Omega$
b. $0.5 \mathrm{~A} 300 \Omega$
c. $0.5 \mathrm{~A} 400 \Omega$
d. $0.4 \mathrm{~A} 300 \Omega$
12. Three resistors of $1 \Omega, 2 \Omega$, and 4Ω are connected in parallel in circuit. If a 1Ω resistor draws a current of 1 A , find the current through the other two resistors.
a. $0.5,0.25 \mathrm{~A}$
b. $0.5,0.30 \mathrm{~A}$
c. $0.4,0.25 \mathrm{~A}$
d. $0.4,0.30 \mathrm{~A}$
$1 \Omega, 2 \Omega$ மற்றும் 4Ω ஆகிய மின் தடைகளைக் கொண்ட மூன்று மின்தடையாக்கிகள் ஒரு மின்ச்ற்றில் இணையாக இணைக்கப்பட்டுள்ளது. 1Ω மின்தடை கொண்ட மின தடையாக்கி வழியாக 1A மின்னோட்டம் சென்றாால் மற்று இரு மின் தடையாக்கிகள் வழியாக செல்லும் மின்ளோட்டத்தின் மதிப்பினை காண்க.
a. $0.5,0.25 \mathrm{~A}$
b. $0.5,0.30 \mathrm{~A}$
c. $0.4,0.25 \mathrm{~A}$
d. $0.4,0.30 \mathrm{~A}$
13.The unit of specific conductance is
a. ohm ${ }^{-1} \mathrm{~cm}^{2}$ eqvt $^{-1}$
b. $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
c. $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$
d. $\mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$
நியமக் கடத்து திறனின் அலகு
a. ohm ${ }^{-1} \mathrm{~cm}^{2}$ eqvt $^{-1}$
b. $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
c. $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$
d. $\mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$
14.Which of the following is correct?
a. Rate of change of charge is electrical power.
b. Rate of change of charge is current
c. Rate of change of energy is current
d. Rate of change of current is charge

கீழ்கண்டவற்றுள் எது சரியானது?
a. மின்னூட்டம் பாயும் வீதம் மின திறன்
b. மின்றாட்டம் பாயும் வீதம் மின்ஞோட்டம்
c. மின்னாற்றல் மாறும் வீதம் மின்னோட்டம்
d. மின்னோட்டம் மாறும் வீதம் மின்றாட்டம்
15.Determine the number of electrons flowing per second through a conductor, when a current of 32 A flows through it.
a. 2×10^{30} electrons
b. 2×10^{5} electrons
c. 2×10^{20} electrons
d. 3×10^{20} electrons

ஒரு கடத்தி வழியே 32A மின்னோட்ட்் பாயும்போது ஓரலகு நேரத்தில் கடத்தியில் பாயும் எலக்ட்ரான்களின் எண்ணிக்கையை காண்க.
a. 2×10^{30} எலக்ட்ரான்கள்
b. 2×10^{5} எலக்ட்ரான்கள்
c. 2×10^{20} எலக்ட்ரான்கள்
d. 3×10^{20} எலக்ட்ரான்கள்
16.The human body contains a large amount of water which has low resistance of around 200Ω but when the skin is wet the resistance increased to \qquad ?
a. 1000Ω
b. 1500Ω
c. 2000Ω
d. 800Ω

மனித உடலில் அதிக அளவு நீர உள்ளதால் மின்தடை குறைவாக கிட்டத்தட்ட 200 Ω அளவே இருக்கும். ஆனाல் தோலானது ஈரமாளதாக இருந்தால் மின்தடையின் மதிப்பு \qquad அளவுக்கு அதிகரிக்கும்?
a. 1000Ω
b. 1500Ω
c. 2000Ω
d. 800Ω
17.The resistance of certain materials become zero below certain temperature. This temperature is known as \qquad
b. Critical temperature
a. Temperature coefficient
d. absolute temperature
c. Inverse temperature

ஒரு சில பொருட்களின் வெப்பநிலையானது ஒரு குறிப்பிட்ட வெப்பநிலைக்கு கீழே குறையும் போது அதன் மின்தடை எண் சுழியாகும். இந்த வெப்பநிலையானது \qquad எனப்படும்.
a. மின்தடை வெப்பநிலை எண்
b. மாறுநிலை வெப்பநிலை
c. எதிர்தகவல் வெப்பநிலை
d. தனிச்சுழி வெப்பநிலை
18.If a current is double in a conductor, then the electrical power produced by a resistor will be?
a. 3 times
b. 2 times
c. 4 times
d. 8 times
ஒரு கடத்தியில் மின்ஞோட்டம் இருமடங்காக்கிளர்ல் மின்தடையில் உருவாக்கப்படும் மின்திறன் ஆனது __- அளவு?
a. 3 முறை
b. 2 முறை
c. 4 เுறை
d. 8 முறை
19.A galvanometer is an instrument used for detecting and measuring \qquad .
a. Potential difference
b. Resistance
c. Current
d. Power
கால்வனா மீட்டர் என்பது ___ யை கண்டறியவும் அளவிடவும் உதவும் ஒரு சாதனம் ஆகும்.
a. மின்னழுத்த வேறுபாடு
b. மின்தடை
c. மின்னோட்டம்
d. மின்திறன்
20.Find out the correct equations:
I. H = V²It
II. V = IR
III. P = VI
IV. $\mathrm{F}=\mathrm{mv}^{2}$
a. I and II only
b. III and IV only
c. II and III only
d. I and IV only சரியான சமன்பாடுகளைத் தோந்தெடுக.
I. H = V 2 It
II. $\mathrm{V}=\mathrm{IR}$
III. P = VI
IV. $F=\mathrm{mv}^{2}$
a. I மற்றும்ம் II மட்டும்
b. III மற்றும் IV மட்டும்
c. II மற்றுு்்் III மட்டும்
d. I மற்றும் IV மட்டும்

