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8th term 1 Unit-3. Light 
 
Introduction  
 
 Lofty mountains covered with greenish vegetation, magnificent trees reaching up to 
the clouds, beautiful streams drifting down the valleys, bluish sea water roaring towards 
the coast and the radiant sky in the morning being filled with golden red color, all give 
delight to our eyes and peace to our mind. But, can we see them all without light? No, 
because, we can see things around us only when the light reflected by them reaches our 
eyes.  
 
 Light is a form of energy and it travels in a straight line. You have studied in your 
lower classes, how it is reflected by the polished surfaces such as plane mirrors. In this 
lesson, you will study about other types of mirrors like the spherical mirrors and parabolic 
mirrors and their applications in our daily life. You will also study about the laws of 
reflection and the laws of refraction and some of the optical instruments, such as periscope 
and kaleidoscope, which work on these principles.  
 
Types of Mirrors  
  
 We use mirrors in our daily life for various purposes. We use them for decoration. In 
vehicles, they are used as rear view mirrors. They are also used in scientific apparatus, like 
telescope. The mirror is an optical device with a polished surface that reflects the light 
falling on it. A typical mirror is a glass sheet coated with aluminium or silver on one of its 
sides to produce an image. Mirrors have a plane or curved surface. Curved mirrors have 
surfaces that are spherical, cylindrical, parabolic and ellipsoid. The shape of a mirror 
determines the type of image it forms. Plane mirrors form the perfect image of an object. 
Whereas, curved mirrors produce images that are either enlarged or diminished. You would 
have studied about plane mirrors in your lower classes. In this section, you will study about 
spherical and parabolic mirrors. 
   

Do You Know? 
Method of coating a glass plate with a thin layer of reflecting metals was in practice during 
the 16th century in Venice, Italy. They used an amalgam of tin and mercury for this 
purpose. Nowadays, a thin layer of molten aluminium or silver is used for coating glass 
plates that will then become mirrors. 

 
Spherical mirrors  
 
 Spherical mirrors are one form of curved mirrors. If the curved mirror is a part of a 
sphere, then it is called a ‘spherical mirror’. It resembles the shape of a piece cut out from a 
spherical surface. One side of this mirror is silvered and the reflection of light occurs at the 
other side. 
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Concave mirrors  
 
 A spherical mirror, in which the reflection of light occurs at its concave surface, is 
called a concave mirror. These mirrors magnify theobject placed close to them. The most 
common example of a concave mirror is the make-up mirror.  
 
Convex mirror  
 
 A spherical mirror, in which the reflection of light occurs at its convex surface, is 
called a convex mirror. The image formed by these mirrors is smaller than the object. Most 
common convex mirrors are rear viewing mirrors used in vehicles. 
      

Do You Know? 
Convex mirrors used in vehicles as rear-view mirrors are labeled with the safety warning: 
‘Objects in the mirror are closer than they appear’ to warn the drivers. This is because inside 
the mirrors, vehicles will appear to be coming at a long distance. 

 

Parabolic mirrors  
 
 A parabolic mirror is one type of curved mirror, which is in the shape of a parabola. 
It has a concave reflecting surface and this surface directs the entire incident beam of light to 
converge at its focal point.  
 In the same way, light rays generated by the source placed at this focal point will fall 
on this surface and they will be diverged in a direction, which is parallel to the principal 
axis of the parabolic mirror. Hence, the light rays will be reflected to travel a long distance, 
without getting diminished.  
 Parabolic mirrors, also known as parabolic reflectors, are used to collect or project 
energy such as light, heat, sound and radio waves. They are used in reflecting telescopes, 
radio telescopes and parabolic microphones. They are also used in solar cookers and solar 
water heaters. 

Do You Know? 
The principle behind the working of a parabolic mirror has been known since the Greco-
Roman times. The first mention of these structures was found in the book, ‘On Burning 
Mirrors’, written by the mathematician Diocles. They were also studied in the 10th 
century, by a physicist called IbnSahl. The first parabolic mirrors were constructed by 
Heinrich Hertz, a German physicist, in the form of reflector antennae in the year 1888. 

 
TERMS RELATED TO SPHERICAL MIRRORS  
 
 In order to understand the image formation in spherical mirrors, you need to know 
about some of the terms related to them. 
 
 Center of Curvature: It is the center of the sphere from which the mirror is made. It is 
denoted by the letter C in the ray diagrams. (A ray diagram represents the formation of an 
image by the spherical mirror. You will study about them in your next class).  
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 Pole: It is the geometric centre of the spherical mirror. It is denoted by the letter P. 
Radius of Curvature: It is the distance between the center of the sphere and the vertex. It is 
shown by the letter R in ray diagrams. (The vertex is the point on the mirror’s surface where 
the principal axis meets the mirror. It is also called as ‘pole’.)  
 
 Principal Axis: The line joining the pole of the mirror and its center of curvature is 
called principal axis. 
 
 Focus: When a beam of light is incident on a spherical mirror, the reflected rays 
converge (concave mirror) at or appear to diverge from (convex mirror) a point on the 
principal axis. This point is called the ‘focus’ or ‘principal focus’. It is also known as the focal 
point. It is denoted by the letter F in ray diagrams. 
 
 Focal length: The distance between the pole and the principal focus is called focal 
length (f) of a spherical mirror. There is a relation between the focal length of a spherical 
mirror and its radius of curvature. The focal length is half of the radius of curvature. 
 

That is, focal length=
2

Radiusofcurvature
 

PROBLEM 1 
The radius of curvature of a spherical mirror is 20cm. Find its focal length 
Solution: 
Radius of curvature =20cm 

Focal length (f0 = 
2

Radiusofcurvature
 

 

= 
2

R
 =

20

2
=10cm 

PROBLEM 2  
Focal length of a spherical mirror is 7 cm. What is its radius of curvature?  
Solution:  
Focal length = 7 cm  
Radius of curvature (R) = 2 × focal length = 2 × 7 = 14 cm 

 
IMAGES FORMED BY SPHERICAL MIRRORS  
 
 Images formed by spherical mirrors are of two types: i) real image and ii) virtual 
image. Real images can be formed on a screen, while virtual images cannot be formed on a 
screen.  
 
 Image formed by a convex mirror is always erect, virtual and diminished in size. As a 
result, images formed by these mirrors cannot be projected on a screen.  
 
 The characteristics of an image are determined by the location of the object. As the 
object gets closer to a concave mirror, the image gets larger, until attaining approximately 
the size of the object, when it reaches the centre of curvature of the mirror. As the object 
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moves away, the image diminishes in size and gets gradually closer to the focus, until it is 
reduced to a point at the focus when the object is at an infinite distance from the mirror.  
 
 The size and nature of the image formed by a convex mirror is given in Table 3.1.  
 
 Concave mirrors form a real image and it can be caught on a screen. Unlike convex 
mirrors, concave mirrors show different image types. Depending on the position of the 
object in front of the mirror, the position, size and nature of the image will vary. Table 3.2 
provides a summary of images formed by a concave mirror. 
 

Table 3.1 Image formed by a convex mirror 
 

POSITION OF 
THE OBJECT 

POSITION OF THE 
IMAGE 

IMAGE SIZE NATURE OF THE 
IMAGE 

At infinity  At F Highly diminished, 
point sized  

Virtual and erect 

Between infinity the 
pole (P) 

Between P and F Diminished Virtual erect 

 
Table 3.2 Image formed by a concave mirror 

POSITION OF 
THE OBJECT 

POSITIOIN OF THE 
IMAGE 

IMAGE SIZE NATURE OF THE 
IMAGE 

At infinity At F Highly diminished Real and inverted 

Beyond C Between C and F  Diminished Real and inverted 

At C At C Same size as the 
object 

Real and inverted 

Between C and F  Beyond C  Magnified Real and inverted 

At F At infinity Highly magnified Real and inverted 

Between F and P Behind the mirror Magnified Virtual and erect 

 
 You can observe from the table that a concave mirror always forms a real and 
inverted image except when the object is placed between the focus and the pole of the 
mirror. In this position, it forms a virtual and erect image. 
 
Application of curved Mirrors 
Concave mirrors 
 
 1. Concave mirrors are used while applying make-up or shaving, as they provide a 
magnified image. 
 2. They are used in torches, search lights and head lights as they direct the light to a 
long distance. 
 3. They can collect the light from a larger area and focus it into a small spot. Hence, 
they are used in solar cookers. 
 4. They are used as head mirrors by doctors to examine the eye, ear and throat as 
they provide a shadow-free illumination of the organ. 
 5. They are also used in reflecting telescopes. Figure 3.3 Concave mirrors  
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Convex mirrors  
 
 1. Convex mirrors are used in vehicles as rear view mirrors because they give an 
upright image and provide a  wider field of view as they are curved outwards.  
 
2. They are found in the hallways of various buildings including hospitals, hotels, schools 
and stores. They are usually mounted on a wall or ceiling where hallways make sharp turns.  
 
3. They are also used on roads where there are sharp curves and turns. 
 

 Not all the objects can produce the same effect as produced by the plane mirror. A 
ray oflight, falling on a body having a shiny, polished and smooth surface alone is bounced 
back. This bouncing back of the light rays as they fall on the smooth, shiny and polished 
surface is called reflection.  
 
 Reflection involves two rays: i) incident ray and ii) reflected ray. The incident ray is 
the light ray in a medium falling on the shiny surface of a reflecting body. After falling on 
the surface, this ray returns into the same medium. This ray is called the reflected ray. An 
imaginary line perpendicular to the reflecting surface, at the point of incidence of the light 
ray, is called the normal.  
 
 The relation between the incident ray, the reflected ray and the normal is given as the 
law of reflection. The laws of reflection are as follows:  
 

• The incident ray, the reflected ray and the normal at the point of incidence, all lie in 
the same plane.  

• The angle of incidence and the angle of reflection are always equal.  
 
 

Do You Know? 
Silver metal is the best reflector of light. That’s why a thin layer of silver is deposited on the 
side of materials like plane glass sheets, to make mirrors. 

 

TYPES OF REFLECTION  
 
 You have learnt that not all bodies can reflect light rays. Th e amount of reflection 
depends on the nature of the reflecting surface of a body. Based on the nature of the surface, 
reflection can be classified into two types namely, i) regular reflection and ii) irregular 
reflection. 
 
Regular reflection  
 
 When a beam of light (collection of parallel rays) falls on a smooth surface, it gets 
reflected. After reflection, the reflected rays will be parallel to each other. Here, the angle of 
incidence and the angle of reflection of each ray will be equal. Hence, the law of reflection is 
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obeyed in this case and thus a clear image is formed. This reflection is called ‘regular 
reflection’ or ‘specular reflection’. Example: Reflection of light by a plane mirror and 
reflection of light from the surface of still water. 
 
Irregular reflection  
 
 In the case of a body having a rough or irregular surface, each region of the surface is 
inclined at different angles. When light falls on such a surface, the light rays are reflected at 
different angles. In this case, the angle of incidence and the angle of reflection of each ray 
are not equal. Hence, the law of reflection is not obeyed in this case and thus the image is 
not clear. Such a reflection is called ‘irregular reflection’ or ‘diff used reflection’. Example: 
Reflection of light from a wall.  
 
MULTIPLE REFLECTIONS  
 
 You can see three images. How is it possible to have three images with two mirrors? 
In the activity given above, you observed that for a body kept in between two plane mirrors, 
which were inclined to each other, you could see many images. Th is is because, the ‘image’ 
formed by one mirror acts as an ‘object’ for the other mirror. Th e image formed by the first 
mirror acts as an object for the second mirror and the image formed by the second mirror 
acts as an object for the first mirror. Th us, we have three images of a single body. Th is is 
known as multiple reflection. This type of reflections can be seen in show rooms and 
saloons. 
 
  The number of images formed, depends on the angle of inclination of the mirrors. If 
the angle between the two mirrors is a factor of 360°, then the total number of reflections is 
finite. If θ (Theta) is the angle of inclination of the plane mirrors, the number of images 

formed =
360

0
-1. As you decrease this angle, the number of images formed increases. When 

they are parallel to each other, the number of images formed becomes infinite.  
 

Problem.3 
If two plane mirrors are inclined to each other at an angle of 90°, find the number of 
images formed.  
Solution:  
Angle of inclination = 90°  
Number of images formed =  

0360


 _

360

90

o

o
– 1 = – 1 = 4 -1 = 3 

 
Kaleidoscope  
 
It is a device, which functions on the principle of multiple reflection of light, to produce 
numerous patterns of images. It has two or more mirrors inclined with each other. It can be 
designed from inexpensive materials and the colourful image patterns formed by this will 
be pleasing to you. This instrument is used as a toy for children. 
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 Periscope  
 
It is an instrument used for viewing bodies or ships, which are over and around another 
body or a submarine. It is based on the principle of the law of reflection of light. It consists 
of a long outer case and inside this case mirrors or prisms are kept at each end, inclined at 
an angle of 45°. Light coming from the distant body, falls on the mirror at the top end of the 
periscope and gets reflected vertically downward. This light is reflected again by the second 
mirror kept at the bottom, so as to travel horizontally and reach the eye of the observer. In 
some complex periscopes, opticfibre is used instead of mirrors for obtaining a higher 
resolution. Th e distance between the mirrors also varies depending on the purpose of using 
the periscope.  
 
Uses  
 
• It is used in warfare and navigation of the submarine.  
• In military it is used for pointing and firing guns from a ‘bunker’. • Photographs of 
important places can be taken through periscopes without trespassing restricted military 
regions.  
• Fibre optic periscopes are used by doctors as endoscopes to view internal organs of the 
body. 
 
REFRACTION OF LIGHT 
 
  We know that when a light ray falls on a polished surface placed in air, it is reflected 
into the air itself. When it falls on a transparent material, it is not reflected completely, but a 
part of it is reflected and a part of it is absorbed and most of the light passes through it. Th 
rough air, light travels with a speed of 3 x108 m s-1, but it cannot travel with the same speed 
in water or glass, because, optically denser medium such as water and glass offer some 
resistance to the light rays. 
  
 So, light rays travelling from a rarer medium like air into a denser medium like glass 
or water are deviated from their straight line path. Th is bending of light about the normal, 
at the point of incidence; as it passes from one transparent medium to another is called 
refraction of light.  
 
 When a light ray travels from the rarer medium into the denser medium, it bends 
towards the normal and when it travels from the denser medium into the rarer medium, it 
bends away from the normal. You can observe this phenomenon with the help of the 
activity given below.  
 
 In this activity, the light rays actually travel from the water (a denser medium) into 
the air (a rarer medium). As you saw earlier, when a light ray travels from a denser medium 
to a rarer medium, it is deviated from its straight line path. So, the pencil appears to be bent 
when you see it through the glass of water. 
 



 

9 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

Refractive Index  
 
 Refraction of light in a medium depends on the speed of light in that medium. When 
the speed of light in a medium is more, the bending is less andwhen the speed of light is 
less, the bending is more. 
 

 The amount of refraction of light in a medium is denoted by a term known as 
refractive index of the medium, which is the ratio of the speed of light in the air to the speed 
of light in that particular medium. It is also known as the absolute refractive index and it is 
denoted by the Greek letter ‘μ’ (pronounced as ‘mew’). 
 

μ= ( )

int ( )

Speedoflighinair c

Speedoflight hemedium v  
 

 Refractive index is a ratio of two similar quantities (speed) and so, it has no unit. 
Since, the speed of light in any medium is less than its speed in air, refractive index of any 
transparent medium is always greater than 1.  
Refractive indices of some common substances are given in Table 3.3. 
 

Substances Refractive Index 

Air  1.0 

Water 1.33 

Ether 1.36 

Kerosene 1.41 

Ordinary Glass 1.5 

Quartz 1.56 

Diamond 2.41 

 
 In general, the refractive index of one medium with respect to another medium is 
given by the ratio of their absolute refractive indices. 
 

μ2
secAbsoluterefactiveindexofthe ondmedium

Absoluterefactiveindexofthefivemedum
 

 
 

 Thus, the refractive index of one medium with respect to another medium is also 
given by the ratio of the speed of light in first medium to its speed in the second medium. 
 
PROBLEM 4  
Speed of light in air is 3 × 108 m s-1 and the speed of light in a medium is 2 ×108 ms-1. Find 
the refractive index of the medium with respect to air.  
Solution: 

Refractive index (μ)= ( )

int ( )

Speedoflightinair c

Speedoflight hemedum v
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μ =
8

8

3 10

2 10




=1.5 

PROBLEM 5  
Refractive index of water is 4/3 and the refractive index of glass is 3/2. Find the refractive 
index of glass with respect to the refractive index of water.  
Solution: 

 
 
Snell’s Law of Refraction  
 Refraction of light rays, as they travel from one medium to another medium, obeys 
two laws, which are known as Snell’s laws of refraction. They are:  
I) The incident ray, the refracted ray and the normal at the point of intersection, all lie in the 
same plane.  
II) The ratio of the sine of the angle of incidence (i) to the sine of the angle of refraction (r) is 
equal to the refractive index of the medium, which is a constant. 
 

Figure 3.12 Snell’s Law 
 

 In the above activity, you can see that the first prism splits the white light into seven 
coloured light rays and the second prism recombines them into white light, again. Thus, it is 
clear that white light consists of seven colours. You can also recall the Newton’s disc 
experiment, which you studied in VII standard.  
  
 Splitting of white light into its seven constituent colours (wavelength), on passing 
through a transparent medium is known as dispersion of light.  
 
 Why does dispersion occur? It is because, light of different colours present in white 
light have different wavelength and they travel at different speeds in a medium. You know 
that refraction of a light ray in a medium depends on its speed. As each coloured light has a 
different speed, the constituent coloured lights are refracted at different extents, inside the 
prism. Moreover, refraction of a light ray is inversely proportional to its wavelength.  
  
 Thus, the red coloured light, which has a large wavelength, is deviated less while the 
violet coloured light, which has a short wavelength, is deviated more.  
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9 th book 
UNIT- 6 –LIGHT 

Introduction  
 
      Light is a form of energy which travels as electromagnetic waves. The branch of physics 
that deals with the properties and applications of light is called optics. In our day to day life 
we use number of optical instruments. Microscopes are inevitable in science laboratories. 
Telescopes, binoculars, cameras and projectors are used in educational, scientific and 
entertainment fields. In this lesson, you will learn about spherical mirrors (concave and 
convex). Also, you will learn about the properties of light, namely reflection and refraction 
and their applications.  
 
Reflection of Light 
 
Light falling on any polished surface such as a mirror, is reflected. This reflection of light on 
polished surfaces follows certain laws and you have studied about them in your lower 
classes. Let us study about them little elaborately here. 
 
 Laws of reflection 
 
Consider a plane mirror MM′ as shown in Figure 6.1. Let AO be the light ray incident on the 
plane mirror at O. The ray AO is called incident ray. The plane mirror reflects the incident 
ray along OB. The ray OB is called reflected ray. Draw a line ON at O perpendicular to MM′. 
This line ON is called normal. 
 
The angle made by the incident ray with the normal (i = angle AON) is called angle of 
incidence. The reflected ray OB makes an angle (r = angle NOB) with the normal and this is 
called angle of reflection. From the figure you can observe that the angle of incidence is 
equal to the angle of reflection. i.e., i = r. Also, the incident ray, the reflected ray and the 
normal at the point of incidence all lie in the same plane. These are called the laws of 
reflection. Laws of reflection are given as: The incident ray, the reflected ray and the normal 
at the point of incidence, all lie in the same plane.  
 
The angle of incidence is equal to angle of reflection. 
 

The most common usage of mirror writing can be found on the front of ambulances, where 
the word "AMBULANCE" is often written in very large mirrored text. 

 
 Lateral inversion 
 
 You might have heard about inversion. But what is lateral inversion? The word lateral 
comes from the Latin word latus which means side. Lateral inversion means sidewise 
inversion. It is the apparent inversion of left and right that occurs in a plane mirror. Why do 
plane mirrors reverse left and right, but they do not reverse up and down? Well, the answer 
is surprising. Mirrors do not actually reverse left and right and they do not reverse up and 
down also. What actually mirrors do is reverse inside out. Look at the image below (Figure 
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6.2) and observe the arrows, which indicate the light ray from the object falling on the 
mirror. The arrow from the object’s head is directed towards the top of the mirror and the 
arrow from the feet is directed towards the bottom. The arrow from left hand goes to the left 
side of the mirror and the arrow from the right hand goes to the right side of the mirror. 
Here, you can see that there is no switching. It is an optical illusion. Thus, the apparent 
lateral inversion we observe is not caused by the mirror but the result of our perception.  
 
 Real and Virtual Image  
 
If the light rays coming from an object actually meet, after reflection, the image formed will 
be a real image and it is always inverted. A real image can be produced on a screen. When 
the light rays coming from an object do not actually meet, but appear to meet when 
produced backwards, that image will be virtual image. The virtual image is always erect 
and cannot be caught on a screen (Figure  
binoculars, cameras and projectors are used in educational, scientifi c and entertainment 
fields. 
 
In this lesson, you will learn about spherical mirrors (concave and convex). Also, you will 
learn about the properties of light, namely reflection and refraction and their applications. 
 
Curved Mirrors 
 
We studied about laws of reflection. These laws are applicable to all types of reflecting 
surfaces including curved surfaces. Let us learn about image formation in curved surfaces in 
this part. 

 
In your earlier classes, you have studied that there are many types of curved mirrors, 

such as spherical and parabolic mirrors. The most commonly used type of curved mirror is 
spherical mirror. The curved surfaces of a shining spoon could also be considered as a 
curved mirror. 
Take a hemispherical spoon. It has an inner and outer surface like the inside and outside of 
the ball. See your face on these surfaces? How do they look? 

Move the spoon slowly away from your face. Observe the image. How does it 
change? Reverse the spoon and repeat the activity. How does the image look like now? 
 
   Spherical mirrors 
 

In curved mirrors, the reflecting surface can be considered to form a part of the 
surface of a sphere. Such mirrors whose reflecting surfaces are spherical are called spherical 
mirrors. 

 
In some spherical mirrors the reflecting surface is curved inwards, that is, it faces 

towards the centre of the sphere. It is called concave mirror. In some other mirrors, the 
reflecting surface is curved outward. It is called convex mirror and are shown in Figure 2. 
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In order to understand reflection of light at curved surfaces, we need to know the 
following. 

 
Centre of curvature (C): The centre of the hollow sphere of which the spherical mirror 
forms a part. 
 
Pole (P): The geometrical centre of the spherical mirror. 
 
Principal axis (PC): The perpendicular line joining the pole and the centre of curvature of 
the mirror. 
 
Radius of curvature(R): The distance between the pole and the centre of curvature of the 
spherical mirror. 
 
Principal focus (F): The point on the principal axis of the spherical mirror where the rays of 
light parallel to the principal axis meet or appear to meet after reflection from the spherical 
mirror. 
 
Focal length(f): The distance between the pole and the principal focus. 
Radius of curvature and focal length are related to each other by the formula: R=2f. All these 
are depicted in Figure 3. 

 
 
Image Formed by Curved Mirrors 
 

 
 
We have seen that the parallel rays of sun light (Figure 4) could be focused at a point 

using a concave mirror. Now let us place a lighted candle and a white screen in front of the 
concave mirror. Adjust the position of the screen. Move the screen front and back. Note the 
size of the image and its shape. Is it inverted? Is it small? 

 
Next, slowly bring the candle closer to the mirror. What do you observe? As you 

bring the object closer to the mirror the image becomes bigger. Try to locate the image when 
you bring the candle very close to the mirror. Are you able to see an image on the screen? 
Now look inside the mirror. What do you see? An erect magnified image of the candle is 
seen. In some positions of the object an image is obtained on the screen. However at some 



 

14 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

position of the object no image is obtained. It is clear that the behaviour of the concave 
mirror is much more complicated than the plane mirror. 

 
However, with the use of geometrical technique we can simplify and understand the 

behaviour of the image formed by a concave mirror. In the earlier case of plane mirror, we 
used only two rays to understand how to get full image of a person. But for understanding 
the nature of image formedby a concave mirror we need to look at four specific rules. 
 
  Rules for the construction of image formed by spherical mirrors 
 

From each point of an object, number of rays travel in all directions. To find the 
position and nature of the image formed by a concave mirror, we need to know the 
following rules. 

 
Rule 1: A ray passing through the centre of curvature is reflected back along its own path 
(Figure 5). 

 
 
Rule 2: A ray parallel to the principal axis passes through the principal focus after reflection 
(Figure 6). 

 
Rule 3: A ray passing through the focus gets reflected and travels parallel to the principal 
axis (Figure 7). 
 

 
 
Rule 4: A ray incident at the pole of the mirror gets reflected along a path such that the angle 
of incidence (APC) is equal to the angle of reflection (BPC) (Figure 8). 
 

 
 
Concave Mirror 
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  Ray diagrams for the formation of images 
 

We shall now find the position, size and nature of image by drawing the ray diagram 
for a small linear object placed on the principal axis of a concave mirror at different 
positions. 

 
Case-I: When the object is far away (at infinity), the rays of light reaching the concave 
mirror are parallel to each other (Figure 10).  
 

 
 
Position of the Image: The image is at the principal focus F. 
Nature of the Image: It is (i) real, (ii) inverted and (iii) highly diminished in size. 
 
Case-II: When the object is beyond the centre of curvature (Figure 11).  
Position   of   the   image:  Between   the principal focus F and centre of curvature C. 

 
 
Nature of the image: Real, inverted and smaller than object. 
Case – III: When the object is at the centre of curvature (Figure 12). 
Position of the image: The image is at the centre of curvature itself. 
Nature of the image: It is i) Real, ii) inverted and iii) same size as the object. 

 
 

Case – IV:  When the object is in between the centre of curvature C and principal 
focus F (Figure 13). 
Position of the image: The image is beyond C 
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Nature of the image:    It is i)Real ii) inverted and iii) magnified. 
 
Case – V:When the object is at the principal focus F (Figure 14). 
Position of the image: Theoretically, the image is at infinity. 
Nature of the image: No image can be captured on a screen nor any virtual image can be 
seen. 

 
 

Case – VI: When the object is in between the focus F and the pole P (Figure 15). Position of 
the image: The image is behind the mirror. 
Nature of the image: It is virtual,erect and magnified. 
 

S. No Position of 
Object 

Ray Diagram Position 
of Image 

Size of 
Image 

Nature of 
Image 

1.  
 

At infinity 

 

 
At the 

principal 
focus 

 
 

Point size 

 
Real and 
Inverted  

2.   
Beyond the 
Centre of 

Curvature C 

 

 
 
Between 
F and C 

 
 

Smaller 
than the 

object 

 
 
Real and 
Inverted  

3.   
At the 

Centre of 
Curvature C 

 

 
 

A to C 

Same size Real and 
Inverted  

4.  Between C 
and F 

 

Beyond 
C 

Magnified Real and 
inverted  

5. At the 
principal 
focus F 

 

At 
infinity 

Infinitely 
large 

Real and 
Inverted  

6.  Between the 
principal 
focus F and 

 

Behind 
the 
mirror  

Magnified  Virtual and 
Erect 
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the pole P of 
the mirror  

 
  Sign convention for measurement of distances 
 

We follow a set of sign conventions called the cartesian sign convention. In this 
convention the pole (P) of the mirror is taken as the origin. The principal axis is taken as the 
x axis of the coordinate system (Figure 16).The object is always placed on the left side of the 
mirror. All distances are measured from the pole of the mirror. 

 
▪ Distances measured in the direction of incident light are taken as positive and those 

measured in the opposite direction are taken as negative. 
▪ All distances measured perpendicular to and above the principal axis are considered 

to be positive. 
▪ All distances measured perpendicular to and below the principal axis are considered 

to be negative. 
 

Type of 
mirror 

u v f R Height of the 
subject 

Height of the image 

 real virtual real virtual 

Concave 
mirror 

- - + - -  - + 

Convex 
mirror 

- No 
real 
image 

+ + +  No real  
image 

+ 

 
   Mirror equation 
 

The expression relating the distance of the object u, distance of image v and focal 
length f of a spherical mirror is called the mirror equation. It is given as: 

 
 
  Linear magnification (m) 
 

Magnification produced by a spherical mirror gives the how many times the image of 
an object is magnified with respect to the object size. 
It can be defined as the ratio of the height of the image (//.) to the height of the object (h). 
 
 
The magnification can be related to object distance (u) and the image 
distance (v) 
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Note: A negative sign in the value of magnification indicates that the image is real. A 
positive sign in the value of magnification indicates that the virtual image. 
 
Uses of concave mirror  
 
Dentist’s head mirror: 
 
 In dentist’s head mirror, a parallel beam of light is made to fall on the concave mirror. This 
mirror focuses the light beam on a small area of the body (such as teeth, throat etc.). 
 
 Make-up mirror:  
 
When a concave mirror is held near the face, an upright and magnified image is seen. Here, 
our face will be seen magnified. 
 
 Other applications:  
 
Concave mirrors are also used as reflectors in torches, head lights in vehicles and search 
lights to get powerful beams of light. Large concave mirrors are used in solar heaters. 
 

Stellar objects are at an infinite distance. Therefore, the image formed by a concave mirror 
would be diminished, and inverted. Yet, astronomical telescopes use concave mirrors 

 
Convex Mirror 
Image Formation  
 
Any two rays can be chosen to draw the position of the image in a convex mirror (Figure 
6.10): a ray that is parallel to the principal axis (rule 1) and a ray that appears to pass 
through the centre of curvature (rule 2).  
 
Note: All rays behind the convex mirror shall be shown with dotted lines. 
 
The ray OA parallel to the principal axis is reflected along AD. The ray OB retraces its path. 
The two reflected rays diverge but they appear to intersect at I when produced backwards. 
Thus II′ is the image of the object OO′. It is virtual, erect and smaller than the object. 
 
Uses of convex mirrors 
 
Convex mirrors are used as rear-view mirrors in vehicles. It always forms a virtual, erect, 
small-sized image of the object. As the vehicles approach the driver from behind, the size of 
the image increases. When the vehicles are moving away from the driver, then image size 
decreases. A convex mirror provides a much wider field of view (it is the observable area as 
seen through eye / any optical device such as mirror) compared to plane mirror. Convex 
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mirrors are installed on public roads as traffic safety device. They are used in acute bends of 
narrow roads such as hairpin bends in mountain passes where direct view ofoncoming 
vehicles is restricted. It is also used in blind spots in shops. 
 

In the rear view mirror, the following sentence is written. “Objects in the mirror are closer 
than they appear”. Why? 
 
 Speed of light 
 

In early seventeenth century the Italian scientist Galileo Galilee (1564‒1642) tried to 
measure the speed of light as it travelled from a lantern on a hill top about a mile (1.6 km) 
away from where he stood. His attempt was bound to fail, because he had no accurate 
clocks or timing instruments. 

 
In 1665 the Danish astronomer Ole Roemer first estimated the speed of light by 

observing one of the twelve moons of the planet Jupiter. As these moons travel around the 
planet, at a set speed, it would take 42 hours to revolve around Jupiter. Roemer made a time 
schedule of the eclipses for the whole year. He made first observation in June and second 
observation in December. Roemer estimated the speed of light to be about 220,000 km per 
second. 

 
In 1849 the first land based estimate was made by Armand Fizeau. Today the speed 

of light in vacuum is known to be almost exactly 300,000 km per second. 
 
  Refraction of light 
 
      This activity explains the refraction of light. The bending of light rays when they pass 
obliquely from one medium to another medium is called refraction of light.  
 
   Cause of refraction 
 

Light rays get deviated from their original path while entering from one 
transparentmedium to another medium of different optical density. This deviation (change 
in direction) in the path of light is due to the change in velocity of light in the different 
medium. The velocity of light depends on the nature of the medium in which it travels. 
Velocity of light in a rarer medium (low optical density) is more than in a denser medium 
(high optical density). 

 
  Refraction of light from a plane transparent surface 
 

When a ray of light travels from optically rarer medium to optically denser medium, 
it bends towards the normal. (Figure 22) 

 
When a ray of light travels from an optically denser medium to an optically rarer medium it 
bends away from the normal. (Figure 23) 
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A ray of light incident normally on a denser medium goes without any deviation 
 
The laws of refraction of light 
 

The incident ray, the refracted ray and the normal to the interface of two transparent 
media at the point of incidence, all lie in the same plane. 

 
The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a 

constant for a light of a given colour and for the given pair of media. This law is also known 
as Snell’s law of refraction. 

 
If i is the angle of incidence and r is the angle of refraction, then 
 
 

 
This constant is called the refractive index of the second medium with respect to the 

first medium. It is generally represented by the Greek letter,1 µ2 (mew) 
 
Note: The refractive index has no unit as it is the ratio of two similar quantities 
 
  Verification of laws of refraction 

 
   Speed of light in different media 
 

Light has the maximum speed in vacuum and it travels with different speeds in 
different media. The speed of light in some media is given below. 

 
Note: The refractive index of a medium is also defined in terms of speed of light in different 
media 
 

 
 

in general,  

 
Total internal reflection 
 
When light travels from denser medium into a rarer medium, it gets refracted away from 
the normal. While the angle of incidence in the denser medium increases the angle of 
refraction also increases and it reaches a maximum value of r = 90º for a particular value. 
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This angle of incidence is called critical angle (Figure 6.12). The angle of incidence at which 
the angle of refraction is 90º is called the critical angle. At this angle, the refracted ray grazes 
the surface of separation between the two media. 
 
When the angle of incidence exceeds the value of critical angle, the refracted ray is not 
possible. Since r > 90º the ray is totally reflected back to the same medium. This is called as 
total internal reflection.  
 
Conditions to achieve total internal reflection 
 
In order to achieve total internal refelection the following conditions must be met.  
 

• Light must travel from denser medium to rarer medium. (Example: From water to 
air). 

• The angle of incidence inside the denser medium must be greater than that of the 
critical angle.  

 
Total internal reflection in nature 
 
Mirage: 
 

 On hot summer days, patch of water may be on the road. This is an illusion. In 
summer, the air near the ground becomes hotter than the air at higher levels. Hotter air is 
less dense, and has smaller refractive index than the cooler air. Thus, a ray of light bends 
away from the normal and undergoes total internal reflection. Total internal reflection is the 
main cause for the spectacular brilliance of diamonds and twinkling of stars. 
 
 Optical fibres:  

 
Optical fibres are bundles of high-quality composite glass/quartz fibres. Each fibre 

consists of a core and cladding. The refractive index of the material of the core is higher than 
that of the cladding. Optical fibres work on the phenomenon of total internal reflection. 
When a signal in the form of light is directed at one end of the fibre at a suitable angle, it 
undergoes repeated total internal reflection along the length of the fibre and finally comes 
out at the other end. Optical fibres are extensively used for transmitting audio and video 
signals through long distances. Moreover, due to their flexible nature, optical fibers enable 
physicians to look and work inside the body through tiny incisions without having to 
perform surgery. 
 

An Indian-born physicist NarinderKapany is regarded as the Father of Fibre Optics. 
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10th Standard  
Unit 2: Optics 

 
INTRODUCTION 
 

Light is a form of energy which travels in the form of waves. Th e path of light is 
called ray of light and group of these rays are called as beam of light. Any object which 
gives out light are termed as source of light. Some of the sources emit their own light and 
they are called as luminous objects. All the stars, including the Sun, are examples for 
luminous objects. We all know that we are able to see objects with the help of our eyes. But, 
we cannot see any object in a dark room. Can you explain why? If your answer is ‘we need 
light to see objects’, the next question is ‘if you make the light from a torch to fall on your 
eyes, will you be able to see the objects?’Definitely, ‘NO’. We can see the objects only when 
the light is made to fall on the objects and the light reflected from the objects is viewed by 
our eyes. You would have studied about the reflection and refraction of light elaborately in 
your previous classes. In this chapter, we shall discuss about the scattering of light, images 
formed by convex and concave lenses, human eye and optical instruments such as 
telescopes and microscopes. 
 
PROPERTIES OF LIGHT  

 
Let us recall the properties of light and the important aspects on refraction of light.  
 
❖ Light is a form of energy.  

 
❖ Light always travels along a straight line.  

 
❖ Light does not need any medium for its propagation. It can even travel 

through vacuum.  
 

❖  The speed of light in vacuum or air is, c = 3 × 108ms–1.  
 

❖ Since, light is in the form of waves, it is characterized by a wavelength (λ) and 
a frequency (ν), which are related by the following equation: c = ν λ (c - 
velocity of light). 

 

❖ Different coloured light has different wavelength and frequency.  
 

❖ Among the visible light, violet light has the lowest wavelength and red light 
has the highest wavelength.  

 
❖ When light is incident on the interface between two media, it is partly 

reflected and partly refracted.  
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REFRACTION OF LIGHT  
 

When a ray of light travels from one transparent medium into another obliquely, the 
path of the light undergoes deviation. This deviation of ray of light is called refraction. 
Refraction takes place due to the difference in the velocity of light in different media. The 
velocity of light is more in a rarer medium and less in a denser medium. Refraction of light 
obeys two laws of refraction. 
 
First law of refraction:  
 

The incident ray, the refracted ray of light and the normal to the refracting surface all 
lie in the same plane. 
 
Second law of refraction:  
 

The ratio of the sine of the angle of incidence and sine of the angle of refraction is equal to the ratio of refractive indices of the two media. This law is also known as Snell’s law. 
 

 
 
❖ Refractive index gives us an idea of how fast or how slow light travels in a medium. 

The ratio of speed of light in vacuum to the speed of light in a medium is defined as 
refractive index ‘μ’ of that medium.  
 

❖ The speed of light in a medium is low if the refractive index of the medium is high 
and vice versa.  

 
❖ When light travels from a denser medium into a rarer medium, the refracted ray is 

bent away from the normal drawn to the interface.  
 

❖ When light travels from a rarer medium into a denser medium, the refracted ray is 
bent towards the normal drawn to the interface.  
 

REFRACTION OF A COMPOSITE LIGHT-DISPERSION OF LIGHT  
 

We know that Sun is the fundamental and natural source of light. If a source of light 
produces a light of single colour, it is known as a monochromatic source. On the other hand, 
a composite source of light produces a white light which contains light of different colours. 
Sun light is a composite light which consists of light of various colours or wavelengths. 
Another example for a composite source is a mercury vapour lamp. What do you observe 
when a white light is refracted through a glass prism?  
 

When a beam of white light or composite light is refracted through any transparent 
media such as glass or water, it is split into its component colours. This phenomenon is 
called as ‘dispersion of light’.  



 

24 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
The band of colours is termed as spectrum. This spectrum consists of following 

colours: Violet, Indigo, Blue, Green, Yellow, Orange, and Red. These colours are represented 
by the acronym “VIBGYOR”. Why do we get the spectrum when white light is refracted by 
a transparent medium? This is because, different coloured lights are bent through different 
angles. That is the angle of refraction is different for different colours.  
 

Angle of refraction is the smallest for red and the highest for violet. From Snell’s law, 
we know that the angle of refraction is determined in terms of the refractive index of the 
medium. Hence, the refractive index of the medium is different for different coloured lights. 
This indicates that the refractive index of a medium is dependent on the wavelength of the 
light. 
 
SCATTERING OF LIGHT  
 

When sunlight enters the Earth’s atmosphere, the atoms and molecules of different 
gases present in the atmosphere refract the light in all possible directions. This is called as 
‘Scattering of light’. In this phenomenon, the beam of light is redirected in all directions 
when it interacts with a particle of medium. The interacting particle of the medium is called 
as ‘scatterer’. 
 

Types of scattering  
 

When a beam of light, interacts with a constituent particle of the medium, it 
undergoes many kinds of scattering. Based on initial and final energy of the light beam, 
scattering can be classified as,  
 
Elastic scattering  
 
❖ If the energy of the incident beam of light and the scattered beam of light are same, 

then it is called as ‘elastic scattering’.  
 
Inelastic scattering  
 
❖ If the energy of the incident beam of light and the scattered beam of light are not 

same, then it is called as ‘inelastic scattering’. The nature and size of the scatterer 
results in different types of scattering. They are 
 

1) Rayleigh scattering  
2) Mie scattering  
3) Tyndall scattering  
4) Raman scattering  

 
Rayleigh scattering  
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The scattering of sunlight by the atoms or molecules of the gases in the earth’s 
atmosphere is known as Rayleigh scattering.  
 
Rayleigh’s scattering law  
 

Rayleigh’s scattering law states that, “The amount of scattering of light is inversely 
proportional to the fourth power of its wavelength”. 

 

 
 

According to this law, the shorter wavelength colours are scattered much more than 
the longer wavelength colours.  
 

When sunlight passes through the atmosphere, the blue colour (shorter wavelength) 
is scattered to a greater extent than the red colour (longer wavelength). This scattering 
causes the sky to appear in blue colour.  
 

At sunrise and sunset, the light rays from the Sun have to travel a larger distance in 
the atmosphere than at noon. Hence, most of the blue lights are scattered away and only the 
red light which gets least scattered reaches us. Therefore, the colour of the Sun is red at 
sunrise and sunset. 
 
Mie scattering  
 

Mie scattering takes place when the diameter of the scatterer is similar to or larger 
than the wavelength of the incident light. It is also an elastic scattering. The amount of 
scattering is independent of wave length.  Mie scattering is caused by pollen, dust, smoke, 
water droplets, and other particles in the lower portion of the atmosphere.  

 
Mie scattering is responsible for the white appearance of the clouds. When white 

light falls on the water drop, all the colours are equally scattered which together form the 
white light. 
 
Tyndall Scattering  
 

When a beam of sunlight, enters into a dusty room through a window, then its path 
becomes visible to us. This is because, the tiny dust particles present in the air of the room 
scatter the beam of light. This is an example of Tyndall Scattering  
The scattering of light rays by the colloidal particles in the colloidal solution is called 
Tyndall Scattering or Tyndall Effect. 

 

Raman scattering  
 

When a parallel beam of monochromatic (single coloured ) light passes through a gas 
or liquid or transparent solid, a part of light rays are scattered.  



 

26 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
The scattered light contains some additional frequencies (or wavelengths) other than 

that of incident frequency (or wavelength). This is known as Raman scattering or Raman 
Effect.  
 

Raman Scattering is defined as “The interaction of light ray with the particles of 
pure liquids or transparent solids, which leads to a change in wavelength or frequency.”  
 

The spectral lines having frequency equal to the incident ray frequency is called 
‘Rayleigh line’ and the spectral lines which are having frequencies other than the incident 
ray frequency are called ‘Raman lines’. The lines having frequencies lower than the incident  
 
 
frequency is called stokes lines and the lines having frequencies higher than the incident 
frequency are called Antistokes lines.  
 

You will study more about Raman Effect in higher classes. 
 
LENSES  
 

A lens is an optically transparent medium bounded by two spherical refracting 
surfaces or one plane and one spherical surface. 
 

Lens is basically classified into two types. They are: (i) Convex Lens (ii) Concave Lens 
 

❖ Convex or bi-convex lens: It is a lens bounded by two spherical surfaces such that it 
is thicker at the centre than at the edges. A beam of light passing through it, is 
converged to a point. So, a convex lens is also called as converging lens.  
 

❖ (ii) Concave or bi-concave Lens: It is a lens bounded by two spherical surfaces such 
that it is thinner at the centre than at the edges. A parallel beam of light passing 
through it, is diverged or spread out. So, a concave lens is also called as diverging 
lens.  

 
Other types of Lenses  
 
❖ Plano-convex lens: If one of the faces of a bi-convex lens is plane, it is known as a 

plano-convex lens.  
❖ Plano-concave lens: If one of the faces of a bi-concave lens is plane, it is known as a 

plano-concave lens.  
 

All these lenses are shown in Figure 2.2 given below: 
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IMAGES FORMED DUE TO REFRACTION THROUGH A CONVEX AND CONCAVE 
LENS  

 
When an object is placed in front of a lens, the light rays from the object fall on the 

lens. Th e position, size and nature of the image formed can be understood only if we know 
certain basic rules.  

 
Rule-1: When a ray of light strikes the convex or concave lens obliquely at its optical 

centre, it continues to follow its path without any deviation (Figure 2.3). 
 

Rule-2: When rays parallel to the principal axis strikes a convex or concave lens, the 
refracted rays are converged to (convex lens) or appear to diverge from (concave lens) the 
principal focus (Figure 2.4). 
 
 

Rule-3: When a ray passing through (convex lens) or directed towards (concave lens) 
the principal focus strikes a convex or concave lens, the refracted ray will be parallel to the 
principal axis (Figure 2.5). 
 
REFRACTION THROUGH A CONVEX LENS  

 
Let us discuss the formation of images by a convex lens when the object is placed at 

various positions.  
 
Object at infinity 
 

When an object is placed at infinity, a real image is formed at the principal focus. Th e 
size of the image is much smaller than that of the object (Figure 2.6). 

 
Object placed beyond C (>2F)  

When an object is placed behind the center of curvature(beyond C), a real and 
inverted image is formed between the center of curvature and the principal focus. Th e size 
of the image is the same as that of the object (Figure 2.7). 
 
Object placed at C  

 
When an object is placed at the center of curvature, a real and inverted image is 

formed at the other center of curvature. Th e size of the image is the same as that of the 
object (Figure 2.8).  
 
Object placed between F and C  
 

When an object is placed in between the center of curvature and principal focus, a 
real and inverted image is formed behind the center of curvature. The size of the image is 
bigger than that of the  
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Object placed at the principal focus F  
  

When an object is placed at the focus, a real image is formed at infinity. The size of 
the image is much larger than that of the object (Figure 2.10). 
 
Object placed between the principal focus F and optical centre O  
 

When an object is placed in between principal focus and optical centre, a virtual 
image is formed. The size of the image is larger than that of the object (Figure 2.11). 
 
APPLICATIONS OF CONVEX LENSES  
 
❖ Convex lenses are used as camera lenses  
❖  They are used as magnifying lenses  
❖  They are used in making microscope, telescope and slide projectors  
❖ They are used to correct the defect of vision called hypermetropia 

 
REFRACTION THROUGH A CONCAVE LENS  
 

Let us discuss the formation of images by a concave lens when the object is placed at 
two possible positions.  
 
Object at Infinity  
 

When an object is placed at infinity, a virtual image is formed at the focus. The size of 
the image is much smaller than that of the object (Figure 2.12). 

 

 
 
Object anywhere on the principal axis at a finite distance  
 

When an object is placed at a finite distance from the lens, a virtual image is formed 
between optical center and focus of the concave lens. The size of the image is smaller than 
that of the object (Figure 2.13). 
 

But, as the distance between the object and the lens is decreased, the distance 
between the image and the lens also keeps decreasing. Further, the size of the image formed 
increases as the distance between the object and the lens is decreased. This is shown in 
(figure 2.14). 

 
APPLICATIONS OF CONCAVE LENSES  
 
❖ Concave lenses are used as eye lens of ‘Galilean Telescope’  
❖ They are used in wide angle spy hole in doors.  
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❖ They are are used to correct the defect of vision called ‘myopia’ 
 
LENS FORMULA  
 

Like spherical mirrors, we have lens formula for spherical lenses. The lens formula 
gives the relationship among distance of the object (u), distance of the image (v) and the 
focal length (f ) of the lens. It is expressed as 

 

 
 

It is applicable to both convex and concave lenses. We need to give an at most care 
while solving numerical problems related to lenses in taking proper signs of different 
quantities. 
 
SIGN CONVENTION  
 

Cartesian sign conventions are used for measuring the various distances in the ray 
diagrams of spherical lenses. According to cartesian sign convention,  
 
❖ The object is always placed on the left side of the lens.  
❖ All the distances are measured from the optical centre of the lens.  
❖ The distances measured in the same direction as that of incident light are taken as 

positive.  
❖ The distances measured against the direction of incident light are taken as negative.  
❖ The distances measured upward and perpendicular to the principal axis is taken as 

positive.  
❖ The distances measured downward and perpendicular to the principal axis is taken 

as negative.  
 
MAGNIFICATION OF A LENS  
 

Like spherical mirrors, we have magnification for spherical lenses. Spherical lenses 
produce magnification and it is defined as the ratio of the height of the image to theheight of 
an object. Magnification is denoted by the letter ‘m’. If height of the object is h and height of 
the image is h ´, the magnification produced by lens is, 

 

Also it is related to the distance of the object (u) and the distance of the image (v) as 
follows: 

 
 

If the magnification is greater than 1, then we get an enlarged image. On the other 
hand, if the magnification is less than 1, then we get a diminished image. 
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LENS MAKER’S FORMULA  
 

All lenses are made up of transparent materials. Any optically transparent material 
will have a refractive index. The lens formula relates the focal length of a lens with the 
distance of object and image. For a maker of any lens, knowledge of radii of curvature of the 
lens is required. This clearly indicates the need for an equation relating the radii of 
curvature of the lens, the refractive index of the given material of the lens and the required 
focal length of the lens. The lens maker’s formula is one such equation. It is given as 
 

 
whereμ is the refractive index of the material of the lens; R1 and R2 are the radii of 

curvature of the two faces of the lens; f is the focal length of the lens. 

 

POWER OF A LENS  
 

When a ray of light falls on a lens, the ability to converge or diverge these light rays 
depends on the focal length of the lens. This ability of a lens to converge (convex lens) or 
diverge (concave lens) is called as its power. Hence, the power of a lens can be defined as 
the degree of convergence or divergence of light rays. Power of a lens is numerically defined 
as the reciprocal of its focal length. 

 

 
 
The SI unit of power of a lens is dioptre. It is represented by the symbol D. If focal 

length is expressed in ‘m’, then the power of lens is expressed in ‘D’. Thus 1D is the power 
of  
Table 2.1 Differences between a Convex Lens and a Concave Lens 
 

 
S.No 

 

 
Convex Lens  

 

 
Concave Lens  

 

1  
A convex lens is thicker in the 
middle than at edges.  

 

 
A concave lens is thinner in the 
middle than at edges.  

 

2  
It is a converging lens.  

 

 
It is a diverging lens.  

 

3  
It produces mostly real images.  

 

 
It produces virtual images.  

 

4 
 

 
It is used to treat 
hypermeteropia.  

 

 
It is used to treat myopia.  
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11thvol II 
WAVES 

 
INTRODUCTION 
 
 In the previous chapter, we have discussed the oscillation of a particle. Consider a 
medium which consists of a collection of particles. If the disturbance is created at one end, 
itpropagates and reaches the other end. That is, the disturbance produced at the first mass 
point is transmitted to the next neighbouring mass point, and so on. Notice that here, only 
the disturbance is transmitted, not the mass points. Similarly, the speech we deliver is due 
to the vibration of our vocalchord inside the throat. This leads to the vibration of the 
surrounding air molecules and hence, the effect of speech (information) is transmitted from 
one point in space to another point in space without the medium carrying the particles. 
Thus, the disturbance which carries energy and momentum from one point in space to 
another point in space without the transfer of the medium is known as a wave. 
 
 Standing near a beach, one can observe tides in the ocean reaching the seashore with 
a similar wave pattern; hence they are called ocean waves. A rubber band when plucked 
vibrates like a wave which is an example of a standing wave. These are shown in Figure 
11.2. Other examples of waves are light waves (electromagnetic waves), through which we 
observe and enjoy the beauty of nature and sound waves using which we hear and enjoy 
pleasant melodious songs. Day to day applications of waves are numerous, as in mobile 
phone communication, laser surgery, etc. 
 
Ripples and wave formation on the water surface 
 
 Suppose we drop a stone in a trough of still water, we can see a disturbance 
produced at the place where the stone strikes the water surface as shown in Figure 11.3. We 
find that this disturbance spreads out (diverges out) in the form of concentric circles of ever 
increasing radii (ripples) and strike the boundary of the trough. This is because some of the 
kinetic energy of the stone is transmitted to the water molecules on the surface. Actually the 
particles of the water (medium) themselves do not move outward with the disturbance. This 
can be observed by keeping a paper strip on the water surface. The strip moves up and 
down when the disturbance (wave) passes on the water surface. This shows that the water 
molecules only undergo vibratory motion about their mean positions. 
 
Formation of waves on stretched string 
 
 Let us take a long string and tie one end of the string to the wall as shown in Figure 
11.4 (a). If we give a quick jerk, a bump (like pulse) is produced in the string as shown in 
Figure 11.4 (b). Such a disturbance is sudden and it lasts for a short duration, hence it is 
known as a wave pulse. If jerks are given continuously then the waves produced are 
standing waves. Similar waves are produced by a plucked string in a guitar. 
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Formation of waves in a tuning fork 
 
 When we strike a tuning fork on a rubber pad, the prongs of the tuning fork vibrate 
about their mean positions. The prong vibrating about a mean position means moving 
outward and inward, as indicated in the Figure 11.5. When a prong moves outward, it 
pushes the layer of air in its neighbourhood which means there is more accumulation of air 
molecules in this region. Hence, the density and also the pressure increase. These regions 
are known as compressed regions or compressions. This compressed air layer moves 
forward and compresses the next neighbouring layer in a similar manner. Thus a wave of 
compression advances or passes through air. When the prong moves inwards, the particles 
of the medium are moved to the right. In this region both density and pressure are low. It is 
known as a rarefaction or elongation. 
 
Characteristics of wave motion 
 

• For the propagation of the waves, the medium must possess both inertia and 
elasticity, which decide the velocity of the wave in that medium. 

• In a given medium, the velocity of a wave is a constant whereas the constituent 
particles in that medium move with different velocities at different positions. 
Velocity is maximum at their mean position and zero at extreme positions. 

• Waves undergo reflections, refraction, interference, diffraction and polarization. 
 

Point to ponder 

1. The medium possesses both inertia and elasticity for propagation of waves. 
2. Light is an electromagnetic wave. what is the medium for its transmission? 

 
Mechanical wave motion and its types 
 
Wave motion can be classified into two types 
 

a. Mechanical wave – Waves which require a medium for propagation are known as 
mechanical waves. 
Examples: sound waves, ripples formed on the surface of water, etc. 

b. Non mechanical wave – Waves which do not require any medium for propagation 
are known as non-mechanical waves. 
Example: light 

 
Further, waves can be classified into two types 
 

a. Transverse waves 
b. Longitudinal waves 
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Transverse wave motion 
 
 In transverse wave motion, the constituents of the medium oscillate or vibrate about 
their mean positions in a direction perpendicular to the direction of propagation (direction 
of energy transfer) of waves. 
 
Example: light (electromagnetic waves) 
 
Longitudinal wave motion 
 
 In longitudinal wave motion, the constituent of the medium oscillate or vibrate about 
their mean positions in a direction parallel to the direction of propagation (direction of 
energy transfer) of waves as shown in Figure 11.7. 
 
Example: Sound waves travelling in air. 
 
Discuss with your Teacher 

o Tsunami (pronounced soo-nah-mee in Japanese) means Harbour waves. A tsunami is 
a series of huge and giant waves which come with great speed and huge force. What 
happened on 26th December2004 in southern part of India? - Discuss 

o Gravitational waves - LIGO (Laser lnterferometer Gravitational wave Observatory) 
experiment Nobel Prize winners in Physics 2017 

i. Prof. Rainer Weiss 
ii. Prof. Barry C. Barish 

iii. Prof. Kip S. Thorne 
“For decisive contributions to the LIGO detector and observation of gravitational 
forces” 

 
Comparison of transverse and longitudinal waves 

S.No Transverse waves Longitudinal waves 

1. The direction of vibration of particles 
of the medium is perpendicular to the 
direction of propagation of waves. 

The direction of vibration of particles 
of 
the medium is parallel to the direction 
of 
propagation of waves. 

2. The disturbances are in the form of crests 
and troughs. 

The disturbances are in the form of 
compressions and rarefactions 

3. Transverse waves are possible in elastic 
medium. 

Longitudinal waves are possible in all 
types of media (solid, liquid and gas). 

NOTE: 
1. Absence of medium is also known as vacuum. Only electromagnetic waves can travel 
through vacuum. 
2. Rayleigh waves are considered to be mixture of transverse and longitudinal. 

 
TERMS AND DEFINITIONS USED IN WAVE MOTION 



 

34 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

 
 Suppose we have two waves as shown in Figure 11.8. Are these two waves identical?. 
No. Though, the two waves are both sinusoidal, there are many difference between them. 
Therefore, we have to define some basic terminologies to distinguish one wave from 
another. 
 
Consider a wave produced by a stretched string as shown in Figure 11.9. 
 
 If we are interested in counting the number of waves created, let us put a reference 
level (mean position) as shown in Figure 11.9. Here the mean position is the horizontal line 
shown. The highest point in the shaded portion is called crest. With respect to the reference 
level, the lowest point on the un-shaded portion is called trough. This wave contains 
repetition of a section O to B and hence we define the length of the smallest section without 
repetition as one wavelength as shown in Figure 11.10. In Figure 11.10 the length OB or 
length BD is one wave lengh. A Greek letter lambda λ is used to denote one wavelength. 
 
 For transverse waves (as shown in Figure 11.11), the distance between two 
neighbouring crests or troughs is known as the wavelength. For longitudinal waves, (as 
shown in Figure 11.12) the distance between two neighbouring compressions or rarefactions 
is known as the wavelength. The SI unit of wavelength is meter. 
 
E X A M P L E 
 
Which of the following has longer wavelength? 
 
 In order to understand frequency and time period, let us consider waves (made of 
three wavelengths) as shown in Figure 11.13 (a). At time t = 0 s, the wave reaches the point 
A from left. After time t = 1 s (shown in figure 11.13(b)), the number of waves which have 
crossed the point A is two. Therefore, the frequency is defined as “the number of waves 
crossing a point per second” It is measured in hertz whose symbol is Hz. In this example, 
 

f = 2 Hz 
 
 wave consisting of three wavelengths passing a point A at time (a) t = 0 s and (b) 
after time t = 1 sin 
 
 If two waves take one second (time) to cross the point A then the time taken by one 
wave to cross the point A is half a second. This defines the time period T as 

1
0.5

2
T s= =  

 
 From equation (11.1) and equation (11.2), frequency and time period are inversely 
related i.e. 
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1
T

f
=  

Time period is defined as the time taken by one wave to cross a point.in 
 
E X A M P L E 
 
Three waves are shown in the figure below 

 
Write down 
 
(a) the frequency in ascending order 
(b) the wavelength in ascending order 
 
Solution 
 

fc<fa<fb 
λb<λa<λc 

 
 From the example 11.2, we observe that the frequency is inversely related to the 

wavelength, 
1

f 
  

Then, fλ is equal to what? 
 

 
 
 A simple dimensional argument will help us to determine this unknown physical 
quantity. Dimension of wavelength is, [λ] = L 
 

Frequency
1

f
Time period

= which implies that the dimension of frequency is, 

 

 
 
Therefore, 



 

36 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

Velocity, λf =v 
 
 where v is known as the wave velocity or phase velocity. This is the velocity with 
which the wave propagates. Wave velocity is the distance travelled by a wave in one 
second. 
 
Note: 
 
The number of cycles (or revolutions) per unit time is called angular frequency. Angular 

frequency, 
2

2 f
T

 = = (unit is radians/second) 

 
The number of cycles per unit distance or number of waves per unit distance is called wave 

number. wave number, 
2

k



= (unit is radians/ meter In two, three or higher dimensional 

case, the wave number is the magnitude of a vector called \ 

wave vector. The points in space of wave vectors are called reciprocal vectors, k  
 
Example 
 
 The average range of frequencies at which human beings can hear sound waves 
varies from 20 Hz to 20 kHz. Calculate the wavelength of the sound wave in these limits. 
(Assume the speed of sound to be 340 m s-1. 
 
Solution 

 
 

Therefore, the audible wavelength region is from 0.017 m to 17 m when the velocity of 
sound in that region is 340 m s-1. 
 
Example 
 
 A man saw a toy duck on a wave in an ocean. He noticed that the duck moved up 
and down 15 times per minute. He roughly measured the wavelength of the ocean wave as 
1.2 m. Calculate the time taken by the toy duck for going one time up and down and also 
the velocity of the ocean wave. 

 

Solution  
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 Given that the number of times the toy duck moves up and down is 15 times per 
minute. This information gives us frequency (the number of times the toy duck moves up 
and down) 
 

    
 
 But one minute is 60 second, therefore, expressing time in terms of second 
 

    
  

 The time taken by the toy duck for going one time up and down is time period which 
is inverse of frequency 
 

     
 The velocity of ocean wave is 
 

  
 
Amplitude of a wave: 
 
 The waves shown in thesame wavelength, same frequency andsame time period and 
also move with samevelocity. The only difference between twowaves is the height of either 
crest or trough.This means, the height of the crest or troughalso signifies a wave character. 
So we definea quantity called an amplitude of the wave, as the maximum displacement of 
the medium with respect to a reference axis (for example in this case x-axis). Here, it is 
denoted by A. 
 
Example  
 
 Consider a string whose one end is attached to a wall. Then compute the following in 
both situations given in figure (assume waves crosses the distance in one second)  
 

(a) Wavelength, (b) Frequency and (c) Velocity 
 
Solution 

 First Class Second Class 

(a) Wavelength  

λ = 6 m  
 

 

λ = 2 m  
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(b)Frequency  

f = 2 Hz  
 

 

f = 6 Hz  
 

(c) Velocity   

v = 6 × 2 = 12 m s-1  
 

 

v = 2 × 6 = 12 m s-1  
 

 
 This means that the speed of the wave along a string is a constant. Higher the 
frequency, shorter the wavelength and vice versa, and their product is velocity which 
remain the same.  
 
Velocity of Waves in different Media  
 
 Suppose a hammer is stroked on long rails at a distance and when a person keeps his 
ear near the rails at the other end he/she will hear two sounds, at different instants. The 
sound that is heard through the rails (solid medium)  is faster than the sound we hear 
through the air (gaseous medium). This implies the velocity of sound is different in different 
media.  
 
 In this section, we shall derive the velocity of waves in two different cases:  

1. The velocity of a transverse waves along a stretched string.  
2. The velocity of a longitudinal waves in an elastic medium.  

 
Velocity of transverse waves in a stretched string  
 
 Let us compute the velocity of transverse travelling waves on a string. When a jerk is 
given at one end (left end) of the rope, the wave pulses move towards right end with a 
velocity v. This means that the pulses move with a velocity v with respect to an observer 
who is at rest frame. Suppose an observer also moves with same velocity v in the direction 
of motion of the wave pulse, then that observer will notice that the wave pulse is stationary 
and the rope is moving with pulse with the same velocity v. 
 

 Consider an elemental segment in the string as shown in the Figure. Let A andB be 
two points on the string at an instant of time. Let dl and dm be the length and mass of the 
elemental string, respectively. By definition, linear mass density, μ is 

 
 

 The elemental string AB has a curvature which looks like an arc of a circle with centre 
at O, radius R and the arc subtending an angle θ at the origin O as shown in Figure. The 

angle θ can be written in terms of arc length and radius as The centripetal 
acceleration supplied by the tension in the string is 
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 Then, centripetal force can be obtained when mass of the string (dm) is included in 
equation. 
 

 
 
 The centripetal force experienced by elemental string can be calculated by 
substituting equation 

 
The tension T acts along the tangent of the elemental segment of the string at A and B. Since 
the arc length is very small, variation in the tension force can be ignored. We can resolve T 

into horizontal component cos
2

T
 

 
 

and vertical component sin
2

T
 

 
 

. The horizontal 

components at A and B are equal in magnitude but opposite in direction; therefore, they 
cancel each other. Since the elemental arc length AB is taken to be very small, the vertical 
components at A and B appears to acts vertical towards the centre of the arc and hence, they 
add up. The net radial force Fr is 
 

 
 

Since the amplitude of the wave is very small when it is compared with the length of the 

string, the sine of small angle is approximated as sin .
2 2

    
 

 Hence, equation  can be 

written as 

 

But 
dl

R
 = therefore substituting in equation (11.11), we get 

 

 
 

Applying Newton’s second law to the elemental string in the radial direction, under 
equilibrium, the radial component of the force is equal to the centripetal force. Hence 

equating equation (11.9) and equation (11.12), we have 2dl dl
T v

R R
=  
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T
v


= measured in m s-1 

 
Observations: 
• The velocity of the string is 
a. directly proportional to the square root of the tension force 
b. inversely proportional to the square root of linear mass density 
c. independent of shape of the waves. 

Example  

 

 Calculate the velocity of the travelling pulse as shown in the figure below. The linear 
mass density of pulse is 0.25 kg m-1. Further, compute the time taken by the travelling pulse 
to cover a distance of 30 cm on the string. 

 

Solution  
 
The tension in the string is T = m g = 1.2 × 9.8 = 11.76 N  
The mass per unit length is μ = 0.25 kg m-1  
Therefore, velocity of the wave pulse is 

 
 
The time taken by the pulse to cover the distance of 30 cm is  
 

 
 ms = milli second  
 

 

Velocity of longitudinal waves in an elastic medium  
 
 Consider an elastic medium (here we assume air) having a fixed mass contained in a 
long tube (cylinder) whose cross sectional area is A and maintained under a pressure P. One 
can generate longitudinal waves in the fluid either by displacing the fluid using a piston or 
by keeping a vibrating tuning fork at one end of the tube. Let us assume that the direction of 
propagation of waves coincides with theaxis of the cylinder. Let ρ be the density of the fluid 
which is initially at rest. At t = 0, the piston at left end of the tube is set in motion toward the 
right with a speed u.  
 
 Let u be thevelocity of the piston and v be the velocity of the elastic wave. In time 
interval Δt, the distance moved by the piston Δd = u Δt. Now, the distance moved by the 
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elastic disturbance is Δx = vΔt. Let Δm be the mass of the air that has attained a velocity v in 
a time Δt . Therefore, 
 

 
 

Then, the momentum imparted due to motion of piston with velocity u is 
 

     
 
 

But the change in momentum is impulse. The net impulse is 

 
 

 When the sound wave passes through air, the small volume element (ΔV) of theair 
undergoes regular compressions and rarefactions. So, the change in pressure can also be 
written as 
 

 
 where, V is original volume and B is known as bulk modulus of the elastic medium. 
But V = A Δx = A v Δt and  
ΔV = A Δd =A u Δt 
Therefore, 

    
 
   

    
 

 In general, the velocity of a longitudinal wave in elastic medium is 
E

v


= where E is 

the modulus of elasticity of the medium. 
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Cases: For a solid: 
 
(i) one dimension rod (1D) 
 

      
 
 where Y is the Young’s modulus of the material of the rod and ρ is the density of the 
rod. The 1D rod will have only Young’s modulus. 
 
(ii) Three dimension rod (3D)The speed of longitudinal wave in a solid is 

 
 where η is the modulus of rigidity, K is the bulk modulus and ρ is the density of the 
rod. 
 
Cases: For liquids: 
 

 
where, K is the bulk modulus and ρ is the density of the rod. 
 
E X A M P L E 
 
Calculate the speed of sound in a steel rod whose Young’s modulus Y = 2 × 1011 N m-2 and ρ 
= 7800 kg m-3. 
 
Solution 

 
 Therefore, longitudinal waves travel faster in a solid than in a liquid or a gas. Now 
you may understand why a shepherd checks before crossing railway track by keeping his 
ears on the rails to safeguard his cattle. 
 
E X A M P L E 
 
An increase in pressure of 100 kPa causes a certain volume of water to decrease by 
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0.005% of its original volume. 
(a) Calculate the bulk modulus of water?. 
(b) Compute the speed of sound (compressional waves) in water?. 
 
Solutions 
 
a) Bulk modules 

 

 
Mega Pascal  
 

 
 

The velocities of both transverse waves and longitudinal waves depend on elastic property 
(like string tension T or bulk modulus B) and inertial property (like density or mass per 
 

 
 

Speed of Sound in Various media 

S.No Medium Speed in ms-1  

1 Rubber  1600 

2 Gold  3240 

3 Brass 4700 

4 Copper 5010 

5 Iron 5950 

6 Aluminium 6420 

Liquids at 250C 

1 Kerosene  1324 

2 Mercury  1450 

3 Water 1493 
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4 Sea water  1533 

Gas (at 00C) 

1 Oxygen 317 

2 Air 337 

3 Helium 972 

4 Hydrogen 1286 

Gas (at 20°C) 

1 Air 343 
 
PROPAGATION OF SOUND WAVES 
 
 We know that sound waves are longitudinal waves, and when they propagate 
compressions and rarefactions are formed. In the following section, we compute the speed 
of sound in air by Newton’s method and also discuss the Laplace correction and the factors 
affecting sound in air. 
 
Newton’s formula for speed of sound waves in air 
 
 Sir Isaac Newton assumed that when sound propagates in air, the formation of 
compression and rarefaction takes placein a very slow manner so that the process is 
isothermal in nature. That is, the heat produced during compression (pressure increases, 
volume decreases), and heat lost during rarefaction (pressure decreases, volume increases) 
occur over a period of time such that the temperature of the medium remains constant. 
Therefore, by treating the air molecules to form an ideal gas, the changes in pressure and 
volume obey Boyle’s law, Mathematically 
 

PV = Constant (11.20) 
 

Differentiating equation (11.20), we get 
 

 
 

where, BT is an isothermal bulk modulus of air. Substituting equation (11.21) in equation 
(11.16), the speed of sound in air is 
 

 
 

Since P is the pressure of air whose value at NTP (Normal Temperature and Pressure) is 76 
cm of mercury, we have 
 

P = (0.76 × 13.6 ×103 × 9.8) N m-2 
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ρ = 1.293 kg m-3. here ρ is density of air 
 
Then the speed of sound in air at Normal Temperature and Pressure (NTP) is 
 

 
 

= 279.80 m s-1 ≈ 280 ms-1 (theoretical value) 
 

But the speed of sound in air at 0°C is experimentally observed as 332 m s-1 which is close 

upto 16% more than theoretical value (Percentage error is 
(332 280)

100% 15.6%)
332

−
 + . This 

error is not small. 
 
Laplace’s correction 
 
 In 1816, Laplace satisfactorily corrected this discrepancy by assuming that when the 
sound propagates through a medium, the particles oscillate very rapidly such that the 
compression and rarefaction occur very fast. Hence the exchange of heat produced due to 
compression and cooling effect due to rarefaction do not take place, because, air (medium) 
is a bad conductor of heat. Since, temperature is no longer considered as a constant here, 
sound propagation is an adiabatic process. By adiabatic considerations, the gas obeys 
Poisson’s law (not Boyle’s law as Newton assumed), which is 
 

 
 

where, P

V

C

C
 = , which is the ratio between specific heat at constant pressure and specific 

heat at constant volume. 
 
 Differentiating equation (11.23) on both the sides, we get  

VγdP + P (γVγ-1dV) = 0 
 

or, 
A

dp
P V B

dV
 = − =  

 
where, BA is the adiabatic bulk modulus of air. Now, substituting equation (11.24) in 
equation (11.16), the speed of sound in air is 
 

A
A T

B P
v v

 
 

= = =  

 
Since air contains mainly, nitrogen, oxygen, hydrogen etc, (diatomic gas), we take 
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γ = 1.47. Hence, speed of sound in air is ( )( )1 11.4 280 331.30Av ms ms
− −= =  which is very 

much closer to experimental data. 
 
Factors affecting speed of sound in gases 
 
 Let us consider an ideal gas whose equation of state is 
 

PV = n R T 
where, P is pressure, V is volume, T is temperature, n is number of mole and R is universal 
gas constant. For a given mass of a molecule, equation (11.26) can be written as 
 

PV

T
= constant 

 
For a fixed mass m, density of the gas inversely varies with volume. i.e., 

1
,

V
 m

V


=  

 
Substituting equation (11.28) in equation (11.27), we get 
 

P
cT


=  

 
where c is constant. 
 
The speed of sound in air given in equation (11.25) can be written as 
 

P
v cT

 


= =  

 
From the above relation we observe the following 
 
(a) Effect of pressure: 
 
 For a fixed temperature, when the pressure varies, correspondingly density also 

varies such that the ratio 
P


 
 
 

 becomes constant. This means that the speed of sound is 

independent of pressure for a fixed temperature. If the temperature remains same at the top 
and the bottom of a mountain then the speed of sound will remain same at these two points. 
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But, in practice, the temperatures are not same at top and bottom of a mountain; hence, the 
speed of sound is different at different points. 
 
(b) Effect of temperature: 
 

 Since, ,v T  the speed of sound varies directly to the square root of temperature 

in kelvin. 
 
Let v0 be the speed of sound at temperature at 0° C or 273 K and v be the speed of sound at 
any arbitrary temperature T (in kelvin), then 
 

0

0 0

273

273 273

1 1
273 546

T tv

v

t t
v v v

+= =

 = + = + 
 

 

 
(using binomial expansion) 

 
Since v0 = 331m s-1 at 00C, v at any temperature in t0C is  
 

v = (331 + 0.60t) m s-1 
 
 Thus the speed of sound in air increases by 0.61 m s-1 per degree celcius rise in 
temperature. Note that when the temperature is increased, the molecules will vibrate faster 
due to gain in thermal energy and hence, speed of sound increases. 
 
(c) Effect of density: 
 
 Let us consider two gases with different densities having same temperature and 
pressure. Then the speed of sound in the two gases are 
 

1
1

1

P
v




=  

 
and 

 

2
2

2

P
v




=  

 



 

48 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

Taking ratio of equation (11.31) and equation (11.32), we get 
 

1

1 21

2 12 2

2

1

P

v

v P


 
 



= =  

 
For gases having same value of γ, 
 

21

12

v

v




=  

 
(e) Effect of wind: 
 
 The speed of sound is also affected by blowing of wind. In the direction along the 
wind blowing, the speed of sound increases whereas in the direction opposite to wind 
blowing, the speed of sound decreases. 
 
Example 
 
 The ratio of the densities of oxygen andnitrogen is 16:14. Calculate the 
temperaturewhen the speed of sound in nitrogen gasat 17°C is equal to the speed of sound 
inoxygen gas. 
 
Solution 
From equation (11.25), we have 
 

P
v




=  

But, 
M

V
 =  

Therefore, 
PV

v
M

=  

Using equation (11.26) 

RT
v

M

=  
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Where, R is the universal gas constant and M is the molecular mass of the gas. The speed of 
sound in nitrogen gas at 17°C is 
 

( )

( )

273 17

290

N
N

N

R K K
v

M

R K

M





+
=

=

 

Similarly, the speed of sound in oxygen gas at t in K is 
 

( )
0

0

273R K t
v

M

 +
=  

 
Given that the value of γ is same for both the gases, the two speeds must be equal. Hence, 
equating equation (1) and (2), we get 
 

( ) ( )
0

273 290

o N

N

v v

R t R

M M

 

=

+
=

 

 
Squaring on both sides and cancelling γ R term and rearranging, we get 
 

0 273

290N

M t

M

+=  

 
Since the densities of oxygen and nitrogen is 16:14, 

 

0 16

14N




=  

 

 
Substituting equation (5) in equation (3), we get 
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REFLECTION OF SOUND WAVES 
 
 When sound wave passes from one medium to another medium, the following things 
can happen 
 
(a) Reflection of sound: If the medium is highly dense (highly rigid), the sound can be 
reflected completely (bounced back) to the original medium. 
 
(b) Refraction of sound: When the sound waves propagate from one medium to another 
medium such that there can be some energy loss due to absorption by the second medium. 
 
In this section, we will consider only the reflection of sound waves in a medium when it 
experiences a harder surface. Similar to light, sound can also obey the laws of reflection, 
which states that  
 
(i) The angle of incidence of sound is equal to the angle of reflection. 
 
(ii) When the sound wave is reflected by a surface then the incident wave, reflected wave 
and the normal at the point of incidence all lie in the same plane. 
 
 Similar to reflection of light from a mirror, sound also reflects from a harder flat 
surface, This is called as specular reflection. 
 
 Specular reflection is observed only when the wavelength of the source is smaller 
than dimensions of the reflecting surface, as well as smaller than surface irregularities. 
 
Reflection of sound through the plane surface 
 
When the sound waves hit the plane wall, they bounce off in a manner similar to that of 
light. Suppose a loudspeaker is kept at an angle with respect to a wall (plane surface), then 
the waves coming from the source (assumed to be a point source) can be treated as spherical 
wave fronts (say, compressions moving like a spherical wave front). Therefore, the reflected 
wave front on the plane surface is also spherical, such that its centre of curvature (which lies 
on the other side of plane surface) can be treated as the image of the sound source (virtual or 
imaginary loud speaker) which can be assumed to be at a position behind the plane surface. 
 
Reflection of sound through the curved surface 
 
 The behaviour of sound is different when it is reflected from different surfaces-
convex or concave or plane. The sound reflected from a convex surface is spread out and so 
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it is easily attenuated and weakened. Whereas, if it is reflected from the concave surface it 
will converge at a point and this can be easilyamplified. The parabolic reflector (curved 
reflector) which is used to focus the sound precisely to a point is used in designing the 
parabolic mics which are known as high directional microphones. 
 
 We know that any surface (smooth or rough) can absorb sound. For example, the 
sound produced in a big hall or auditorium or theatre is absorbed by the walls, ceilings, 
floor, seats etc. To avoid such losses, a curved sound board (concave board) is kept in front 
of the speaker, so that the board reflects the sound waves of the speaker towards the 
audience. This method will minimize the spreading of sound waves in all possible direction 
in that hall and also enhances the uniform distribution of sound throughout the hall. That is 
why a person sitting at any position in that hall can hear the sound without any 
disturbance. 
 
Applications of reflection of sound waves 
 
(a) Stethoscope: It works on the principle of multiple reflections. 
 
It consists of three main parts: 
(i) Chest piece 
(ii) Ear piece 
(iii) Rubber tube 
 
(i) Chest piece: It consists of a small disc-shaped resonator (diaphragm) which is very 
sensitive to sound and amplifies the sound it detects. 
 
(ii) Ear piece: It is made up of metal tubes which are used to hear sounds detected by the 
chest piece. 
 
(iii) Rubber tube: This tube connects both chest piece and ear piece. It is used to transmit 
the sound signal detected by the diaphragm, to the ear piece. The sound of heart beats (or 
lungs) or any sound produced by internal organs can be detected, and it reaches the ear 
piece through this tube by multiple reflections. 
 
(b) Echo: An echo is a repetition of sound produced by the reflection of sound waves from a 
wall, mountain or other obstructing surfaces. The speed of sound in air at 20°C is 344 m s-1. 
If we shout at a wall which is at 344 m away, then the sound will take 1 second to reach the 
wall. After reflection, the sound will take one more second to reach us. Therefore, we hear 
the echo after two seconds. 
Scientists have estimated that we can hear two sounds properly if the time gap or time 

interval between each sound is 
1

10

th
 
 
 

of a second (persistence of hearing) i.e., 0.1 s. Then, 

Distance travelled 2
velocity=

time taken

d

t
=  
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2d = 344 × 0.1 = 34.4 m 
d = 17.2 m 

 
The minimum distance from a sound reflecting wall to hear an echo at 20°C is 17.2 meter. 
 
(c) SONAR:SOundNAvigation and Ranging. Sonar systems make use of reflections of 
sound waves in water to locate the position or motion of an object. Similarly, dolphins and 
bats use the sonar principle to find their way in the darkness. 
 
(d) Reverberation: In a closed room the sound is repeatedly reflected from the walls and it 
is even heard long after the sound source ceases to function. The residual sound remaining 
in an enclosure and the phenomenon of multiple reflections of sound is called reverberation. 
The duration for which the sound persists is called reverberation time. It should be noted 
that the reverberation time greatly affects the quality of sound heard in a hall. Therefore, 
halls are constructed with some optimum reverberation time. 
 
Example 
 
Suppose a man stands at a distance from a cliff and claps his hands. He receives an echo 
from the cliff after 4 second. Calculate the distance between the man and the cliff. Assume 
the speed of sound to be 343 m s-1. 
 
Solution 
 
The time taken by the sound to come back as echo is 2t = 4 ⇒ t = 2 s ∴The distance is d = vt=(343 m s-1)(2 s) = 686 m. 
 
Note: Classification of sound waves: Sound waves can be classified in three groups 
according to their range of frequencies:  
 
(1) Infrasonic waves: 
Sound waves having frequencies below 20 Hz are called infrasonic waves. These waves are 
produced during earthquakes. Human beings cannot hear these frequencies. Snakes can 
hear these frequencies. 
 
(2) Audible waves: 
Sound waves having frequencies between 20 Hz to 20,000 Hz (20kHz) are called audible 
waves. Human beings can hear these frequencies. 
 
(3) Ultrasonic waves: 
Sound waves having frequencies greater than 20 kHz are known as ultrasonic waves. 
Human beings cannot hear these frequencies. Bats can produce and hear these frequencies. 
 
(1.) Supersonic speed: 
An object moving with a speed greater than the speed of sound is said to move with a 
supersonic speed. 
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(2.) Mach number: 
It is the ratio of the velocity of source to the velocity of sound. 

velocity of source
Mach number=

velocity of sound
 

 
PROGRESSIVE WAVES (OR) TRAVELLING WAVES 
 
 If a wave that propagates in a medium is continuous then it is known as progressive 
wave or travelling wave. 
 
Characteristics of progressive waves 
 
1. Particles in the medium vibrate about their mean positions with the same amplitude. 
2. The phase of every particle ranges from 0 to 2π. 
3. No particle remains at rest permanently. During wave propagation, particles come to the 
rest position only twice at the extreme points. 
4. Transverse progressive waves are characterized by crests and troughs whereas 
longitudinal progressive waves are characterized by compressions and rarefactions. 
5. When the particles pass through the mean position they always move with the same 
maximum velocity. 
6. The displacement, velocity and acceleration of particles separated from each other by nλ 
are the same, where n is an integer, and λ is the wavelength. 
 
Equation of a plane progressive wave 
 
Suppose we give a jerk on a stretched string at time t = 0 s. Let us assume that the wave 
pulse created during this disturbance moves along positive x direction with constant speed 
v (a). We can represent the shape of the wave pulse, mathematically as y = y(x, 0) = f(x) at 
time t = 0 s. Assume that the shape of the wave pulse remains the same during the 
propagation. After some time t, the pulse moving towards the right and any point on it can 
be represented by x' (read it as x prime) (b). Then, 
 

y(x, t) = f(x´) = f(x − vt) 
 

Similarly, if the wave pulse moves towards left with constant speed v, then y = f(x + vt). 
Both waves y = f(x + vt) and y = f(x − vt) will satisfy the following one dimensional 
differential equation known as the wave equation 
 

 
 

where the symbol ∂ represent partial derivative (read 
y

x




 as partial y by partial 
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x). Not all the solutions satisfying this differential equation can represent waves, because 
any physical acceptable wave must take finite values for all values of x and t. But if the 
function represents a wave then it must satisfy the differential equation. Since, in one 
dimension (one independent variable), the partial derivative with respect to x is the same as 
total derivative in coordinate x, we write 

2 2

2 2 2

1d y d y

dx v dt
=  

 
This can be extended to more than one dimension (two, three, etc.). Here, for simplicity, we 
focus only on the one dimensional wave equation. 
 
Example 
Sketch y = x −a for different values of a. 
 
Solution 
 
This implies, when increasing the value of a, the line shifts towards right side. For a = vt, y = 
x − vt satisfies the differential equation. Though this function satisfies the differential 
equation, it is not finite for all values of x and t. Hence, it does not represent a wave. 
 
Example 

How does the wave y = sin(x − a) for a = 0,
3

, ,
4 2 2

a a a
  = = = and a = π look like? 

Sketch this wave. 
 
Solution 
 

From the above picture we observe that y = sin (x−a) for a = 0, 
3

, ,
4 2 2

a a a
  = = = and 

a = π, the function y = sin (x−a) shifts towards right. Further, we can take a = vtand 
4

v
= , 

and sketching for different times t = 0s, t = 1s, t = 2s etc., we once again observe that y = 
sin(x−vt) moves towards the right. Hence, y = sin(x−vt) is a travelling (or progressive) wave 
moving towards the right. If y = sin(x+vt) then the travelling (or progressive) wave moves 
towards the left. Thus, any arbitrary function of type y = f(x−vt) characterising the wave 
must move towards right and similarly, any arbitrary function of type y = f(x+vt) 
characterizing the wave must move towards left. 
 
Example 
 
Check the dimensional of the wave y = sin(x−vt). If it is dimensionally wrong, write the 
above equation in the correct form. 
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Solution 
 
Dimensionally it is not correct. we know that y = sin(x−vt) must be a dimensionless quantity 
but x−vt has dimension. The correct equation is y = sin (k x−ωt), where k and ω have the 
dimensions of inverse of length and inverse of time respectively. The sine functions and 
cosine functions are periodic functions with period 2π. Therefore, the correct expression is 

2 2
siny x t

T

 


 = − 
 

 where λ and T are wavelength and time period, respectively. In 

general, y(x,t)=A sin(k x−ωt). 
 
Graphical representation of the wave 
 
Let us graphically represent the two forms of the wave variation 
(a) Space (or Spatial) variation graph 
(b) Time (or Temporal) variation graph 
 
(a) Space variation graph 
 
By keeping the time fixed, the change in displacement with respect to x is plotted. Let us 
consider a sinusoidal graph, y = A sin(kx), where k is a constant. Since the wavelength λ 
denotes the distance between any two points in the same state of motion, the displacement y 
is the same at both the ends y = x and y = x + λ, i.e., 
 

y = A sin(kx) = A sin(k(x + λ)) 
= A sin(kx + k λ) 

 
The sine function is a periodic function with period 2π. Hence, 
 

y = A sin(kx + 2π) = A sin(kx) 
 
Comparing equation, we get. kx + k λ = kx + 2π 
 
That implies 
 

12
k radm




−=  

 
where k is called wave number. This measures how many wavelengths are present in 2π 
radians. 
 

The spatial periodicity of the wave is
2

k

 =  in m,  
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Then, 
At t = 0 s y(x, 0) = y(x + λ, 0) 
and 
At any time t, y(x, t) = y(x + λ, t) 
 
Example 
 
The wavelength of two sine waves are λ1 = 1m and λ2 = 6m. Calculate the corresponding 
wave numbers. 
 
Solution 

1
1

1
1

2
6.28

2
1.05

6

k radm
k

k radm





−

−

= =

= =
 

 
(b) Time variation graph 
 
By keeping the position fixed, the change in displacement with respect to time is plotted. Let 
us consider a sinusoidal graph, y =A sin(ωt), where ω is angular frequency of the wave 
which measures how quickly wave oscillates in time or number of cycles per second.  
 
The temporal periodicity or time period is 

2 2
T

T

 


=  =  

 
The angular frequency is related to frequency f by the expression ω = 2 πf, where the 
frequency f is defined as the number of oscillations made by the medium particle per 
second. Since inverse of frequency is time period, we have, 
 

1
T

f
= in seconds 

 
This is the time taken by a medium particle to complete one oscillation. Hence, we can 
define the speed of a wave (wave speed, v) as the distance traversed by the wave per second 
 

v f
T

 = = in ms-1 

 
which is the same relation as we obtained in equation (11.4). 
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Particle velocity and wave velocity 
 
 In a plane progressive harmonic wave, the constituent particles in the medium 
oscillate simple harmonically about their equilibrium positions. When a particle is in 
motion, the rate of change of displacement at any instant of time is defined as velocity of the 
particle at that instant of time. This is known as particle velocity. 
 

1
P

dy
v ms

dt

−=  

But y(x, t)= A sin(k x - ω t) 

Therefore, 
dy

dt
= − ω A cos(k x− ω t) 

 
Similarly, we can define velocity (here speed) for the travelling wave (or progressive wave). 
In order to determine the velocity of a progressive wave, let us consider a progressive wave 
moving towards right. This can be mathematically represented as a sinusoidal wave. Let P 
be any point on the phase of the wave and yP be its displacement with respect to the mean 
position. The displacement of the wave at an instant t is 
 

y = y(x,t) = A sin(k x− ω t) 
 
 At the next instant of time tʹ = t + Δt the position of the point P is xʹ = x + Δx. Hence, 
the displacement of the wave at this instant is 
 

y = y(xʹ, tʹ) = y(x + Δx, t + Δt ) 
= A sin[k (x + Δx)- ω (t + Δt)] 

 
Since the shape of the wave remains the same, this means that the phase of the wave 
remains constant (i.e., the y- displacement of the point is a constant). Therefore, equating 
equation (11.42) and equation (11.44), we get  
 
y(x',t') = y(x,t), which implies A sin[k (x + Δx)− ω (t + Δt)]= A sin(k x− ω t) Or 
 

k (x + Δx)− ω (t + Δt)= k x− ω t = constant 
 
On simplification of equation (11.45), we get 
 

p

x
v v

t k

= = =  

 
wherevp is called wave velocity or phase velocity. 
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By expressing the angular frequency and wave number in terms of frequency and wave 
length, we obtain  
 

2
2

2

f
T

k

v f
k

 




 

= =

=

= =

 

 
Example 
 
A mobile phone tower transmits a wave signal of frequency 900MHz. Calculate the length 
of the waves transmitted from the mobile phone tower. 
Solution 
 

Frequency, f = 900MHz = 900 ×106 Hz 
The speed of wave is c = 3 × 108m s−1 

 

8

6

3 10
0.33

900 10

v
m

f
 = = =


 

 
SUPERPOSITION PRINCIPLE 
 
 When a jerk is given to a stretched string which is tied at one end, a wave pulse is 
produced and the pulse travels along the string. Suppose two persons holding the stretched 
string on either side give a jerk simultaneously, then these two wave pulses move towards 
each other, meet at some point and move away from each other with their original identity. 
Their behaviour is very different only at the crossing/meeting points; this behaviour 
depends on whether the two pulses have the same or different shape. When the pulses have 
the same shape, at the crossing, the total displacement is the algebraic sum of their 
individual displacements and hence its net amplitude is higher than the amplitudes of the 
individual pulses. Whereas, if the two pulses have same amplitude but shapes are 180° out 
of phase at the crossing point, the net amplitude vanishes at that point and the pulses will 
recover their identities after crossing. Only waves can possess such a peculiar property and 
it is called superposition of waves. This means that the principle of superposition explains 
the net behaviour of the waves when they overlap. Generalizing to any number of wavesi.e, 
if two are more waves in a medium move simultaneously, when they overlap, their total 
displacement is the vector sum of the individual displacements. We know that the waves 
satisfy the wave equation which is a linear second order homogeneous partial differential 
equation in both space coordinates and time. Hence, their linear combination (often called 
as linear superposition of waves) will also satisfy the same differential equation. 
 
To understand mathematically, let us consider two functions which characterize the 
displacement of the waves, for example,  
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y1 = A1sin(kx − ωt) 

and 
y2 = A2cos(kx − ωt) 

 
Since, both y1 and y2 satisfy the wave equation (solutions of wave equation) then their 
algebraic sum 

y = y1 + y2 
 
also satisfies the wave equation. This means, the displacements are additive. Suppose we 
multiply y1 and y2 with some constant then their amplitude is scaled by that constant.  
 
Further, if C1 and C2 are used to multiply the displacements y1 and y2, respectively, then, 
their net displacement y is  

y = C1 y1 + C2 y2 
 

This can be generalized to any number of waves. In the case of n such waves in more than 
one dimension the displacements are written using vector notation. Here, the net 

displacement y  is 

 

1

n

i i
i

y C y
=

=   

 
The principle of superposition can explain the following : 
 
(a) Space (or spatial) Interference (also known as Interference) 
 
(b) Time (or Temporal) Interference (also known as Beats) 
 
(c) Concept of stationary waves 
 
 Waves that obey principle of superposition are called linear waves (amplitude is 
much smaller than their wavelengths). In general, if the amplitude of the wave is not small 
then they are called non-linear waves. These violate the linear superposition principle, e.g. 
laser. In this chapter, we will focus our attention only on linear waves. 
 
 We will discuss the following in different subsections: 
 
Interference of waves 
 
 Interference is a phenomenon in which two waves superimpose to form a resultant 
wave of greater, lower or the same amplitude. 
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 Consider two harmonic waves having identical frequencies, constant phase 
difference φ and same wave form (can be treated as coherent source), but having 
amplitudes A1 and A2, then 
 

y1 = A1 sin(kx − ωt)  
y2 = A2 sin(kx − ωt+φ) 

 
Suppose they move simultaneously in a particular direction, then interference occurs (i.e., 
overlap of these two waves). Mathematically 
 

y = y1 + y2 

 
Therefore, substituting equation (11.47) and equation (11.48) in equation (11.49), we get y = 
A1sin(kx − ωt) + A2 sin(kx − ωt + φ) 
 
Using trigonometric identity sin (α+β) = (sin α cosβ + cosα sinβ ), we get 
y = A1sin(kx − ωt)+A2 [sin(kx − ωt) cosφ + cos(kx − ωt) sinφ] 
 

y = sin(kx − ωt)(A1 +A2cosφ) + 
A2sinφcos(kx − ωt) 

 
Let us re-define 
 

A cosθ =(A1 + A2cosφ)  
and A sinθ = A2sinφ 

 
then equation (11.50) can be rewritten as y = A sin(kx−ωt) cosθ + A cos(kx−ωt) sinθ 

 

y = A (sin(kx−ωt) cosθ + sinθcos(kx−ωt)) 
y = A sin(kx−ωt + θ) (11.53) 
 
By squaring and adding equation (11.51) 
and equation (11.52),  we get 
 
A2 = A12 + A22 + 2A1 A2cosφ (11.54) 

 
Since, intensity is square of the amplitude (I = A2), we have 
 

1 2 1 22 cosI I I I I = + +  

 
This means the resultant intensity at any point depends on the phase difference at that 
point. 
 
(a) For constructive interference: 
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 When crests of one wave overlap with crests of another wave, their amplitudes will 
add up and we get constructive interference. The resultant wave has a larger amplitude 
than the individual waves. 
 
 The constructive interference at a point occurs if there is maximum intensity at that 
point, which means that 
 

cosφ = + 1 ⇒φ = 0, 2π,4π,… = 2nπ, where n = 0,1,2,... 
 

 This is the phase difference in which two waves overlap to give constructive 
interference. 
 
 Therefore, for this resultant wave, 
 

( ) ( )
2 2

max 1 2 1 2imum
I I I A A= + = +  

 
Hence, the resultant amplitude A = A1 + A2 

 
(b) For destructive interference: 
 
 When the trough of one wave overlaps with the crest of another wave, their 
amplitudes “cancel” each other and we get destructive interference as shown in Figure 11.29 
(b). The resultant amplitude is nearly zero. The destructive interference occurs if there is 
minimum intensity at that point, which means cosφ = − 1 ⇒φ = π,3π,5π,… = (2 n-1) π, where 
n = 0,1,2,…. i.e. This is the phase difference in which two waves overlap to give destructive 
interference. Therefore, 

 

( ) ( )
2 2

max 1 2 1 2imum
I I I A A= + = +  

 
Hence, the resultant amplitude 
 

A=|A1−A2| 
 
Let us consider a simple instrument to demonstrate the interference of sound waves as 
shown in Figure 11.30. 
 
 A sound wave from a loudspeaker S is sent through the tube P. This looks like a  T-
shaped junction. In this case, half of the sound energy is sent in one direction and the 
remaining half is sent in the opposite direction. Therefore, the sound waves that reach the 
receiver R can travel along either of two paths. The distance covered by the sound wave 
along any path from the speaker to receiver is called the path length . From the Figure 11.30, 
we notice that the lower path length is fixed but the upper path length can be varied by 
sliding the upper tube i.e., is varied. The difference in path length is known as path 
difference, 
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Δr = |r2 − r1| 
 

 Suppose the path difference is allowed to be either zero or some integer (or integral) 
multiple of wavelength λ. Mathematically, we have 
 

Δr = nλ where, n = 0, 1, 2, 3,.... 
 

 Then the two waves arriving from the paths r1 and r2 reach the receiver at any instant 
are in phase (the phase difference is 0° or 2π) and interfere constructively as shown in 
Figure 11.31. 

 
 Therefore, in this case, maximum sound intensity is detected by the receiver. If the 
path difference is some half-odd-integer (or half-integral) multiple of wavelength λ, 

mathematically, 
2

r n


 =  

 
 where, n = 1,3,... (n is odd) then the two waves arriving from the paths r1 and r2 and 
reaching the receiver at any instant are out of phase (phase difference of π or 180°). They 
interfere destructively as shown in Figure 11.32. They will cancel each other. 

 
 Therefore, the amplitude is minimum or zero amplitude which means no sound. No 
sound intensity is detected by the receiver in this case. The relation between path difference 

and phase difference is phase difference = 
2


 (path difference) (11.56)  

 

i.e., 
2

r



 =   or 
2

r
 


 =   

 
Example 
 
 Consider two sources A and B as shown in the figure below. Let the two sources emit 
simple harmonic waves of same frequency but of different amplitudes, and both are in 
phase (same phase). Let O be any point equidistant from A and B as shown in the figure. 
Calculate the intensity at points O, Y and X. (X and Y are not equidistant from A & B) 
 
Solution 
 
 The distance between OA and OB are the same and hence, the waves starting from A 
and B reach O after covering equal distances (equal path lengths). Thus, the path difference 
between two waves at O is zero. 
 

OA − OB = 0 
 

 Since the waves are in the same phase, at the point O, the phase difference between 
two waves is also zero. Thus, the resultant intensity at the point O is maximum. Consider a 
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point Y, such that the path difference between two waves is λ. Then the phase difference at 
Y is 

2 2
2r

   
 

 =   =  =  

 
 Therefore, at the point Y, the two waves from A and B are in phase, hence, the 
intensity will be maximum. 

Consider a point X, and let the path difference the between two waves be 
2


. 

Then the phase difference at X is 
2

2

  


 = =  

 
 Therefore, at the point X, the waves meet and are in out of phase, Hence, due to 
destructive interference, the intensity will be minimum. 
 
Example 
  
 Two speakers C and E are placed 5 m apart and are driven by the same source. Let a 
man stand at A which is 10 m away from the mid point O of C and E. The man walks 
towards the point O which is at 1 m (parallel to OC) as shown in the figure. He receives the 
first minimum in sound intensity at B. Then calculate the frequency of the source. (Assume 
speed of sound = 343 m s-1) 

 
Solution 
  

 
 The first minimum occurs when the two waves reaching the point B are 180° (out of 

phase). The path difference 
2

x


 = . 

 In order to calculate the path difference, we have to find the path lengths x1 and x2. In 
a right triangle BDC, 

 DB = 10m and OC =
1

2
(5) = 2.5m  

 CD = OC −1 = (2.5 m)−1 m = 1.5 m 

 
( ) ( )2 2

1 10 1.5 100 2.25

102.25 10.1

x

m

= + = +

= =
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In a right triangle EFB, 
 

 DB = 10m and OE =
1

2
(5) = 2.5m = FA 

 FB = FA + AB = (2.5 m) + 1 m = 3.5 m 

 
( ) ( )2 2

2 10 3.5 100 12.25

112.25 10.6

x

m

= + = +

= =
 

 
The path difference Δ x = x2 − x1 = 10.6 m−10.1 m = 0.5 m. Required that this path 
difference 

0.5 1.0
2

x m
  = =  =  

 
To obtain the frequency of source, we use 
 

343
343

1

0.3

v
v f f Hz

kHz




=  = = =

=
 

 

If the speakers were connected such that already the path difference is 
2


. Now, the path 

difference combines with a path difference of 
2


. This gives a total path difference of λ 

which means, the waves are in phase and there is a maximum intensity at point B. 

 
Formation of beats 
 
 When two or more waves superimpose each other with slightly different frequencies, 
then a sound of periodically varying amplitude at a point is observed. This phenomenon is 
known as beats. The number of amplitude maxima per second is called beat frequency. If 
we have two sources, then their difference in frequency gives the beat frequency. 

Number of beats per second 
n = | f1 - f2| per second 

 
Additional information (Not for examination): Mathematical treatment of beats 
 
 For mathematical treatment, let us consider two sound waves having same 
amplitude and slightly different frequencies f1 and f2, superimposed on each other. 
 
 Since the sound wave (pressure wave) is a longitudinal wave, let us consider y1 = A 
sin(ω1t) and y2 = A sin(ω2t) to be displacements of the two waves at a point x = 0 with same 
amplitude (region having high pressures) and different angular frequencies ω1 and ω2, 
respectively. Then when they are allowed to superimpose we get the net displacement 
 
 y = y1 + y2 
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 y = A sin(ω1 t) + A sin(ω2 t) 
But 
 ω1 = 2πf1 and ω2 = 2πf2 
Then 
 y = A sin(2πf1t) + A sin(2πf2t) 
Using trigonometry formula 
 

1 2 1 2

sin sin 2cos sin
2 2

2 cos 2 sin 2
2 2

C D C D
C D

f f f f
y A t t 

− +   + =    
   

 −   +    =       
      

 

Let, 1 22 cos 2
2

p

f f
y A t −  =   

  
 (11.57) 

and if f1 is slightly higher value than f2 then, 
 

1 2 1 2

2 2

f f f f− +   
   
   

meansyp in equation (11.57) varies very slowly when compared to 

1 2

2

f f+ 
 
 

. Therefore y = yPsin(2πfavgt) (11.58) 

 
 This represents a simple harmonic wave of frequency which is an arithmetic average 

of frequencies of the individual waves, 1 2

2
avg

f f
f

+ =  
 

 and amplitude yp varies with time t. 

 
Case (A): 
 
 The resultant amplitude is maximum when yp is maximum. Since 

1 2cos 2 ,
2

p

f f
y t  −  

  
  

this means maximum amplitude occurs only when cosine takes ±1, 

1 2

1 2

cos 2 1
2

2 ,
2

f f
t

f f
t n



 

 −   =   
  

−  = 
 

 

or, 
( )1 2

n
t

f f
=

−
 n = 0,1,2,3, .... 

 Hence, the time interval between two successive maxima is 
 

( )2 1 3 2 1 2

1 2 1 2

1
...

l
t t t t n f f

f f t t
− = − = = = − =

− −
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Therefore, the number of beats produced per second is equal to the reciprocal of the time 
interval between two consecutive maxima i.e., |f1 - f2|. 
 
Case (B): 
 
 The resultant amplitude is minimum i.e., it is equal to zero when yp is minimum. 

Since 1 2cos 2
2

p

f f
y t  −  

  
  

, this means, minimum occurs only when cosine takes 0, 

 

( )

( ) ( )

1 2

1 2

1 2

cos 2 0
2

2 2 1 ,
2 2

1
2 1

2

f f
t

f f
t n

f f t n





 −   =  
  

−  = + 
 

 − = +

 

or, 
1 2

1 2 1

2

n
t

f f

 +
=  − 

, where f1 ≠ f2 n = 0,1,2,3,..... 

Hence, the time interval between two successive minima is 

( )2 1 3 1 2

1 2 1 2

1 1
... ;t t t n f f

f f t t
− = = = = =

− −
 

 
Therefore, the number of beats produced per second is equal to the reciprocal of the time 
interval between two consecutive minima i.e., |f1 - f2|. 
 
Example 
 
Consider two sound waves with wavelengths 5 m and 6 m. If these two waves propagate in 
a gas with velocity 330 ms-1. Calculate the number of beats per second. 
 
Solution 
Given λ1 = 5m and λ2 = 6m 
Velocity of sound waves in a gas is v = 330 ms-1 

The relation between wavelength and velocity is 
v

v f f


=  =  

The frequency corresponding to wavelength
1 1

330
66

1 5

v
is f Hz


= = =  

The frequency corresponding to wavelength 

2 2

330
55

2 6

v
is f Hz


= = =  

The number of beats per second is 
| f1 − f2| = |66 − 55| = 11 beats per sec 
 
Example 
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Two vibrating tuning forks produce waves whose equation is given by y1 = 5 sin(240π t) and 
y2 = 4 sin(244πt). Compute the number of beats per second. 
 
Solution 
Given y1 = 5 sin(240π t) and y2 = 4 sin(244πt) 
Comparing with y = A sin(2π f1t), we get 

2πf1 = 240π ⇒ f1 = 120Hz 
2πf2 = 244π ⇒ f2 = 122Hz 

The number of beats produced is | f1 − f2| = |120 − 122| = |− 2|=2 beats per sec 
 
Standing Waves 
 
Explanation of stationary waves 
 
 When the wave hits the rigid boundary it bounces back to the original medium and 
can interfere with the original waves. A pattern is formed, which are known as standing 
waves or stationary waves. Consider two harmonic progressive waves (formed by strings) 
that have the same amplitude and same velocity but move in opposite directions. Then the 
displacement of the first wave (incident wave) is  

y1 = A sin(kx − ωt) (11.59) 
(waves move toward right) 

 
and the displacement of the second wave (reflected wave) is 
 

y2 = A sin(kx + ωt) (11.60) 
(waves move toward left) 

 
both will interfere with each other by the principle of superposition, the net displacement is 
 

= y1 + y2 (11.61) 

 
Substituting equation (11.59) and equation (11.60) in equation (11.61), we get 
 

y = A sin(kx − ωt)+A sin(kx + ωt) (11.62) 
 

Using trigonometric identity, we rewrite equation (11.62) as 
 

y (x, t) = 2A cos(ωt) sin(kx) (11.63) 
 

This represents a stationary wave or standing wave, which means that this wave does not 
move either forward or backward, whereas progressive or travelling waves will move 
forward or backward. Further, the displacement of the particle in equation (11.63) can be 
written in more compact form, 
 

y(x,t) = Aʹcos(ωt) 
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where, Aʹ = 2Asin(kx), implying that the particular element of the string executes simple 
harmonic motion with amplitude equals to Aʹ. The maximum of this amplitude occurs at 
positions for which 
 

( ) 3 5
sin 1 , , ,...

2 2 2
kx kx m

   =  = =  

 
where m takes half integer or half integral values. The position of maximum amplitude is 
known as antinode. Expressing wave number in terms of wavelength, we can represent the 
anti-nodal positions as 
 

2 1

2 2
m

m
x

+ =  
 

, where, m = 0,1,2... (11.64) 

 

For m = 0 we have maximum at
0

2
x


=  

For m = 1 we have maximum at
1

3

4
x


=  

For m = 2 we have maximum at
2

5

4
x


=  and so on. 

The distance between two successive antinodes can be computed by 

( )
1

2 1 12 1

2 2 2 2 2
m m

mm
x x

  
−

+ + + − = − =  
   

 

Similarly, the minimum of the amplitude A' also occurs at some points in the space, and 
these points can be determined by setting 
 

sin(kx)= 0 ⇒ k x = 0,π,2π,3π,… = n π 
where n takes integer or integral values. Note that the elements at these points do not 
vibrate (not move), and the points are called nodes. The nthnodal positions is given by, 
 

2
n

x n


= where, n = 0,1,2,... (11.65) 

 
For n = 0 we have minimum at 

x0 = 0 
 
For n = 1 we have minimum at 

1
2

x


=  

For n = 2 we have maximum at 
x2 = λ 

and so on. 
 
The distance between any two successive nodes can be calculated as 
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( )1 1
2 2 2

n n
x x n n

  
−− = − − =  

 
Example 
Compute the distance between anti-node and neighbouring node. 
 
Solution 
For nth mode, the distance between antinode and neighbouring node is 

2 1

2 2 2 4
n

n
x n

  +  = − = 
 

 

 
Characteristics of stationary waves 
 
(1) Stationary waves are characterised by the confinement of a wave disturbance between 
two rigid boundaries. This means, the wave does not move forward or backward in a 
medium (does not advance), it remains steady at its place. Therefore, they are called 
“stationary waves or standing waves”. 
 
(2) Certain points in the region in which the wave exists have maximum amplitude, called 
as anti-nodes and at certain points the amplitude is minimum or zero, called 
as nodes. 

(3) The distance between two consecutive nodes (or) anti-nodes is 
2


. 

(4) The distance between a node and its neighbouring anti-node is 
4


. 

(5) The transfer of energy along the standing wave is zero. 
 

Comparison between progressive and stationary waves 

S.No Progressive waves Stationary waves 

1. Crests and troughs are formed in 
transverse progressive waves, and 
compression and rarefaction are formed 
in longitudinal progressive waves. These 
waves move forward or backward in a 
medium i.e., they will advance in a 
medium with a definite velocity. 

Crests and troughs are formed in 
transverse stationary waves, and 
compression and rarefaction are formed 
in longitudinal stationary waves. These 
waves neither move forward nor 
backward in a medium i.e., they will not 
advance in a medium. 

2.  All the particles in the medium vibrate 
such that the amplitude of the vibration 
for all particles is same. 

Except at nodes, all other particles of the 
medium vibrate such that amplitude of 
vibration is different for different 
particles. The amplitude is minimum or 
zero at nodes and maximum at 
antinodes. 

3. These wave carry energy while 
propagating. 

These waves do not transport energy. 

 
Stationary waves in sonometer 
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 Sono means sound related, and sonometer implies sound-related measurements. It is 
a device for demonstrating the relationship between the frequency of the sound produced in 
the transverse standing wave in a string, and the tension, length and mass per unit length of 
the string. Therefore, using this device, we can determine the following quantities: 
 
(a) the frequency of the tuning fork or frequency of alternating current 
(b) the tension in the string 
(c) the unknown hanging mass 
 
Construction: 
 
 The sonometer is made up of a hollow box which is one meter long with a uniform 
metallic thin string attached to it. One end of the string is connected to a hook and the other 
end is connected to a weight hanger through a pulley. Since only one string is used, it is also 
known as monochord. The weights are added to the free end of the wire to increase the 
tension of the wire. Two adjustable wooden knives are put over the board, and their 
positions are adjusted to change the vibrating length of the stretched wire. 
 
Working : 
 
 A transverse stationary or standing wave is produced and hence, at the knife edges P 
and Q, nodes are formed. In between the knife edges, anti-nodes are formed.  
 If the length of the vibrating element is l then 

2
2

l l
 =  =  

Let f be the frequency of the vibrating element, T the tension of in the string and μ the mass 
per unit length of the string. Then using equation (11.13), we get 
 

1

21

v T
f

 
= = in Hertz (11.66) 

 
Let ρ be the density of the material of the string and d be the diameter of the string. Then the 
mass per unit length μ, 

μ = Area × density = πr2ρ =
2

4

d
 

Frequency 
2

1

2

4

v T
f

dl  
= =  

  
1 T

f
ld 

=  

 
Example 
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Let f be the fundamental frequency of the string. If the string is divided into three segments 
l1, l2 and l3 such that the fundamental frequencies of each segments be f1, f2 and f3, 
respectively. Show that 

1 2 3

1 1 1 1

f f f f
= + +  

Solution 
 
For a fixed tension T and mass density μ, frequency is inversely proportional to the string 
length i.e. 

1

2 2

v v
f f l

l l f
  =  =  

For the first length segment 

1 1

1 12 2

v v
f l

l f
=  =  

For the second length segment 

2 2

2 22 2

v v
f l

l f
=  =  

Therefore, the total length 
     l=l1 +l2+l3 

 
Fundamental frequency and overtones 
 
 Let us now keep the rigid boundaries at x = 0 and x = L and produce a standing 
waves by wiggling the string (as in plucking strings in a guitar). Standing waves with a 
specific wavelength are produced. Since, the amplitude must vanish at the boundaries, 
therefore, the displacement at the boundary must satisfy the following conditions y(x = 0, t) 

= 0 and y(x = L, t) = 0. Since the nodes formed are at a distance 
2

n


apart, we have
2

nn L
  = 

 
, 

where n is an integer, L is the length between the two boundaries and λn is the specific 
wavelength that satisfy the specified boundary conditions. Hence, 
 

2
n

L

n
  =  

 
 

 
Therefore, not all wavelengths are allowed. The (allowed) wavelengths should fit with the 
specified boundary conditions, i.e., for n = 1, the first mode of vibration has specific 
wavelength 

 
 

For n = 3, the third mode of vibration has specific wavelength 
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and so on. 
 
The frequency of each mode of vibration (called natural frequency) can be calculated. 
We have, 

 
 

The lowest natural frequency is called the fundamental frequency. 
 

 
 

The second natural frequency is called the first over tone. 
 

 
 

The third natural frequency is called the second over tone. 

 
and so on. 
 
Therefore, the nth natural frequency can be computed as integral (or integer ) multiple of 
fundamental frequency, i.e., 
 
fn = nf1, where n is an integer. If natural frequencies are written as integral multiple of 
fundamental frequencies, then the frequencies are called harmonics. Thus, the first 
harmonic is f1 = f1 (the fundamental frequency is called first harmonic), the second harmonic 
is f2 = 2f1 , the third harmonic is f3 = 3f1 etc. 
 
Example 
Consider a string in a guitar whose length is 80 cm and a mass of 0.32 g with tension 80 N is 
plucked. Compute the first four lowest frequencies produced when it is plucked. 
 
Solution 
The velocity of the wave  
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The length of the string, L = 80 cm=0.8 m The mass of the string, m = 0.32 g =0.32 × 
10-3kg 
 

Therefore, the linear mass density, 
3

3 10.32 10
0.4 10

0.8
kgm − −

= =   

The tension in the string, T = 80 N 
 

 
 

The wavelength corresponding to the fundamental frequency f1 is λ1 = 2L = 2 × 
0.8 = 1.6 m 
The fundamental frequency f1 corresponding to the wavelength λ1 

 

 
Similarly, the frequency corresponding to the second harmonics, third harmonics and fourth 
harmonics are 
 

f2 = 2f1 = 559 Hz 
f3 = 3f1 = 838.5 Hz 
f4 = 4f1 = 1118 Hz 

 
Laws of transverse vibrations in stretched strings 
 
 There are three laws of transverse vibrations of stretched strings which are given as 
follows: 
 
(i) The law of length : 
 
 For a given wire with tension T (which is fixed) and mass per unit length μ (fixed) the 
frequency varies inversely with the vibrating length. Therefore, 

 ⇒l×f = C, where C is a constant 
 
(ii) The law of tension: 
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 For a given vibrating length l (fixed) and mass per unit length μ (fixed) the frequency 
varies directly with the square root of the tension T, 

f T  

f T .where A is a constant 

 
(iii) The law of mass: 
 
 For a given vibrating length l (fixed) and tension T (fixed) the frequency varies 
inversely with the square root of the mass per unit length μ, 

1
f

u
  

B
f


 = , where B is a constant. 

 
INTENSITY AND LOUDNESS 
 
 Consider a source and two observers (listeners). The source emits sound waves 
which carry energy. The sound energy emitted by the source is same regardless of whoever 
measures it, i.e., it is independent of any observer standing in that region. But the sound 
received by the two observers may be different; this is due to some factors like sensitivity of 
ears, etc. To quantify such thing, we define two different quantities known as intensity and 
loudness of sound. 
 
Intensity of sound 
 
 When a sound wave is emitted by a source, the energy is carried to all possible 
surrounding points. The average sound energy emitted or transmitted per unit time or per 
second is called sound power. Therefore, the intensity of sound is defined as “the sound 
power transmitted per unit area taken normal to the propagation of the sound wave”. 
 
 For a particular source (fixed source), the sound intensity is inversely proportional to 
the square of the distance from the source. 

 
 This is known as inverse square law of sound intensity. 
 
Example 
A baby cries on seeing a dog and the cry is detected at a distance of 3.0 m such that the 
intensity of sound at this distance is 10-2 W m-2. Calculate the intensity of the baby’s cry at a 
distance 6.0 m. 
 
Solution 
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I1 is the intensity of sound detected at a distance 3.0 m and it is given as 10-2 W m-2. Let I2 be 
the intensity of sound detected at a distance 6.0 m. Then, r1 = 3.0 m, r2 = 6.0 m  

and since 
2

1
I

r
  

the power output does not depend on the observer and depends on the baby. Therefore, 

 
 

Loudness of sound 
 Two sounds with same intensities need not have the same loudness. For example, the 
sound heard during the explosion of balloons in a silent closed room is very loud when 
compared to the same explosion happening in a noisy market. Though the intensity of the 
sound is the same, the loudness is not. If the intensity of sound is increased then loudness 
also increases. But additionally, not only does intensity matter, the internal and subjective 
experience of “how loud a sound is” i.e., the sensitivity of the listener also matters here. This 
is often called loudness. That is, loudness depends on both intensity of sound wave and 
sensitivity of the ear (It is purely observer dependent quantity which varies from person to 
person) whereas the intensity of sound does not depend on the observer. The loudness of 
sound is defined as “the degree of sensation of sound produced in the ear or the perception 
of sound by the listener”. 
 
Intensity and loudness of sound 
 
 Our ear can detect the sound with intensity level ranges from 10-2 Wm-2to 20 W m-2. 
 
 According to Weber-Fechner’s law, “loudness (L) is proportional to the logarithm of 
the actual intensity (I) measured with an accurate non-human instrument”. This means that 
 

L ∝ln I 
L = k ln I 

 
where k is a constant, which depends on the unit of measurement. The difference between 
two loudnesses, L1 and L0 measures the relative loudness between two precisely measured 
intensities and is called as sound intensity level. Mathematically, sound intensity level is 

1
1 0 1 0

0

ln ln ln
I

L L L k I k I k
I

 
 = − = − =  

 
 

 If k = 1, then sound intensity level is measured in bel, in honour of Alexander 
Graham Bell. Therefore,  
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1

0

ln
I

L bel
I

 
 =  

 
 

 
 However, this is practically a bigger unit, so we use a convenient smaller unit, called 

decibel. Thus, decibel 
1

10
= bel. Therefore, by multiplying and dividing by 10, we get  

 
For practical purposes, we use logarithm to base 10 instead of natural logarithm, 
 

 
 

Example 
 
 The sound level from a musical instrument playing is 50 dB. If three identical musical 
instruments are played together then compute the total intensity. The intensity of the sound 
from each instrument is 10-12 W m-2 

 
Solution 
 

 
5 5 5 12 21

1 0

0

7 2

1

10 10 10 10

10

I
I I Wm

I

I Wm

− −

− −

=  = = 

=
 

Since three musical instruments are played, therefore, Itotal = 3I1 = 3 × 10-7 Wm-2. 
 
VIBRATIONS OF AIR COLUMN 
 
 Musical instruments like flute, clarinet, nathaswaram,  etc are known as wind 
instruments. They work on the principle of vibrations of air columns. The simplest form of a 
wind instrument is the organ pipe. It is made up of a wooden or metal pipe which produces 
the musical sound. For example, flute, clarinet and nathaswaram are organ pipe 
instruments. Organ pipe instruments are classified into two types: 
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(a) Closed organ pipes: 
 
 It is a pipe with one end closedand the other end open. If one end of a pipeis closed, 
the wave reflected at this closedend is 180° out of phase with the incomingwave. Thus there 
is no displacement of the particles at the closed end. Therefore, nodes are formed at the 
closed end and anti-nodes are formed at open end. 
 

 
  
 Let us consider the simplest mode of vibration of the air column called the 
fundamental mode. Anti-node is formed at the open end and node at closed end. From the 
Figure, let L be the length of the tube and the wavelength of the wave produced. For the 
fundamental mode of vibration, we have,  
 

 
 

 The frequency of the note emitted is 
 

 
 

which is called the fundamental note. 
 
The frequencies higher than fundamental frequency can be produced by blowing air 
strongly at open end. Such frequencies are called overtones. 
 
The Figure shows the second mode of vibration having two nodes and two antinodes, for 
which we have, from example. 
 

 
second mode of vibration 

having two nodes and two anti-nodes 
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2

2
2

4 3

3 4

4 3

L

L
L or


 

=

= =
 

The frequency for this, 
 

2 1

2

3
3

4

v v
f f

L
= = =  

 
is called first over tone, since here, the frequency is three times the fundamental frequency it 
is called third harmonic. 
 
The Figure shows third mode of vibration having three nodes and three anti-nodes. 

 
Third mode of vibration 

having three nodes and three anti-nodes 
 

we have, 

  
3

3
3

4 5

5 4

4 5

L

L
L or


 

=

= =
 

 
The frequency 

 3

1

3

5
5

4

v v
f f

L
= = =  

 
is called second over tone, and since n = 5 here, this is called fifth harmonic. Hence, the 
closed organ pipe has only odd harmonics and frequency of the nth harmonic is fn = (2n+1)f1. 
Therefore, the frequencies of harmonics are in the ratio 
 

f1 : f2 : f3 : f4 :…= 1 : 3 : 5 : 7 : … 

 
(b) Open organ pipes: 
 
 It is a pipe with both the ends open. At both open ends, anti-nodes are formed. Let us 
consider the simplest mode of vibration of the air column called fundamental mode. Since 
anti-nodes are formed at the open end, a node is formed at the mid-point of the pipe. 
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Antinodes are formed at 

the open end and a node is formed at 
the middle of the pipe. 

 
From Figure, if L be the length of the tube, the wavelength of the wave produced is given by 
 

 
 
The frequency of the note emitted is 
 

 
 

which is called the fundamental note. 
 
 The frequencies higher than fundamental frequency can be produced by blowing air 
strongly at one of the open ends. Such frequencies are called overtones. 
 

 
Second mode of 

vibration in open pipes having two 
nodes and three anti-nodes 

 
The Figure shows the second mode of vibration in open pipes. It has two nodes and three 
anti-nodes, and therefore, 
 

L =λ2 or λ2 = L 
The frequency 
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is called first over tone. Since n = 2 here, it is called the second harmonic. 

 
Third mode of vibration 

having three nodes and four anti-nodes 
 

 The Figure above shows the third mode of vibration having three nodes and four 
anti-nodes 

 
 

The frequency 

 
 

is called second over tone. Since n = 3 here, it is called the third harmonic. 
 
Hence, the open organ pipe has all the harmonics and frequency of nth harmonic is fn = nf1. 
Therefore, the frequencies of harmonics are in the ratio 
 

f1 : f2 : f3 : f4 :…= 1 : 2 : 3 : 4 : … 

 
Example 
 
If a flute sounds a note with 450Hz, what are the frequencies of the second, third, and fourth 
harmonics of this pitch?. If the clarinet sounds with a same note as 450Hz, then what are the 
frequencies of the lowest three harmonics produced ?. 
 
Solution 
  
For a flute which is an open pipe, we have 
Second harmonics f2 = 2 f1 = 900 Hz 
Third harmonics f3 = 3 f1 = 1350 Hz 
Fourth harmonics f4 = 4 f1 = 1800 Hz 
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For a clarinet which is a closed pipe, we have 
Second harmonics f2 = 3 f1 = 1350 Hz 
Third harmonics f3 = 5 f1 = 2250 Hz 
Fourth harmonics f4 = 7 f1 = 3150 Hz 
 
Example 
 
If the third harmonics of a closed organ pipe is equal to the fundamental frequency of an 
open organ pipe, compute the length of the open organ pipe if the length of the closed organ 
pipe is 30 cm. 
 
Solution 
 
Let l2 be the length of the open organ pipe, with l1 =30 cm the length of the closedorgan 
pipe.It is given that the third harmonic of closed organ pipe is equal to the fundamental 
frequency of open organ pipe. 
The third harmonic of a closed organ pipe is 

 
 

The fundamental frequency of open organ pipe is  
 
Therefore, 

 
 
Resonance air column apparatus 
 
 The resonance air column apparatus is one of the simplest techniques to measure the 
speed of sound in air at room temperature. It consists of a cylindrical glass tube of one meter 
length whose one end A is open and another end B is connected to the water reservoir R 
through a rubber tube as shown in Figure. This cylindrical glass tube is mounted on a 
vertical stand with a scale attached to it. The tube is partially filled with water and the water 
level can be adjusted by raising or lowering the water in the reservoir R. The surface of the 
water will act as a closed end and other as the open end. Therefore, it behaves like a closed 
organ pipe, forming nodes at the surface of water and antinodes at the closed end. When a 
vibrating tuning fork is brought near the open end of the tube, longitudinal waves are 
formed inside the air column. These waves move downward as shown in Figure, and reach 
the surfaces of water and get reflected and produce standing waves. The length of the air 
column is varied by changing the water level until a loud sound is produced in the air 
column. At this particular length the frequency of waves in the air column resonates with 
the frequency of the tuning fork (natural frequency of the tuning fork). At resonance, the 



 

82 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

frequency of sound waves produced is equal to the frequency of the tuning fork. This will 

occur only when the length of air column is proportional to 
1

4

th

 
 
 

of the wavelength of the 

sound waves produced.  
 
Let the first resonance occur at length L1, then 
 

 
 

But since the antinodes are not exactly formed at the open end, we have to include a 
correction, called end correction e, by assuming that the antinode is formed at some small 
distance above the open end. Including this end correction, the first resonance is 

 
 

Now the length of the air column is increased to get the second resonance. Let L2 be the 
length at which the second resonance occurs. Again taking end correction into account, we 
have 
 

 
 

In order to avoid end correction, let us take the difference of equation we get 
 

 
  

 The speed of the sound in air at room temperature can be computed by using the 
formula 

v = f λ = 2f ΔL 
 
 Further, to compute the end correction, we use equations, we get 
 

2 13

2

L L
e

−
=  

Example 
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 A frequency generator with fixed frequency of 343 Hz is allowed to vibrate above a 
1.0 m high tube. A pump is switched on to fill the water slowly in the tube. In order to get 
resonance, what must be the minimum height of the water?. (speed of sound in air is 343 m 
s−1) 
 
Solution 

 The wavelength,
c

f
 =  

1343
1.0

343

ms
m

Hz
 = =  

 
Let the length of the resonant columns be L1, L2 and L3. The first resonance occurs at length 
L1 

1

1
0.25

4 4
L m


= = =  

The second resonance occurs at length L2 

2

3 3
0.75

4 4
L m


= = =  

The third resonance occurs at length 
 

3

5 5
1.25

4 4
L m


= = =  

and so on. 
Since total length of the tube is 1.0 m the third and other higher resonances do not occur. 
Therefore, the minimum height of water Hmin for resonance is, 
 
Hmin = 1.0 m − 0.75 m = 0.25 m 
 
Example 
 
A student performed an experiment to determine the speed of sound in air using the 
resonance column method. The length of the air column that resonates in the fundamental 
mode with a tuning fork is 0.2 m. If the length is varied such that the same tuning fork 
resonates with the first overtone at 0.7 m. Calculate the end correction. 
 
Solution 
 
End correction  

( )
2 1

0.7 3 0.23
0.05

2 2

L L
e m

−−
= = =  

Example 
 
Consider a tuning fork which is used to produce resonance in an air column. A resonance 
air column is a glass tube whose length can be adjusted by a variable piston. At room 
temperature, the two successive resonances observed are at 20 cm and 85 cm of the column 
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length. If the frequency of the length is 256 Hz, compute the velocity of the sound in air at 
room temperature. 
 
Solution 
 
Given two successive length (resonance) to be L1 = 20 cm and L2 = 85 cm 
The frequency is f = 256 Hz 

v = f λ = 2f ΔL = 2f (L2 − L1) 
= 2 × 256 × (85 − 20) × 10 −2 m s−1 

v = 332.8 cm−1 

 
DOPPLER EFFECT 
 
 Often we have noticed that the siren sound coming from a police vehicle or 
ambulance increases when it comes closer to us and decreases when it moves away from us. 
When we stand near any passing train the train whistle initially increases and then it will 
decrease. This is known as Doppler Effect, named after Christian Doppler (1803 – 1853). 
Suppose a source produces sound with some frequency, we call it the as source frequency 
fs. If the source and an observer are at a fixed distance then the observer observes the sound 
with frequency f0. This is the same as the sound frequency produced by the source fs, i.e., f0 
= fs. Hence, there is no difference in frequency, implying no Doppler effect is observed. 
 
 What happens if either source or an observer or both move?. Certainly, fo ≠ fs. That 
is, when the source and the observer are in relative motion with respect to each other and to 
the medium in which sound propagates, the frequency of the sound wave observed is 
different from the frequency of the source. This phenomenon is called Doppler Effect. The 
frequency perceived by the observer is known as apparent frequency. We can consider the 
following situations for the study of Doppler effect in sound waves 
 
(a) Source and Observer: We can consider either the source or observer in motion or both 
are in motion. Further we can treat the motion to be along the line joining the source and the 
observer, or inclined at an angle θ to this line. 
 
(b) Medium: We can treat the medium to be stationary or the direction of motion of the 
medium is along or opposite to the direction of propagation of sound. 
 
(c) Speed of Sound: We can also consider the case where speed of the source or an observer 
is greater or lesser than the speed of sound. 
 
In the following section, we make the following assumptions: the medium is stationary, and 
motion is along the line joining the source and the observer, and the speeds of the source 
and the observer are both less than the speed of sound in that medium. 
 
We consider three cases: 
(i) Source in motion and Observer is at rest. 
(a) Source moves towards observer 
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(b) Source moves away from the observer 
 
(ii) Observer in motion and Source is at rest. 
(a) Observer moves towards Source 
(b) Observer receding away from the Source 
 
(iii) Both are in motion 
(a) Source and Observer approach each other 
(b) Source and Observer recede from each other 
(c) Source chases Observer 
(d) Observer chases Source 
 

Stationary observer and stationary source means the observer and source are both at rest 
with respect to medium respectively 

 
Source in motion and the observer at rest 
 
(a) Source moves towards the observer Suppose a source S moves to the right (as shown in 
Figure) with a velocity vs and let the frequency of the sound waves produced by the source 
be fs. We assume the velocity of sound in a medium is v. The compression (sound wave 
front) produced by the source S at three successive instants of time are shown in the Figure. 
When S is at position x1 the compression is at C1. When S is at position x2, the compression 
is at C2 and similarly for x3 and C3. Assume that if C1 reaches the observer’s position A then 
at that instant C2 reaches the point B and C3 reaches the point C as shown in the Figure 
11.46. It is obvious to see that the distance between compressions C2 and C3 is shorter than 
distance between C1 and C2. This means the wavelength decreases when the source S moves 
towards the observer O (since sound travels longitudinally and wavelength is the distance 
between two consecutive compressions). But frequency is inversely related to wavelength 
and therefore, frequency increases. 
 
Let λ be the wavelength of the source S as measured by the observer when S is at position x1 
and λʹ be wavelength of the source observed by the observer when S moves to position x2. 
Then the change in wavelength is Δλ = λ− λʹ = vst, where t is the time taken by the source to 
travel between x1 and x2. Therefore, 
 

 
 

On substituting equation (11.84) in equation (11.83), we get 

 
Since frequency is inversely proportional to wavelength, we have 
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Since, 1,s
v

v
 we use the binomial expansion and retaining only first order in s

v

v
, we get 

 
 

(b) Source moves away from the observer: 
 
 Since the velocity here of the source is opposite in direction when compared to case 
(a), therefore, changing the sign of the velocity of the source in the above case i.e, by 
substituting (vs→ −vs ) in equation (11.83), we get 
 

 
Using binomial expansion again, we get, 

 
 

Observer in motion and source at rest 
 
(a) Observer moves towards Source 

 
 

Let us assume that the observer O moves towards the source S with velocity vo. The source 
S is at rest and the velocity of sound waves (with respect to the medium) produced by the 
source is v. From the Figure, we observe that both vo and v are in opposite direction. Then, 

their relative velocity is vr = v + v0. The wavelength of the sound wave is 
v

f
 = , which 

means the frequency observed by the observer O is 1
r

v
f


= . Then 

 

 
 

(b) Observer recedes away from the Source 
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 If the observer O is moving away (receding away) from the source S, then velocity v0 
and v moves in the same direction. Therefore, their relative velocity is vr = v − v0. Hence, the 
frequency observed by the observer O is 
 

 
 

Both are in motion 
(a) Source and observer approach each other 

 
Source and Observer approach towards each other. 

Let vs and v0 be the respective velocities of source and observer approaching each other. In 
order to calculate the apparent frequency observed by the observer, as a simple calculation, 
let us have a dummy (behaving as observer or source) in between the source and observer. 
Since the dummy is at rest, the dummy (observer) observes the apparent frequency due to 
approaching source as given in equation as 
 

 
 

At that instant of time, the true observer approaches the dummy from the other side. Since 
the source (true source) comes in a direction opposite to true observer, the dummy (source) 
is treated as stationary source for the true observer at that instant. Hence, apparent 
frequency when the true observer approaches the stationary source (dummy source), from 
equation is  

 
 

Since this is true for any arbitrary time, therefore, comparing equation (11.91) and equation 
(11.92), we get  

 
Hence, the apparent frequency as seen by the observer is 
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(b) Source and observer recede from each other 
 

 
Source and Observer resides from each other 

 Here, we can derive the result as in the previous case. Instead of a detailed 
calculation, by inspection from Figure, we notice that the velocity of the source and the 
observer each point in opposite directions with respect to the case in (a) and hence, we 
substitute (vs → −vs) and (v0 → −v0) in equation, and therefore, the apparent frequency 
observed by the observer when the source and observer recede from each other is 

 
 

(c) Source chases the observer 
 

 
Source chases observer 

 
Only the observer’s velocity is oppositely directed when compared to case (a). Therefore, 
substituting (v0 → −v0) in equation, we get  
 

 
 

(d) Observer chases the source 
 

 
Observer chases Source 

 
Only the source velocity is oppositely directed when compared to case (a). Therefore, 
substituting vs → −vs in equation, we get 
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Discuss with your teacher 
“Doppler effect in light” 
“Doppler effect in sound is asymmetrical where as Doppler effect in light is symmetrical” 

 
Applications of Doppler effect 
 
 Doppler effect has many applications. Specifically Doppler effect in light has many 
applications in astronomy. As an example, while observing the spectra from distant objects 
like stars or galaxies, it is possible to determine the velocities at which distant objects like 
stars or galaxies move towards or away from Earth. If the spectral lines of the star are found 
to shift towards red end of the spectrum (called as red shift) then the star is receding away 
from the Earth. Similarly, if the spectral lines of the star are found to shift towards the blue 
end of the spectrum (called as blue shift) then the star is approaching Earth. Let Δλ be the 

Doppler shift. Then 
v

c
  =  where v is the velocity of the star. It may be noted that 

Doppler shift measures only the radial component (along the line of sight) of the relative 
velocity v. 
 
Example 
 
A sound of frequency 1500 Hz is emitted by a source which moves away from an observer 
and moves towards a cliff at a speed of 6 ms-1. 
(a) Calculate the frequency of the sound which is coming directly from the source. 
(b) Compute the frequency of sound heard by the observer reflected off the cliff. Assume the 
speed of sound in air is 330 m s-1 
 
Solution 
(a) Source is moving away and observer is stationary, therefore, the frequency of sound 
heard directly from source is  

 
(b) Sound is reflected from the cliff and reaches observer, therefore, 
 

 
 

Example 
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An observer observes two moving trains, one reaching the station and other leaving the 
station with equal speeds of 8 m s−1. If each train sounds its whistles with frequency 240 Hz, 
then calculate the number of beats heard by the observer. 
 
Solution: 
 
Observer is stationary 
(i) Source (train) is moving towards an observer: 
Apparent frequency due to train arriving station is 

 
(ii) Source (train) is moving away form an observer: 
Apparent frequency due to train leaving station is 
 

 
 
So the number of beats = | fin -fout| = (246-234) = 12 
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12th Volume II 
Unit 6 – Ray Optics 

Introduction  
 
 

Light is mystical. Yet, its behaviour is so fascinating. It is difficult to 
comprehend light as a single entity. The ray optics deals with light that is 
represented as a ray travelling in straight lines. Here, the geometrical 
constructs get the permanence to understand some of the characteristics of 
light and the phenomena associated with it. There are several other 
phenomena which can only be explained using wave optics, which we study in 
the next Unit. There is also a quantum aspect of light which we can study as 
quantum optics in graduate level courses. 
 
Ray optics  
 

Light travels in a straight line in a medium. Light may deviate in its path only when 
it encounters another medium or an obstacle. A ray of light gives information about only the 
direction of light. It does not give information about the other characteristics of light like 
intensity and colour. However, a ray is a sensible representation of light in ray optics. The 
path of the light is called a ray of light and a bundle of such rays is called a beam of light. In 
this chapter, we can explain the phenomena of reflection, refraction, dispersion and 
scattering of light, using the ray depiction of light. 
 
Reflection  
 

The bouncing back of light into the same medium when it encounters a reflecting 
surface is called reflectionof light. Polished surfaces can reflect light. Mirrors which are 
silver coated at their back can reflect almost 90% of the light falling on them. The angle of 
incidence i and the angle of reflection r are measured with respect to the normal drawn to 
the surface at the point of incidence of light. According to law of reflection,  

 

1. The incident ray, reflected ray and normal to the reflecting surface all are coplanar 
(ie. lie in the same plane). 

2. The angle of incidence i is equal to the angle of reflection r. 

i = r 

 

The laws of reflection are valid at each point for any reflecting surface whether thesurface is 
flat (or) curved. If the reflecting surface is flat, then incident parallel rays after reflection 
come out as parallel rays as shown in. If the reflecting surface is irregular, then the incident 
parallel rays after reflection come out as irregular rays (not parallel rays). Still the laws of 
reflection are valid at every point of incidence in irregular reflection as shown in 
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Angle of deviation due to reflection 
 

The angle between the incident and deviated light ray is called angle of deviation of 
the light ray.The incident light is AO. The reflected light is OB. The un-deviated light is OC 
which is the continuation of the incident light. The angle between OB and OC is the angle of 
deviation d. From the geometry, it is written as, d = 180 – (i+r). As, i = r in reflection, we can 
write angle of deviation in reflection at plane surface as, 

d = 180-2 i 
The angle of deviation can also be measured in terms of the glancing angle α which is 

measured between the incident ray AO and the reflecting plane surface XY as By geometry, 

the angles ∠AOX = α, ∠BOY = α and ∠YOC = α (are all same). The angle of deviation (d) is the 

angle ∠BOC. Therefore, 
d= 2α 

 
Image formation in plane mirror 
 

Let us consider a point object A is placed in front of a plane mirror and the point of 
incidence is O on the mirror. A light ray AO from the point object is incident on the mirror 
and it is reflected along OB. The normal is ON.  

The angle of incidence ∠AON = angle of reflection ∠BON 
 

Another ray AD incident normally on the mirror at D is reflected back along DA. 
When BO and AD are extended backwards, they meet at a point. Thus, the rays appear to 
come from a point which is behind the plane mirror. The object and its image in a plane 
mirror are at equal perpendicular distances from the plane mirror which can be shown by 
the following explanation. 

Angle ∠AON = angle ∠DAO [Since they are alternate angles] 
Angle ∠BON = angle ∠OA’D [Since they are corresponding angles] 
Hence, it follows that angle, ∠DAO = ∠OA’D 
The triangles ΔODA and ΔODA’ are congruent ∴ AD = A’D 

 
This shows that the image distance di inside the plane mirror is equal to the object distance 
do in front of the plane mirror.  
 
The image formed by the plane mirror for extended object is shown in 
 
Characteristics of the image formed by plane mirror 
 

1. The image formed by a plane mirror is virtual, erect, and laterally inverted.  

2. The size of the image is equal to the size of the object.  

3. The image distance far behind the mirror is equal to the object distance in front of it. 

4. If an object is placed between two plane mirrors inclined at an angle θ, then the 
number of images n formed is as, 
 

Image by inclined mirrors  
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360


 
 
 

 
The position of object 

placed 
Number of 
images n 

Even  Symmetrical  
n = 

360
1


 − 
 

 

Unsymmetrical 
n = 

360
1


 − 
 

 

Odd Symmetrical 
n= 

360
1


 − 
 

 

Unsymmetrical 
n = 

360


 
 
 

 

 
Spherical  Mirrors 
 

We shall now study about the reflections that take place in spherical surfaces. 
 
A spherical surface is a part cut from a hollow sphere. Spherical mirrors are generally 

constructed from glass. One surface of the glass is silvered. The reflection takes place at the 
other polished surface. If the reflection takes place at the convex surface, it is called a convex 
mirror and if the reflection takes place at the concave surface, it is called a concave mirror. 
 

We shall now become familiar with some of the terminologies pertaining to spherical 
mirrors. Centre of curvature: The centre of the sphere of which the mirror is a part is called 
the center of curvature (C) of the mirror.  
 

Centre of curvature: The centre of the sphere of which the mirror is a part is called the 
centre of curvature C of the mirror. 

 
Radius of curvature: The radius of the sphere of which the spherical mirror is a part is 
called the radius of curvature (R) of the mirror.  
 
Pole: The middle point on the spherical surface of the mirror (or) the geometrical center of 
the mirror is called pole (P) of the mirror. 
 
Principal axis: The line joining the pole and the centre of curvature is called the principal 
axis of the mirror. The light ray travelling along the principal axis towards the mirror after 
reflection travels back along the same principal axis. It is also called optical axis 
 
Focus (or) Focal point: Light rays travelling parallel and close to the principal axis when 
incident on a spherical mirror, converge at a point for concave mirror or appear to diverge 
from a point for convex mirror on the principal axis. This point is called the focus or focal 
point (F) of the mirror.  
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Focal length: The distance between the pole and the focus is called the focal length (f) of the 
mirror. 
 

Focal plane: The plane through the focus and perpendicular to the principal axis is called 
the focal plane of the mirror. 

 
Paraxial Rays and Marginal Rays 
 

The paraxial rays are the rays which travel very close to the principal axis and make 
small angles with it. They fall on the mirror very close to the pole. On the other hand, the 
marginal rays are the rays which travel far away from the principal axis and make large 
angles with it. They fall on the mirror far away from the pole. These two rays behave 
differently (get focused at different points) as shown in. In this chapter, we shall restrict our 
studies only to paraxial rays. As the angles made by the paraxial rays are very small, we can 
make good approximations. 

 
Relation between F and R 
 

Let C be the centre of curvature of the mirror. Consider a light ray parallel to the 
principal axis is incident on the mirror at M and passes through the principal focus F after 
reflection. The line CM is the normal to the mirror at M. Let i be the angle of incidence and 
the same will be the angle of reflection.  

 
If MP is the perpendicular from M on the principal axis, then  
 
The angles ∠MCP = i and ∠MFP = 2i 
From right angle triangles ΔMCP and ΔMFP, we can write,  

    tan i =  
PM

PC
and tan 2i = 

PM

PF
 

 As the angles are small, tan i ≈ i and tan 2i ≈ 2i,  

    i = 
PM

PC
and 2i =

PM

PF
 

   simplifying further,  

    2 ;2
PM PM

PF PC
PC PF

= =  

PF is focal length f and PC is the radius of curvature R. 

2f = R (or) f = 
2

R
 

 
Image formation in spherical mirrors 
The image can be located by graphical construction. To locate the point of an image, a 
minimum of two rays must meet at that point. We can use at least any two of  the following 
four rays as shown in 

1. A ray parallel to the principal axis after reflection will pass through or appear to pass 
through the principal focus.  
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2. A ray passing through or appear to pass through the principal focus, after reflection 
will travel parallel to the principal axis.  

3. A ray passing through the centre of curvature retraces its path after reflection as it is 
a case of normal incidence. 

4. A ray falling on the pole will get reflected as per law of reflection keeping principal 
axis as the normal.  
 

Cartesian sign convention 
 

While tracing the image, we would normally come across the object distance u, the 
image distance v, the object height h, the image height (h’), the focal length f and the radius 
of curvature R. A system of signs for these quantities must be followed so that the relations 
connecting them are consistent in all types of physical situations. We shall follow the 
Cartesian sign convention. 
 

1. The Incident light is taken from left to right (i.e. object on the left of mirror). 

2. All the distances are measured from the pole of the mirror (pole is taken as origin).  

3. The distances measured to the right of pole along the principal axis are taken as positive.  

4. The distances measured to the left of pole along the principal axis are taken as negative.  

5. Heights measured in the upward perpendicular direction to the principal axis are taken 
as positive.  

6. Heights measured in the downward perpendicular direction to the principal axis, are 
taken as negative. 

 
Mirror equation 
 

The mirror equation establishes a relation among object distance u, image distance v 
and focal length f for a spherical mirror. 

 
An object AB is considered on the principal axis of a concave mirror beyond the 

center of curvature C. The first paraxial ray BD travelling parallel to principal axis is 
incident on the concave mirror at D, close to the pole P. After reflection the ray passes 
through the focus F. The second paraxial ray BP incident at the pole P is reflected along PB´. 
The third paraxial ray BC passing through centre of curvature C, falls normally on the 
mirror at E is reflected back along the same path. The three reflected rays intersect at the 
point . A perpendicular drawn as to the principal axis is the real, inverted image of the 
object AB.  

 
As per law of reflection, the angle of incidence ∠BPA is equal to the angle of 

reflection ∠B’PA’. 
 

The triangles ΔBPA and Δare similar. Thus, from the rule of similar triangles. 

    
' ' 'A B PA

AB PA
=  
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The other set of similar triangles are, ΔDPF and ΔB’A’F. (PD is almost a straight vertical 
line) 

  
' 'A B A F

PD PF
=  

As, PD = AB the above equation becomes, 
 

' ' 'A B A F

AB PF
=  

 

 
As, A’F = PA’ - PF, the above equation becomes, 

    
' 'PA PA PF

PA PF

−
=  

 
We can apply the sign conventions for the various distances in the above equation.  
  PA = -u,  PA’ = -v,   PF = -f  
 
All the three distances are negative as per sign convention, because they are measured to the 
left of the pole. 

   
( )v v f

u f

− − − −
=

−
 

 
On further Simplification,  

   ;
v v f

u f

−
=   1

v v

u f
= −  

 
Dividing either side with v, 
    

1 1 1

u f v
= −  

 
After rearranging,  

   
1 1 1

v u f
+ =  

The above equation  is called mirror equation. Although this equation is derived for a 
special it is also valid for all other situations with any spherical mirror. This is because 
proper sign convention is followed for u, v and f in equation. 
 
Lateral magnification in spherical mirrors  
 

The lateral or transverse magnification is defined as the ratio of the height of the 
image to the height of the object. The height of the object and image are measured 
perpendicular to the principal axis. 
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  magnification (m) = 
( ')

( )

height of theimage h

height of theobject h
 

  
'h

m
h

=  

Applying proper sign conventions for 

  
' ' 'A B PA

AB PA
=  

 A’B’ = -h, AB = h, PA’ = -v, PA = -u 

  
'h v

h u

−
= −    

On simplifying we get,  

   
'h v

m
h u

= = −  

Using mirror equation, we can further write the magnification as, 

   m = 
'h f v f

h f f u

−
= =

−
 

 
Speed of Light  
 

Light travels with the highest speed in vacuum. The speed of light in vacuum is 
denoted as c and its value is, c = 3×108 m s-1. It is a very high value. Several attempts were 
made by scientists to determine the speed of light. The earliest attempt was made by a 
French scientist HippolyteFizeau (1819–1896). That paved way for the other scientists too to 
determine the speed of light. 

 
Fizeau’s method to determine speed of light 
 

Apparatus: The apparatus used by Fizeau for determining speed of light in air. The 
light from the source S was first allowed to fall on a partially silvered glass plate G kept at 
an angle of 45o to the incident light from the source. The light then was allowed to pass 
through a rotating toothed-wheel with N teeth and N cuts of equal widths whose speed of 
rotation could be varied through an external mechanism. The light passing through one cut 
in the wheel will get reflected by a mirror M kept at a long distance d, about 8 km from the 
toothed wheel. If the toothed wheel was not rotating, the reflected light from the mirror 
would again pass through the same cut and reach the eyes of the observer through the 
partially silvered glass plate. 
 
Working: The angular speed of rotation of the toothed wheel was increased from zero to a 
value ω until light passing through one cut would completely be blocked by the adjacent 
tooth. This is ensured by the disappearance of light while looking through the partially 
silvered glass plate.  
 
Expression for speed of light: The speed of light in air v is equal to the ratio of the distance 
the light travelled from the toot hed wheel to the mirror and back 2d to the time taken t. 
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   v = 
2d

t
 

The distance d is a known value from the arrangement. The time taken t for the light to 
travel the distance to and fro is calculated from the angular speed ω of the toothed wheel. 

 
The angular speed ω of the toothed wheel when the light disappeared for the first time is, 

   
t

 =  

Here, θ is the angle between the tooth and the slot which is rotated by the toothed 
wheel within that time t. 
 

The angular speed ω (with unit rad s–1) of the toothed-wheel when the light 
disappeared for the first time is, 

  
t

 =  

Here, θ is the angle between one tooth and the next slot which is turned within that time t. 

   θ = total angleof thecircel in radian

number of teeth number of cuts+
 

    
2

2N N

  = =  

 Substituting for θ in the equation for ω 

   
/ N

t Nt

  = =  

 Rewriting the above equation for t,  

t
N




=  

 Substituting t from equation  

   
2

/

d
v

N 
=  

 After rearranging  

   
2dN

v



=  

Fizeau had some difficulty to visually estimate the minimum intensity of the light 
when blocked by the adjacent tooth, and his value for speed of light was very close to the 
actual value. Later on, with the same idea of Fizeau and with much sophisticated 
instruments, the speed of light in air was determined as, v = 2.99792 × 108 ms-1 

 

       After the disappearance of light for the first time while increasing the speed of rotation 
of the toothed-wheel from zero to ω, on further increase of speed of rotation of the wheel to 
2ω, the light would appear again due to the passing of reflected light through the next slot. 
So, for every odd value of ω, light will disappear (stopped by tooth) and for every even 
value of ω light will appear (allowed by slot). 
 
Speed of light through different media 
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Different transparent media like glass, water etc. were introduced in the path of light 
by scientists like Foucault (1819 - 1868) and Michelson (1852 - 1931) to find the speed of light 
in different media. Even evacuated glass tubes were also introduced in the path of light to 
find the speed of light in vacuum. It was found that light travels with lesser speed in any 
medium than its  Speed in Vacuum. The speed of light in vacuum was determined as, C = 3 
× 108 ms-1. We could notice that the speed of light in vacuum and in air are almost the same.  

 
Refractive index 
 

Refractive index of a transparent medium is defined as the ratio of speed of light in 
vacuum (or air) to the speed of light in that medium v. 

refractive index n of a medium = 
( )

( )

speed of ligthinvacuum c

Speed of light inmdium v
 

  n = 
c

v
  

Refractive index of a transparent medium gives an idea about the speed of light in 
that medium. 
 

Refractive index does not have unit. The smallest value of refractive index is for 
vacuum, which is 1. For any other medium refractive index is greater than 1. Refractive 
index is also called as optical density of the medium. Higher the refractive index of a 
medium, greater is its optical density and speed of light through the medium is lesser and 
vice versa. 
 
Refraction index of different media 
 

Media Refraction index 

Vacuum 1.00 

Air  1.0003 

Carbon dioxide gas  1.0005 

Ice  1.31 

Pure Water 1.33 

Ethyl alcohol 1.36 

Quartz 1.46 

Vegetable oil 1.47 

Olive oil 1.48 

Acrylic 1.49 

Table salt 1.51 

Glass 1.52 

Sapphire 1.77 

Zircon 1.92 

Qubic zirconia 2.16 

Diamond 2.42 

Gallium phosphide 3.50 
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Optical path 
 

Optical path of a medium is defined as the distance d' light travels in vacuum in the 
same time it travels a distance d in the medium. 

 
Let us consider a medium of refractive index n and thickness d. Light travels with a 

speed v through the medium in a time t. Then we can write, 

   v = 
d

t
; rewritten t as, t = 

d

v
 

In the same time, light can cover a greater distance d' in vacuum as it travels with 
greater speed c in vacuum. 

  c = 
'd

t
; rewritten as, t = 

d

c
 

As the time taken in both the cases is the same, we can equate the time t as, 

    
'd d

c v
=   

 Rewritten for the optical path d’ as, d’ = c

v
d 

  As, 
c

v
= n; The optical path d’ is,  

   d’ = nd  
 

 

The value of n is always greater than 1, for a medium. Thus, the optical path d' of the 
medium is always greater than d. 
 
Refraction  
 
Refraction is passing through of light from one optical medium to another optical medium 

through a boundary. In refraction, the angle of incidence i in one medium and the angle of 

reflection r in the other medium are measured with respect to the normal drawn to the surface 

at the point of incidence of light.  According to laws of refraction, 

1. The incident ray, refracted ray and normal to the refracting surface are all coplanar (ie. 
lie in the same plane). 

2. The ratio of sine of angle of incident i in the first medium to the angle of reflection r in 
the second medium is equal to the ratio of refractive index n2 of the second medium to 
the refractive index n1 of the first medium. 

2

1

sin

sin

i n

r n
=  

   n1 sin i = n2 sin r 
 

The above equation is in the ratio form. It can also be written in a product form as, 
   n1 sin i = n2 sin r  
The law of refraction is also known as Snell's law. 
 

For normal incidence of light on a surface, the angle of incidence is zero. 
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Angle of Deviation due to refraction 
 

The angle between the direction of incident ray and the refracted ray is called angle of 
deviation due to refraction. When light travels from rarer to denser medium, it deviates 
towards normal as shown in Figure 6.16. The angle of deviation in this case is, 

   d = i – r  
 

We know that the angle between the incident and deviated light is called angle of 
deviation. When light travels from rarer to denser medium it deviates towards normal.  

 d = i - r  
 

On the other hand, if light travels from denser to rarer medium, it deviates away 
from normal as shown in. The angle of deviation in this case is, 

  d = r – i  

 

simultaneous reflection (or) refraction  
 

In any refracting surface there will also be some reflection taking place. Thus, the 
intensity of refracted light will be lesser than the incident light. The phenomenon in which a 
part of light from a source undergoing reflection and the other part of light from the same 
source undergoing refraction at the same surface is called simultaneous reflection (or) 
simultaneous refraction. This is shown in Figure 6.18. Such surfaces are available as partially 

silvered glasses. 
 

Production of optical surfaces capable of refracting as well as reflecting is possible by properly 
coating the surfaces with suitable materials. Thus, a glass can be made partially see through and 
partially reflecting. These glasses are commercially called as two-way mirror, half-silvered mirror, 
semi-silvered mirror etc. This gives a perception of regular mirror if the other side is made dark. 
But, still hidden cameras can be kept behind such mirrors. We need to be cautious when we stand 
in front of mirrors kept in unknown places. There is a method to test the two way mirror. Place the 
finger nail on the mirror surface. If there is a gap between nail and its image, then it is a regular 
mirror. If the fingernail directly touches its image, then it is a two way mirror. 

 
Principle of reversibility  

 
The principle of reversibility states that light will follow exactly the same path if its 

direction of travel is reversed. 
 
Relative Refractive index 

In the equation for Snell’s law, the term 2

1

n

n

 
 
 

is called relative refractive index of second 

medium with respect to the first medium which is denoted as (n21). 

    n21 = 2

1

n

n
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The concept of relative refractive index gives rise to other useful relation such as,  
 
a) Inverse rule: 

  n12 = 
21

1

n
 (or) 1

2 2 1

1

/

n

n n n
=  

 
b) Chain rule: 

   n32 = n31 n12 (or) 3 3 1

2 1 2

n n n

n n n
=   

 
Apparent depth 
 

It is a common observation that the bottom of a tank filled with water appears raised. 
An equation could be derived for the apparent depth for viewing in the near normal 
direction.  
 

Light from the object O at the bottom of the tank passes from denser medium (water) 
to rarer medium (air) to reach our eyes. It deviates away from the normal in the rarer 
medium at the point of incidence B. The refractive index of the denser medium is n1 and 
rarer medium is n2. Here, n1 >n2. The angle of incidence in the denser medium is i and the 
angle of refraction in the rarer medium is r. The lines and OD are parallel. Thus angle ∠DIB 
is also r. The angles i and r are very small as the diverging light from O entering the eye is 
very narrow. The Snell’s law in product form for this refraction is,  

  n1 sin i  = n2 sin r  
 

As the angles i and r are small, we can approximate, sin i ≈ tan I and sin r ≈ tan r.  
   n1 tan i = n2 tan i  
In triangles ΔDOB and ΔDIB, 

 tan (i) = 
DB

DO
and tan (r) = 

DB

DI
 

 n1 = 
DB

DO
= n2 

DB

DI
 

 
DB is cancelled on both sides, DO is the actual depth d and DI is the apparent depth d'. 

   n1
1

d
= n2 

1

'd
 

2

1

'd n

d n
=  

Rearranging the above equation for the apparent depth d’, 

   d’ = 2

1

n
d

n
 

As the rarer medium is air and its refractive index n2 can be taken as 1, (n2=1). And the 
refractive index n1 of denser medium could then be taken as n, (n1=n). Now, the equation 
for apparent depth becomes, 
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   '
d

d
n

=  

 
The bottom appears to be elevated by d– d’  

  d – d’ = d – 
d

n
 or d – d’ = d 1

1
n

 − 
 

 

 

Atmospheric refraction: Due to refraction of light through different layers of atmosphere 
which vary in refractive index, the path of light deviates continuously when it passes 
through atmosphere. For example, the Sun is visible a little before the actual sunrise and 
also until a little after the actual sunset due to refraction of light through the atmosphere. By 
actual sunrise what we mean is the actual crossing of the sun at the horizon. Figure shows 
the actual and apparent positions of the sun with respect to the horizon. The figure is highly 
exaggerated to show the effect. The apparent shift in the direction of the sun is around half 
a degree and the corresponding time difference between actual and apparent positions is 
about 2 minutes. Sun appears flattened (oval shaped) during sun rise and sunset due to the 
same phenomenon. 
The same is also applicable for the positions of stars as shown in Figure. The stars actually 
do not twinkle. They appear twinkling because of the movement of the atmospheric layers 
with varying refractive indices which is clearly seen in the night sky. 

 

Critical angle and total internal reflection 
 

When a ray passes from an optically denser medium to an optically rarer medium, it 
bends away from normal. Because of this, the angle of refraction r on the rarer medium is 
greater than the corresponding angle of incidence i in the denser medium. As angle of 
incidence i is gradually increased, r rapidly increases and at a certain stage it becomes 90° or 
gracing the boundary. The angle of incidence in the denser medium for which the refracted 
ray graces the boundary is called critical angle ic. 

 
If the angle of incidence in the denser medium is increased beyond the critical angle, 

there is no refraction possible in to the rarer medium. The entire light is reflected back into 
the denser medium itself. This phenomenon is called total internal reflection. 
 

The two conditions for total internal reflection are,  

1. light must travel from denser to rarer medium,  

2. angle of incidence in the denser medium must be greater than critical angle (i>ic). 
 
For critical angle of incidence, the Snell’s law in the product form, becomes, 
  n1 sin ic = n2 sin 90˚ 
  n1 sin ic = n2  

sin ic = 2

1

n

n
 

  Here, n1 > n2  
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If the rarer medium is air, then its refractive index n2 is 1, (n2 = 1) and the refractive index of 
the denser medium n1 is taken as n itse lf, (n1=n) then,  

  sin ic = 
1

n
 (or) ic = sin-1 

1

n

 
 
 

 

 

The critical angle ic depends on the refractive index n of the medium. refractive index and 
the critical angle for different materials. 
 
Refractive index and critical angle for different media: 
 

Material Refractive 
Index 

Critical 
Angle 

Ice  1.310 49.8 ˚ 

Water 1.333 48.6 ˚ 

Fused Quartz (SiO2) 1.458 43.3 ˚ 

Crown Glass 1.541 40.5 ˚ 

Flint Glass 1.890 31.9˚ 

Calcite (CaCO2) 1.658 37.0 ˚ 

Diamond 2.417 24.4 ˚ 

Strontium Titanate (Sr TiO3) 2.417 24.4 ˚ 

Rutile 2.621 22.4 ˚ 

 

Effects due to total internal reflection 
Glittering of diamond 
 

Diamond appears dazzling because the total internal reflection of light happens 
inside the diamond. The refractive index of only diamond is about 2.417. It is much larger 
than that for ordinary glass which is about only 1.5. The critical angle of diamond is about 
24.4°. It is much less than that of glass. A skilled diamond cutter makes use of this larger 
range of angle of incidence (24.4° to 90° inside the diamond), to ensure that light entering 
the diamond is total internally reflected from the many cut faces before getting out. This 
gives a sparkling effect for diamond. 

Mirage and looming 

 

The refractive index of air increases with its density. In hot places, air near the 
ground is hotter than air at a height. Hot air is less dense. Hence, in still air the refractive 
index of air increases with height. Because of this, light from tall objects like a tree, passes 
through a medium whose refractive index decreases towards the ground. Hence, a ray of 
light successively deviates away from the normal at different layers of air and undergoes 
total internal reflection when the angle of incidence near the ground exceeds the critical 
angle. This gives an illusion as if the light comes from somewhere below the ground. For of 
the shaky nature of the layers of air, the observer feels as if the object is getting reflected by 
a pool of water or wet surface beneath the object. This phenomenon is called mirage. 
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In the cold places the refractive index increases towards the ground because the 
temperature of air close to the ground is lesser than the temperature above the surface of 
earth. Thus, the density and refractive index of air near the ground is greater than at a 
height. In the cold regions like glaciers and frozen lakes and seas, the reverse effect of 
mirage will happen. Hence, an inverted image is formed little above the surface. This 
phenomenon is called looming. It is also called as superior mirage, towering and stooping. 

 
Prisms making using of total internal reflection 
 

Prisms can be designed to reflect light by 90˚ or by 180˚ by making use of total 
internal reflection. In the first two cases, the critical angle ic for the material of the prism 
must be less than 45˚. This is true for both crown glass and  flint glass. Prisms are also used 
to invert images without changing their size. 
 
Radius of illumination (Snell’s window) 
 

When a light source like electric bulb is kept inside a water tank, the light from the 
source travels in all direction inside the water. The light that is incident on the water surface 
at an angle less than the critical angle will undergo refraction and emerge out from the 
water. The light incident at an angle greater than critical angle will undergo total internal 
reflection. The light falling particularly at critical angle graces the surface. 
 

On the other hand, when light entering the water from outside is seen from inside the 
water, the view is restricted to a particular angle equal to the critical angle ic. The restricted 
illuminated circular area is called Snell’s window. 

 
The angle of view for water animals is restricted to twice the critical angle 2ic. The 

critical angle for water is 48.6˚. Thus the angle of view is 97.2˚. The radius R of the circular 
area depends on the depth d from which it is seen and also the refractive indices of the 
media. The radius of Snell’s window can be deduced with the illustration. 
 

Light is seen from a point A at a depth d. The Snell’s law in product form, equation 
for the refraction happening at the point B on the boundary between the two media is, 

  n1 sin ic = n2 sin 90˚ 
  n1 sin ic = n2    sin 90˚ = 1 

  sin ic = 2

1

n

n
 

 
From the right angle triangle ΔABC   

   sin ic = 
2 2

CB R

AB R R
=

+
 

Equating the above two equation and equation 2

2 2
1

R n

nd R
=

+
 

 squaring on both sides, 

2
2

2

2 2

1

R n

R d n

 
= +  
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 Taking reciprocal, 

2
2 2

1

2

2

R d n

R n

 +
= 

 
 

Further simplifying,  

  

2
2

1

2

2

1
R n

d n

 
+ =  

 
;  

2
2

1

2

2

R n

d n

 
=  

 
- 1; 

  
2 2 2 2

1 1 2

2 2 2

2 2

1
d n n n

R n n

−
= − =  

  Againg taking reciprocal and rearranging,  

  
2 2

2

2 2 2

1 2

R n

d n n
=

−
;   

2
2 2 2

2 2

1 2

n
R d

n n

 
= = − 

 

    

After taking the squre root, the radius of illumination is,   

   R = d ( )
2

2

2 2

1 2

n

n n−
 

   
If the rarer medium outside is air, then, n2 = 1, and we can take n1 = n 

  R = d 
2

1

1n

 
  − 

 (or) R = 
2 1

d

n −
  

 
Optical Fiber 
 

Transmitting signals through optical fibres is possible due to the phenomenon of 
total internal reflection. Optical fibres consists of inner part called core and outer part called 
cladding (or) sleeving. The refractive index of the material of the core must be higher than 
that of the cladding for total internal reflection to happen. Signal in the form of light is made 
to incident inside the core-cladding boundary at an angle greater than the critical angle. 
Hence, it undergoes repeated total internal reflections along the length of the fibre without 
undergoing any refraction. The light travels inside the core with no appreciable loss in the 
intensity of the light. Even while bending the optic fiber, it is done in such a way that the 
condition for total internal reflection is ensured at every reflection. 

 

Acceptance angle in optical fibre 

To ensure the critical angle incidence in the core-cladding boundary inside the optical 
fibre, the light should be incident at a certain angle at the end of the optical fiber while 
entering in to it. This angle is called acceptance angle. It depends on the refractive indices of 
the core n1, cladding n2 and the outer medium n3. Assume the light is incident at an angle 
called acceptance angle iaat the outer medium and core boundary at A. 
 

The Snell’s law in the product form, equation (6.19) for this refraction at the point A. 
    n3 sin ia = n1 sin ra  
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To have the total internal reflection inside optical fibre, the angle of incidence at the 
core-cladding interface at B should be atleast critical angle ic. Snell’s law in the product 
form, for the refraction at point B is, 

  n1 sin ic = n2 sin 90˚ 
  n1 sin ic = n2    sin 90˚ = 1 

   sin ic = 2

1

n

n
 

 From the right angle triangle ΔABC,  
   ic = 90˚ – ra  
 Now, equation becomes,  

  sin (90˚  - ra) = 2

1

n

n
 (or) cos ra = 2

1

n

n
 

  sin ra = 21 cos
a

r−  

 Substituting for cos ra  

  sin 

2
2 2

2 1 2

2

1 1

1
n n n

n n

  −
− = 

 
 

 
Substituting this in equation  

  n3 sin ia = n1 
2 2

2 21 2
1 22

1

n n
n n

n

−
= −  

On further simplification,  

 sin ia = 
2 2

1 2

3

n n

n

−
 (or) sin ia =  

2 2

1 2

2

3

n n

n

−
 

  ia = sin-1 
2 2

1 2

2

3

n n

n

 −
  
 

 

 

If outer medium is air, then n3 = 1. The acceptance angle ia becomes, 

  ia = sin-1 ( )2 2

1 2n n−  

Light can have any angle of incidence from 0 to ia with the normal at the end of the optical 
fibre forming a conical shape called acceptance cone called numerical aperture NA of the 
optical fibre. 

  NA = n3 sin ia = 2 2

1 2n n−  

If outer medium is air, then n3 = 1. The numerical aperture NA becomes, 

   NA = sin ia = 2 2

1 2n n−  

 

         An endoscope is an instrument used by doctors which has a bundle of optical fibres 
that are used to see inside a patient’s body. Endoscopes work on the phenomenon of total 
internal reflection. The optical fibres are inserted in to the body through mouth, nose or a 
special hole made in the body. Even operations could be carried out with the endoscope 
cable which has the necessary instruments attached at their ends 
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Refraction in glass slab 
 

When a ray of light passes through a glass slab it refracts at two refracting surfaces. 
When the light ray enters the slab it travels from rarer medium (air) to denser medium 
(glass). This results in deviation of ray towards the normal. When the light ray leaves the 
slab it travels from denser medium to rarer medium resulting in deviation of ray away from 
the normal. After the two refractions, the emerging ray has the same direction as that of the 
incident ray on the slab with a lateral displacement or shift L. i.e. There is no change in the 
direction of ray but the path of the incident ray and refracted ray are different and parallel 
to each other. To calculate the lateral displacement, a perpendicular is drawn in between the 
paths of incident ray and refracted ray. 
 

Consider a glass slab of thickness t and refractive index n is kept in air medium. The 
path of the light is ABCD and the refractions occur at two points B and C in the glass slab. 
The angles of incidence i and refraction r are measured with respect to the normal N1 and 
N2 at the two points B and C respectively. The lateral displacement L is the perpendicular 
distance CE drawn between the path of light and the undeviated path of light at point C. 
In the right angle triangle ΔBCE, 

  sin (i – r) = ;
L

BC
BC = 

sin ( )

L

i r−
 

In the right angle triangle ΔBCF,  

 cos (r)  = 
t

BC
; BC = 

cos( )

t

r
 

Equating equations  

 
sin( ) cos( )

L t

i r r
=

−
 

 After rearranging  

   L = t 
sin( )

cos( )

i r

r

 −
 
 

 

 

The lateral displacement depends upon (i) the thickness of the slab, (ii) the angle of 
incidence and (iii) the refractive index of the slab which decides the angel of refraction. 
Thicker the slab, larger will be the lateral displacement. Greater the angle of incidence, 
larger will be the lateral displacement. Higher the refractive index, larger will be the lateral 
displacement. 
 
Refraction at Single Spherical Surface  
 
 

We have so far studied only the refraction at plane surface. The refraction can also 
take place at spherical surface between two transparent media. The laws of refraction hold 
good at every point on the spherical surface. The normal at the point of incidence is 
perpendicular drawn to the tangent plane of the spherical surface at that point. Therefore, 
the normal always passes through its center of curvature. The study of refraction at single 
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spherical surface paves way to the understanding of thin lenses which consist of two 
refracting surfaces. 

 
The following assumptions are made while considering refraction at spherical surfaces.  
 

1. The incident light is assumed to be monochromatic (single colour)  

2. The incident ray of light is very close to the principal axis (paraxial rays). 
The sign conventions are similar to that of the spherical mirrors. 
 
Equation for refraction at single spherical surface  
 

Let us consider two transparent media having refractive indices n1 and n2 are 
separated by a spherical surface. Let C be the centre of curvature of the spherical surface. 
Let a point object O be in the medium n1. The line OC cuts the spherical surface at the pole P 
of the surface. As the rays considered are paraxial rays, the perpendicular dropped for the 
point of incidence to the principal axis is very close to the pole or passes through the pole 
itself. 
 

Light from O falls on the refracting surface at N. The normal drawn at the point of 
incidence passes through the centre of curvature C. As n2>n1, light in the denser medium 
deviates towards the normal and meets the principal axis at I where the image is formed. 
 

Snell’s law in product form for the refraction at the point N could be written as, 
   n1 sin i = n2 sin r   
As the angles are small, sine of the angle could be approximated to the angle itself. 

    n1i = n2r  
  Let the angles,  
    NOP = α,  NCP  = β,  NIP = γ 
 

From the right angle triangles ΔNOP, ΔNCP and ΔNIP, 

   tan 
PN

PO
 = ;  tan β = PN

PC
; tan γ = PN

PI
 

As these angles are small, tan of the angle could be approximated to the angle itself. 

  ; ;
PN PN PN

PO PC PI
  = = =   

For the triangle, ΔONC,  
  i = α + β 

For the triangle, ΔINC,  
β = r + γ (or) r = β - γ 

Substituting for i and r from equations. 
  n1 (α +β) = n2 (β-γ)  

After Rearringing,  
  n1α + n2γ = (n2 – n1)β 
 Substituting for α, β and γ from equation  

  1 2 2 1( )
PN PN PN

n n n n
PO PI PC

     + = −     
     
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 Further simplifying by cancelling PN,  

1 2 2 1n n n n

PO PI PC

−
+ =  

 Following sign conventions, PO = -u, PI = +v and PC = +R in equation  

  1 2 2 1( )n n n n

u v R

−
− =

−
 

 After rearranging, finally we get,  

  2 1 2 1( )n n n n

v u R

−
− =  

 
Thin Lens 
 

A lens is formed by a transparent material bounded between two spherical surfaces 
or one plane and another spherical surface. In a thin lens, the distance between the surfaces 
is very small. If there are two spherical surfaces, then there will be two centres of curvature 
C1 and C2 and correspondingly two radii of curvature R1 and R2. A plane surface has its 
center of curvature C at infinity and its radius of curvature R is infinity (R = ∞). The 
terminologies of spherical mirrors also hold good very much for thin lens except for focal 
length. 
 
Primary and Secondary focal points 
 

As the thin lens is formed by two spherical surfaces, the lens may separate two 
different media. i.e. the media to the left and right of the lens may be different. Hence, we 
have two focal lengths. 
 

The primary focus F1 is defined as a point where an object should be placed to give 
parallel emergent rays to the principal axis. For a convergent lens, such an object is a real 
object and for a divergent lens, it is a virtual object. The distance PF1 is the primary focal 
length f1.  

 
The secondary focus F2 is defined as a point where all the parallel rays travelling 

close to the principal axis converge to form an image on the principal axis. For a convergent 
lens, such an image is a real image and for a divergent lens, it is a virtual image. The 
distance PF2 is the secondary focal length f2. 

 
If the media on the two sides of a thin lens have same refractive index, then the two 

focal lengths are equal. We will mostly be using the secondary focus F2 in our further 
discussions. 

 
Sign conventions for lens on focal length 
 
The sign conventions for thin lenses differ only in the signs followed for focal lengths.  
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1. The sign of focal length is not decided on the direction of measurement of the focal 
length from the pole of the lens as they have two focal lengths, one to the left and 
another to the right (primary and secondary focal lengths on either side of the lens).  
 

2. The focal length of the thin lens is taken as positive for a converging lens and negative 
for a diverging lens.  
 

The other sign conventions for object distance, image distance, radius of curvature, object 
height and image height (except for the focal lengths as mentioned above) remain the same 
for thin lenses as that of spherical mirrors. 
 
Lens maker’s formula and lens equation 
 

Let us consider a thin lens made up of a medium of refractive index n2 is placed in a 
medium of refractive index n1. Let R1 and R2 be the radii of curvature of two spherical 
surfaces  and  respectively and P be the pole. Consider a point object O on the 
principal axis. The ray which falls very close to P, after refraction at the surface  forms 
image at I'. Before it does so, it is again refracted by the surface . Therefore the final image 
is formed at I.  
    

The general equation for the refraction at a single spherical surface is given by the 
equation 

  2 1 2 1( )n n n n

v u R

−
= =  

 

For the refracting surface , the light goes from n1 to n2. 

2 1 2 1

1

( )

'

n n n n

v u R

−
− =  

For the refracting surface , the light goes from medium n2 to n1. 

  1 2 1 2

2

( )

'

n n n n

v v R

−
− =  

 

For surface , I' acts as virtual object. Adding the above two  

   1 1
2 1

1 2

1 1
( )

n n
n n

v u R R

 
− = − − 

 
 

 On further simplifying and rearranging, 

   2 1

1 1 2

1 1 ( ) 1 1n n

v u n R R

 −
− = − 

 
 

2

1 1 2

1 1 1 1
1

n

v u n R R

  
− = − −  

  
 

 

If the object is at infinity, the image is formed at the focus of the lens. Thus, for u = ∞, v = f. 
Then the equation becomes. 
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  2

1 1 2

1 1 1 1
1

n

f n R R

  
− = − −     

 

  2

1 1 2

1 1 1
1

n

f n R R

  
= − −  

  
 

 

If the lens is kept in air, then we can take n1 = 1 and n2 = n. So the becomes, 

  
1 2

1 1 1
( 1)n

f R R

 
= − − 

 
 

 

The above equation is called the lens maker’s formula, because it tells the lens 
manufactures what curvature is needed to make a lens of desired focal length with a 
material of particular refractive index. This formula holds good also for a concave lens.  

  
1 1 1

v u f
− =  

The above equation is known as lens equation which relates the object distance u and 
image distance v with the focal length f of the lens. This formula holds good for a any type 
of lens. 

 
Lateral magnification in thins lens 
 

Let us consider an object OO' of height h1 placed on the principal axis with its height 
perpendicular to the principal axis as shown in. The ray OP passing through the pole of the 
lens goes undeviated. The inverted real image formed has a height h2. 
 

The lateral or transverse magnification m is defined as the ratio of the height of the 
image to that of the object. 

   
'

'

II
m

OO
=  

 

From the two similar triangles ΔPOO’ and ΔPII’, we can write, 

   
'

'

II PI

OO PO
=  

  

On applying sign convention, 

   
'h v

h u

−
=

−
 

  

Substituting this in the for magnification, 

m =
'h v

h u
=  

After rearranging, 

   m =
'h v

h u
=  
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The magnification is negative for real image and positive for virtual image. In the case of 
a concave lens, the magnification is always positive and less than one. 

 
We can also have the equations for magnification by combining the lens equation with 

the formula for magnification as, 

  m = 
' '

( )
h f h f v

or m
h f u h f

−
= = =

+
 

 
Power of a lens 
 

Power of lens is the measurement of deviating strength of a lens i.e. when a ray is 
incident on a lens then the degree with which the lens deviates the ray is determined by the 
power of the lens. Power of the lens is inversely proportional to focal length i.e. greater the 
power of lens, greater will be the deviation of ray and smaller will be the focal length. The 
lens (b) has greater deviating strength than that of (a). As (b) has greater deviating strength, 
its focal length is less and vice versa. In other words, the power of a lens is a measure of the 
degree of convergence or divergence of light falling on it. The power of a lens P is defined as 
the reciprocal of its focal length is less and vice versa. 

 
In other words, the power of a lens is a measure of the degree of convergence (or) 
divergence the lens produces on the light falling on it. The power of a lens P is the reciprocal 
of its focal length in meter. 

    P = 
1

f
 

 

The unit of power is diopter D. 1 D = 1 m–1. Power is positive for converging lens and 
negative for diverging lens. 
 

From the lens maker's formula, can be written for power as , 

   P = 
1

f
 = (n – 1) 

1 2

1 1

R R

 
− 

 
 

The outcome of this equation of power is that larger the value of refractive index, 
greater is the power of lens and vice versa. Also for lenses with small radius of curvature 
(bulky) the power is large and for lenses with large the radius of curvature (skinny), the 
power is small. 
 
Focal length of lenses in contact 
 

Let us consider two lenses  and  of focal length f1 and f2 are placed coaxially in 
contact with each other so that they have a common principal axis. For an object placed at O 
beyond the focus of the first lens  on the principal axis, an image is formed by it at I'. 
This image I' acts as an object for the second lens  and the final image is formed at I. As 
these two lenses are thin, the measurements are done with respect to the common optical 
centre P in the middle of the two lenses. 
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For the lens , the object distance PO is u and the image distance PI' is v′. For the lens , 
the object distance PI' is v′ and the image distance PI is v. 
  

Writing the lens 

   
1

1 1 1

v' u f
− =   

  

Writing the lens equation  

2

1 1 1

v 'v f
− =  

 

Adding the above two equations  

  
1 2

1 1 1 1

v u f f
− = +  

 
If the combination acts as a single lens of focal length f so that for an object at the 

position O it forms the image at I then,  

 
1 1 1

v u f
− =  

Comparing the equations 

  
1 2

1 1 1

f f f
= +  

 

The above equation can be extended for any number of lenses in contact as, 

  
1 2 3 4

1 1 1 1 1

f f f f f
= + + + + ….. 

 

The above equation can be written in terms of power of the lenses as, 
  P = P1 + P2 + P3 + P4 + …. 
Where, P is the net power of the lens combination of lenses in contact. One should note that 
the sum in is an algebraic sum. The powers of individual lenses may be positive (for convex 
lenses) or negative (for concave lenses). Combination of lenses helps to obtain diverging or 
converging lenses of desired magnification. Also, combination of lenses enhances the 
sharpness of the images. As the image formed by the first lens becomes the object for the 
second and so on, the total magnification m of the combination is a product of magnification 
of individual lenses. We can write,  

m = m1 × m2 × m3 
 

Where m1, m2, m3 . . . . . are magnification of individual lenses. 

 

Silvered lenses  
If one of the surfaces of a lens is silvered from outside, then such a lens is said to be a 
silvered lens. A silvered lens is a combination of a lens and a mirror. Light can enter 
through the transparent front surface of the lens and get reflected by the silver coated rear 
surface. Hence, light travels two times through the lens  
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The power P of the silvered lens is, 
P = Pl + Pm + Pl  
P = 2Pl + Pm  

 
Here, Pl is the power of the lens and Pm is the power of the mirror. We know that the power 
of a lens is the reciprocal of its focal length. But, the power of a mirror is negative of the 
reciprocal of its focal length. This is because, a concave mirror which has negative focal 
length is a converging mirror with positive power. Also, a silvered lens is basically a 
modified mirror. Thus, 

   P = 1

1

1 1 1
; ;

m

m

P P
f f f

= =
− −

 

 Now,  

  
1

1 2 1

m
f f f

   
= +    − −     

 

 

Proper sign conventions are to be followed for.  
 
Suppose the object distance u and image distance v are to be found, we can very well use 
the mirror, since the silvered lens is a modified mirror. 

    
1 1

v u f


+ =  

 

PRISM 
 

A prism is a triangular block of glass or plastic. It is bounded by the three plane faces 
not parallel to each other. Its one face is grounded which is called base of the prism. The 
other two faces are polished which are called refracting faces of the prism. The angle 
between the two refracting faces is called angle of prism (or) refracting angle (or) apex angle 
of the prism represented as A As the height of the image is positive, the image is erect, and 
it is real. 

 
Angle of deviation produced by prism 
 

Let light ray PQ is incident on one of the refracting faces of the prism.The angles of 
incidence and refraction at the first face AB are i1 and r1. The path of the light inside the 
prism is QR. The angle of incidence and refraction at the second face AC is r2 and i2 
respectively. RS is the ray emerging from the second face. Angle i2 is also called angle of 
emergence. The angle between the direction of the incident ray PQ and the emergent ray RS 
is called the angle of deviation d. The two normals drawn at the point of incidence Q and 
emergence R are QN and RN. They meet at point N. The incident ray and the emergent ray 
meet at a point M. 
 

The angle of deviation d1 at surface AB is, 
   RQM = d1 = i1 – r1  
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The angle of deviation d2 at surface AC is, 
  QRM = d2 = i2 – r2  

 

Total angle of deviation d produced is,  
  d = d1 + d2  

Substituting d1 and d2, in  
d = (i1 – r1) + (i2 – r2)  

After rearranging,  
d = (i1 + i2) + (r1 + r2)  

   
In the quadrilateral AQNR, two of the angles (at the vertices Q and R) are right angles. 
Therefore, the sum of the other angles of the quadrilateral is 180˚. 

   A +   QNR = 180˚ 
In the triangle ΔQNR, 

  r1 + r2 +  QNR = 180˚ 
Comparing the two we get, 
   r1 + r2 = A  
Substituting this in for angle of deviation, 

  d = i1 + i2 – A  
Thus, the angle of deviation depends on the angle of incidence angle of emergence 

and the angle for the prism. For a given angle of incidence the angle of emergence is 
decided by the refractive index of the material of the prism. Hence, the angle of deviation 
depends on these following factors.  
 

1. the angle of incidence 

2. the angle of the prism 

3. the material of the prism 

4. the wave length of the light 
 
Angle of minimum deviation 
 

A graph plotted between the angle of incidence and angle of deviation. One could 
observe that the angle of deviation decreases with increase in angle of incidence and reaches 
a minimum value and then continues to increase. 

 

The minimum value of angle of deviation is called angle of minimum deviation D. At 
minimum deviation,  

 

1. the angle of incidence is equal to the angle of emergence, i1=i2. 

2. the angle of refraction at the face one and face two are equal, (r1=r2). 

3. the refracted ray inside the prism is parallel to its base of the prism. 

 

Refractive index of the material of the prism 
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 At minimum deviation, i1 = i2 = i and r1 = r2 = r  

Now, the equation becomes,  

  D = i1 + i2 – A = 2i – A (or) i = 
( )

2

A D+
 

 The equation becomes  

  r1 + r2 = A 2r = A (or) r = 
2

A
 

  Substituting i and r in Snell’s law,  

    n = 
sin

sin

i

r
 

   

sin
2

sin
2

A D

n
A

+ 
 
 =

 
 
 

 

The above equation is used to find the refractive index of the material of the prism. 
The angles A and D can be measured experimentally. 
 
Dispersion of white light through prism 
 

So far the angle of deviation produced by a prism is discussed for monochromatic 
light (i.e. light of single colour). When white light enter in to a prism, the effect called 
dispersion takes place. Dispersion is splitting of white light into its constituent colours. This 
band of colours of light is called its spectrum. When a narrow beam of parallel rays of white 
light is incident on the face of a prism and the refracted beam is received on a white screen, 
a band of colours is obtained in the order, recollected by the word: VIBGYOR i.e., Violet, 
Indigo, Blue, Green, Yellow, Orange and Red.Violet is the most deviated and red is the least 
deviated colour. 
 

The colours obtained in a spectrum depend on the nature of the source of the light 
used. Each colour of light is associated with a definite wavelength. Red light is at the longer 
wavelength end (700 nm) while the violet colour has the shortest wavelength of 400 nm in 
vacuum. Though all the colours have different wavelengths, they all travel with the same 
speed in vacuum. The speed of light is independent of wavelength in vacuum. Therefore, 
vacuum is a non-dispersive medium. 
 

But, when the white light enters a medium the red colour travels with the highest speed and 
violet colour travels with least speed. Hence, the wavelengths of colours in a medium are no 
longer the same as they are in vacuum. Actually, the dispersion takes place in a medium 
because of the difference in speed for different colours in a medium. In other words, the 
refractive index of the material of the prism is different for different colours. For violet 
colour, the refractive index is the highest and for red colour the refractive index is the least. 
The refractive index of two different glasses for different colours 
 
Refractive indices for different wavelengths  
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Colour Wavelength 
(nm) 

Crown glass Flint glass 

Violet 396.9 1.533 1.663 

Blue 486.1 1.523 1.639 

Yellow 589.3 1.517 1.627 

Red 656.3 1.515 1.622 

Dispersive Power 

 

 

Consider a beam of white light passing through a prism. It gets dispersed into its 
constituent colours.  
 
If the angle of prism is small of the order of 10o, the prism is said to be a small angle prism. 
When rays of light pass through such prisms, the angle of minimum deviation also becomes 
small. Let A be the angle of a small angle prism and δ be its angle of minimum deviation, 
then becomes, 
 

Rainbow appears in sky during mild shower (or) near the fountains/falls where there are 
water droplets remain suspended in air. A rainbow is seen when the sun is at the back of 
the observer. Dispersion occurs when sunlight enters a water droplet and the white light is 
split into its constituent seven colours. A primary rainbow is formed when the light 
entering a droplet undergoes one total internal reflection inside it. Sometimes, a secondary 
rainbow is also formed enveloping the primary rainbow as shown in the figure. The 
secondary rainbow is formed when light entering a raindrop undergoes two total internal 
reflections. The order of colour in primary rainbow is from violet to red whereas in 
secondary rainbow it is from red to violet. The angle of view in primary rainbow from 
violet to red is from 40˚ to 42˚. The angle of view for secondary rainbow from red to violet 
is from 52˚ to 54˚. 
 

 

sin
2

sin
2

A

n
A

+ 
 
 =

 
 
 

 

For small angles of A and  m, 

  sin
2 2

A A + +      
   

 

   sin
2 2

A A      
   

 

  
2

1

2

A

A
n

A A A


 

+ 
  +  = = + +

 
 
 
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  On Further simplifying 1n
A


= −  

     = (n – 1)A 
When white light enters the prism, the deviation is different for different colours. 

Thus, the refractive index is also different for different colours. 

  For Viotet Light, ( 1)
v v

n A = −  

For Red light, ( 1)
R R

n A = −  

 

As, angle of deviation for violet colour δV is greater than angle of deviation for red 
colour δR, the refractive index for violet colour nV is greater than the refractive index for red 
colour nR. 

Subtracting δV from δR we get, 

  ( )
v R v R

n n A − = −  

The angular separation between the two extreme colours (violet and red) in the spectrum 
(δV–δR) is called the angular dispersion. 
 

If we take δ is the angle of deviation for any middle ray (green or yellow) and nthe 
corresponding refractive index. Then, 
  δ = (n – 1) A  

Dispersive power (ω) is the ability of the material of the prism to cause dispersion. It 
is defined as the ratio of the angular dispersion for the extreme colours to the deviation for 
any mean colour. 

Dispersive power (ω), 

  v Rangular dispersion

meandeviation

 

−

= =   

substituting for (δv - δR) and (δ) 

  
( )

( 1)

v R
n n

n
 −

=
−

 

The Dispersive power is a dimensionless quality. It has no unit. Dispersive power is 
always positive. The dispersive power of a prism depends only on the nature of material of 
the prism and it is independent of the angle of the prism. 

 
Scattering of sunlight 
 

When sunlight enters the atmosphere of the earth, the atmospheric particles present 
in the atmosphere change the direction of the light. This process is known as scattering of 
light.  

 
If the scattering of light is by atoms and molecules which have size a very less than 

that of the wave length λ of light a<<λ, the scattering is called Rayleigh’s scattering. The 
intensity of Rayleigh’s scattering is inversely proportional to fourth power of wavelength. 

   
4

1
I


  

 



 

120 | P a g e  APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187 

 

According to, during day time, violet colour which has the shortest wavelength gets more 
scattered then the other colours. The next scattered colour is blue. As our eyes are more 
sensitive to blue colour than violet colour, the sky appears blue during day time as shown in 
Figure 6.45(b). But, during sunrise and sunset, the light from sun travels a greater distance 
through the atmosphere. Hence, the blue light which has shorter wavelength is scattered 
away and the red light which has longer wavelength and less-scattered manages to reach 
our eye. This is the reason for the reddish appearance of sky during sunrise and sunset. 
 
If light is scattered by large particles like dust and water droplets present in the atmosphere 
which have size a greater than the wavelength λ of light, (a >> λ), the intensity of scattering 
is equal for all the colours. This non-Rayleigh’s scattering is independent of wavelength. It 
happens in clouds which contains large amount of dust and water droplets. Thus, in clouds 
all the colours get equally scattered. This is the reason for the whitish appearance of cloud 
as. But, the rain clouds appear dark because of the condensation of water droplets on dust 
particles that makes the cloud opaque.  
 
If earth has no atmosphere there would not have been any scattering and the sky would 
appear dark. That is why sky appears dark for the astronauts who could see the sky from 
above the atmosphere. 
 

 


