APPSLD 5 $D Y$

DEO MAIN - 2023 PROBABILITY WORK SHEET

School Book:

Probability	$9^{\text {th }}$	OLD BOOK	Term 3	Chapter - 5
	$9^{\text {th }}$	NEW BOOK	Term 3	Chapter - 5
	$10^{\text {th }}$	OLD BOOK		Chapter - 12
	$10^{\text {th }}$	NEW BOOK		Chapter -8 Exercise $: 8.3 \& 8.4$
	$11^{\text {th }}$	OLD BOOK		Chapter - 10

1. $P(E)=\frac{n(E)}{n(S)}$
2. $P(S)=\frac{n(S)}{n(S)}=1$. The probability of sure event is 1 .
3. $P(\phi)=\frac{n(\phi)}{n(s)}=\frac{0}{n(s)}=0$ The probability of impossible event is 0 .
4. Since E is a subset of S and ϕ is a subset of any set,

$$
\begin{aligned}
& \phi \subseteq E \subseteq S \\
& P \phi \leq P(E) \leq P(S) \\
& 0 \leq P(E) \leq 1
\end{aligned}
$$

Therefore, the probability value always lies from 0 to 1 .
5. The complement event of E is \bar{E}

Let $\mathrm{P}(\mathrm{E})=\frac{m}{n}$ (Where m is the number of favourable outcomes of E and n is the total number of possible outcomes).
$P(\bar{E})=\frac{\text { Number of outcomesunfavourable to occurace of } E}{\text { Number of all possible out comes }}$

$$
\begin{aligned}
& \mathrm{P}(\bar{E})=\frac{n-m}{n}=1-\frac{m}{n} \\
& P(\bar{E})=1-P(E)
\end{aligned}
$$

6. $P(E)+P(\bar{E})=1$
7. $P(E)=\frac{n(E)}{n(S)}$
8. $P(S)=\frac{n(S)}{n(S)}=1$. உறுதியான நிகழ்ச்சியின் நிகழ்தகவானது 1 ஆகும்.
9. $P(\phi)=\frac{n(\phi)}{n(s)}=\frac{0}{n(s)}=0$ இயலா நிகழ்ச்சியின் நிகழ்தகவானது 0 ஆகும்.
10. E ஆனது, S -ன் உட்கணமாகும். மேலும் ϕ ஆனது எல்லா கணங்களின் உட்கணமாகும் எனவே

$$
\begin{aligned}
& \phi \subseteq E \subseteq S \\
& P \phi \leq P(E) \leq P(S) \\
& 0 \leq P(E) \leq 1
\end{aligned}
$$

ஆகையால், நிகழ்தகவு மதிப்பு எப்பொழுதும் 0 முதல் 1 வரை இருக்கும்.
5. E -ன் நிரப்பு நிகழ்ச்சி \bar{E} ஆகும்.
$\mathrm{P}(\mathrm{E})=\frac{m}{n}$ என்க. (m -ஆனது E -யின் சாதகமான வாய்ப்புகள் மற்றும் 0-அனது மொத்த வாய்ப்புகள்)

$$
P(\bar{E})=\frac{E \text { நிகழ சாதகமற் } ฺ \text { வாயப்புகள் }}{\text { மொத்த வாய்ப்புகள் }}
$$

$$
\begin{aligned}
& \mathrm{P}(\bar{E})=\frac{n-m}{n}=1-\frac{m}{n} \\
& P(\bar{E})=1-P(E)
\end{aligned}
$$

6. $P(E)+P(\bar{E})=1$

Let S be the sample space associated with a random experiment and A be an event. Let $n(S)$ and $n(A)$ be the number of elements of S and A respectively. Then the probability of the event A is defined as

$$
P(A)=\frac{n(A)}{n(S)}=\frac{\text { Number of cases favourableto } A}{\text { Exhaustive number of casesin } S}
$$

Axioms of probability:

Let S be a finite sample space, let $\mathrm{P}(\mathrm{S})$ be the class of events, and let P be a real valued function defined on $P(S)$. Then is called probability function of the event A, when the following axioms are hold:
[$\left.\mathrm{P}_{1}\right]$ For any event A. $1 \geq \mathrm{P}(\mathrm{A}) \geq 0 \quad$ (Non-negativity axiom)
[P_{2}] For any two mutually exclusive events

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \quad \text { (Additivity axiom) }
$$

$\left[\mathrm{P}_{3}\right]$ For the certain event $\quad P(S)=1$
(Normalization axiom)

Important Theorems:

1. The probability of the impossible event is zero i.e. $\mathrm{P}(\phi)=0$ Proof:

Impossible event contains no sample point.

$$
\begin{gathered}
\therefore S \cup \phi=S \\
\mathrm{P}(S \cup \phi)=\mathrm{P}(\mathrm{~S}) \\
\mathrm{P}(\mathrm{~S})+\mathrm{P}(\phi)=\mathrm{P}(\mathrm{~S}) \quad(\because \mathrm{S} \text { and } \phi \text { are mutually exclusive }) \\
\mathrm{P}(\phi)=0
\end{gathered}
$$

2. If \bar{A} is the complementary event of $\mathrm{A}, P(\bar{A})=1-P(A)$

Proof:

Let S be a sample space, we have

$$
\begin{aligned}
& A \cup \bar{A}=\mathrm{S} \\
& \mathrm{P}(A \cup \bar{A})=\mathrm{P}(\mathrm{~S}) \\
& \mathrm{P}(\mathrm{~A})+\mathrm{P}(\bar{A})=1
\end{aligned}
$$

$(\because \mathrm{A}$ and \bar{A} are mutually exclusive and $\mathrm{P}(\mathrm{S})=1)$

$$
\mathrm{P}(\mathrm{~A})=1-\mathrm{P}(\bar{A})
$$

3. If A and B are any two events and \bar{B} is the complimentary event of B

$$
P(A \cap \bar{B})=P(A)-P(A \cap B)
$$

Proof: A is the union of two mutually exclusive events $(A \cap \bar{B})$ and $(A \cap B)$

$$
\begin{aligned}
& \text { i.e. } \mathrm{A}=(A \cap \bar{B}) \cup(A \cap B) \\
& \mathrm{P}(\mathrm{~A})= \\
& P[A \cap \bar{B}) \cup(A \cap B)]
\end{aligned}
$$

$(\because(A \cap \bar{B})$ and $(A \cap B)$ are Mutually exclusive)

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}(A \cap \bar{B})+P(A \cap B)
$$

rearranging, we get $P(A \cap \bar{B})=P(A)-P(A \cap B)$
Similarly

$$
P(\bar{A} \cap B)=P(B)-P(A \cap B)
$$

4. (Additive theorem on probability) If A and B are any two events

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Proof: We have

$$
\begin{aligned}
& A \cup B=(A \cap \bar{B}) \cup B \\
& P(A \cup B)=P[A \cap \bar{B}) \cup B]
\end{aligned}
$$

($\because A \cap \bar{B}$ and B are mutually exclusive event)

$$
\begin{gathered}
=[P(A)-P(A \cap B)]+P(B) \\
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
\end{gathered}
$$

Note: The above theorem can be extended to any 3 events.
$\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})-\mathrm{P}(\mathrm{B} \cap \mathrm{C})-\mathrm{P}(\mathrm{C} \cap \mathrm{A})+$ $\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$

Conditional Probability:

The conditional probability of an event B, assuming that the event A has already happened is denoted by $\mathrm{P}(\mathrm{B} / \mathrm{A})$ and is defined as

$$
\mathrm{P}(\mathrm{~B} / \mathrm{A})=\frac{P(A \cap B)}{P(A)} \text { provided } \mathrm{P}(\mathrm{~A}) \neq 0
$$

Similarly

$$
P(A / B)=\frac{P(A \cap B)}{P(B)} \text { Provided } \mathrm{P}(\mathrm{~B}) \neq 0
$$

நிகழ்ச்சி A ஏற்கனலே நிகழ்ந்துள்ள நிலையில் A - ்் நிபந்தனையில் B - ன் சார்புநிலை $\mathrm{P}(\mathrm{B} / \mathrm{A})$ எみக் குறிக்கப்படுகிறது மற்றுய்

$$
\mathrm{P}(\mathrm{~B} / \mathrm{A})=\frac{P(A \cap B)}{P(A)} ; \mathrm{P}(\mathrm{~A}) \neq 0 \text { สன வரையறுக்கப்படுகிறது. }
$$

$$
\text { இதே போல் } P(A / B)=\frac{P(A \cap B)}{P(B)} ; P(B) \neq 0 \text { என வரையறுக்கப்படுகிறது }
$$

The probability of the simultaneous happening of two events A and B is given by

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A} / \mathrm{B}) \mathrm{P}(\mathrm{~B}) \text { or } \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~B} / \mathrm{A}) \mathrm{P}(\mathrm{~A})
$$

Two events A and B are said to be independent if and only if

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})
$$

1. A man has 2 ten rupee notes, 4 hundred rupee notes and 6 five hundred rupee notes in his pocket. If 2 notes are taken at random, what are the odds in favour of both notes being of hundred rupee denomination and also its probability?
இரண்டு பத்து ரூபாய் 4 நூறு ரூபாய் மற்றும் 6 ஐந்து ரூபாய் தாள்கள் ஒருவா் பாக்கெட்டில் உள்ளது. சமவாய்ப்பு முறையில் 2 தாள்கள் எடுக்கப்படுகின்றுன. அவ்விரண்டு தாள்கள் நூறு ரூபாய் தாள்களாக இடுப்பதற்குச் சாதக விகிதம் மற்றுு் அதன் நிகழ்தகவு என்ள?

Solution

Let S be the sample space and A be the event of taking 2 hundred rupee note.

Therefore, $\mathrm{n}(\mathrm{S})=12 \mathrm{c}_{2}=66, \mathrm{n}(\mathrm{A})=4 \mathrm{c}_{2}=6$ and $\mathrm{n}(\bar{A})=66-6=60$
Therefore, odds in favour of A is 6:60
That is, odds in favour of A is $1: 10$, and $P(A)=\frac{1}{11}$
2. A manufacturer tested 1000 cell phones at random and found that 25 of them were defective. If a cell phone is selected at random, what is the probability that the selected cellphone is a defective one.
ஒரு உற்பத்தியாளா் உற்பத்தியான செல்லிடப்பேசிகளிலிருந்து (Cell phone) 1000 செல்லிடப்பேசிகளை சமவாய்ப்பு முறையில் தோ்்தெடுத்து சோதித்துப் பாா்த்ததில் 25 செல்லிடப்பேசிகள் குறைபாடுமையன என்று கண்டுபிடிக்கப்பட்டது எனில், சமவாய்ப்பு முறையில் தோ்ந்தடுக்கும் ஒரு செல்லிடப்பேசி குறைபாடுடையதாக இருக்க நிகழ்தகவு என்ன?

Solution:

Total number of cell phones tested $=1000$ i.e., $n=1000$
Let E be the event of selecting a defective cell phone.

$$
\mathrm{n}(E)=25 \quad \text { i.e., } m=25
$$

$$
P(E)=\frac{\text { Number of defective cellphones }}{\text { Total number of cellphonestested }}
$$

$$
=\frac{m}{n}=\frac{25}{1000}=\frac{1}{40}
$$

3. Two unbiased dice are rolled once. Find the probability of getting
(i) a doublet (equal numbers on both dice)
(ii) the product as a prime number
(iii) the sum as a prime number
(iv) the sum as 1

இரண்டு சீரான பகடைகள் முறையாக ஒரே நேரத்தில் உருட்டப்படுகின்றன.
(i) இரண்டு பகடைகளிலும் ஒரு முக மதிப்பு கிடைக்க
(ii) முக மதிப்புகளின் பபருக்கற்பலன் பகா எண்ணாகக் கிடைக்க
(iii) முக மதிப்பகளின் கூடுதல் பகா எண்ணாகக் கிடைக்க
(iv) முக மதிப்புகளின் கூடுதல் 1-ஆக இருக்க

ஆகிய நிகழ்ச்சிகளின் நிகழ்தகவுகளைக் காண்க.

Solution:

When two unbiased dice are rolled, the sample space

$$
\begin{aligned}
S= & (1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
\end{aligned}
$$

$$
\begin{aligned}
&(4,1),(4,2),(4,3),(4,4),(4,5),(4,6), \\
&(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), \\
&(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \\
& n(S)= 36
\end{aligned}
$$

i. Let A be the event of getting a doublet
$\mathrm{A}=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$
$\mathrm{n}(\mathrm{A})=6$
$P(A)=\frac{n(A)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
ii. Let B be the event of getting the product as a prime number.
$B=\{(1,2),(1,3),(1,5),(2,1),(3,1),(5,1)\}$
$\mathrm{n}(\mathrm{B})=6$

$$
P(B)=\frac{6}{36}=\frac{1}{6}
$$

iii. Let C be the event of getting the sum as a prime number.

$$
\begin{aligned}
& \mathrm{C}=\{(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4), \\
& \\
& (4,1),(4,3),(5,2),(5,6),(6,1),(6,5)\} \\
& \mathrm{n}(\mathrm{C})=15 \\
& P(C)=\frac{n(C)}{n(S)}=\frac{15}{36}=\frac{5}{12}
\end{aligned}
$$

iv. Let D be the event of getting the sum as 1 . Since it is an impossible event. $\mathrm{n}(\mathrm{D})=0$ and $\mathrm{P}(\mathrm{D})=0$
4. On a particular day a policeman observed vehicles for speed check. The frequency table shows the speed of 160 vehicles that pass a radar speed check on dual carriage way.

Speed (Km/h)	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70 \& a b o v e$
No.of Vehicles	14	23	28	35	52	8

Find the probability that the speed of a vehicle selected at random is
(i) faster than $69 \mathrm{~km} / \mathrm{h}$.
(iii) less than $60 \mathrm{~km} / \mathrm{h}$.
(ii) between $20-39 \mathrm{~km} / \mathrm{h}$.
(iv) between $40-69 \mathrm{~km} / \mathrm{h}$.

ஒரு இருவழி் சாலையில் குறிப்பிட்ட ஒரு நாளில் ஒரு காவலா் வாகனங்களின் வேகத்றை சோதனை செய்தாா். அவा் சோதனை செய்த 160 வाகனங்களின் வேகங்களின் நுகழ்வெண் பட்டியல் கீழே கொடுக்கப்பட்டுள்ளது.

வேகம் (கி.மீ/மணி)	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	70 ம் அதுற்கு Cேலும்

வாகனங்களின் எண்ணிக்கை	14	23	28	35	52	8

ஒரு வாகனத்தைச் சமவாய்ப்பு முறையில் தத்ந்ததடுக்கும் போது அதன் வேகம்
i. 69 கி.மீ/மணி - ஐ விட அதிகமாக
ii. 20 கி.மீ/மணியிலிருந்து 39 கி.மீ / மணி வரை
iii. 60 கி.மீ/மணி-க்கும் குறைவாக
iv. 40 கி.மீ/மணியிலிருந்து 69 கி.மீ/மணி வணை இருக்க நிகழ்தகவு என்ன?

Solution:

i. Let E_{1} be the event of a vehicle travelling faster than $69 \mathrm{~km} / \mathrm{h}$.

$$
\mathrm{n}\left(\mathrm{E}_{1}\right)=8 \quad \text { i.e. } \mathrm{m}_{1}=8
$$

Total number of vehicles $=160$.
i.e. $n=160$

$$
\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{m_{1}}{n}=\frac{8}{160}=\frac{1}{20}
$$

ii. Let E_{2} be the event of a vehicle travelling the speed between $20-39$ km / h.

$$
\begin{aligned}
& \mathrm{n}\left(\mathrm{E}_{2}\right)=14+23=37 \quad \text { i.e } \mathrm{m}_{2}=37 \\
& \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{m_{2}}{n}=\frac{37}{160}
\end{aligned}
$$

iii. Let E_{3} be the event of a vehicle travelling the speed less than 60 km / h.

$$
\begin{array}{ll}
\mathrm{n}\left(\mathrm{E}_{3}\right)=14+23+28+35=100 \quad \text { i.e. } \mathrm{m}_{3}=100 \\
\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{m_{3}}{n}=\frac{100}{160}=\frac{5}{8}
\end{array}
$$

iv. Let E_{4} be the event of a vehicle travelling the speed between 40-69 km/h.

$$
\begin{array}{ll}
\mathrm{n}\left(\mathrm{E}_{4}\right)=28+35+52=115 & \text { i.e. } \mathrm{m}_{4}=115 \\
\mathrm{P}\left(\mathrm{E}_{4}\right)=\frac{m_{4}}{n}=\frac{115}{160}=\frac{23}{32} &
\end{array}
$$

5. The educational qualifications of 100 teachers of a Government higher secondary school are tabulated below

Education	Mg.Phil	Master Degree only	Bachelor Degree only
below 30	5	10	10
$30-40$	15	20	15
above 40	5	5	15

If a teacher is selected at random what is the probability that the chosen teacher has

CHENNAI
(i) master degree only
(ii) M.Phil and age below 30
(iii) only a bachelor degree and age above 40
(iv) only a master degree and in age 30- 40
(v) M.Phil and age above 40

ஒரு அரசு மேல்நிலைப் பள்ளியில் பணிபுரியும் 100 ஆசிிியா்களின் கல்வித்
தகுதிகள் அட்டவணைப்படுத்தப்பட்டுள்ளது.

கல்வி நிலை	ஆய்வியல் நிறைஞர் (M.Phil)	முதுகலைப் பட்டம் வரை	இளங்கலைப் பட்டம் மட்டும்
வயது			
30-க்கு கீழ்	5	10	10
30 - 40 வரை	15	20	15
40-ற்கு மேல்	5	5	15

ஒரு ஆசிாியரை சமவாய்ப்பு முறையில் தோ்்ததடுக்கும் போது அவா்
i. முதுகலைப் பட்டம் வரை பெற்றவராா இருக்க
ii. 30 வயதிற்கு குறைவானவரும் ஆய்வியல் நிறைஞ்் பட்டம் பபற்றவராகவும் இருக்க
iii. 40 வயதிற்கு மேற்பட்டவராகவும் இளங்கலைப் பட்டம் பெற்றுவராகவும் இருக்க
iv. 30 வயது முதல் 40 வயதிற்குட்பட்டவராகவும் முதுகலைப் பட்டம் பெற்ற்வராகவும் இருக்க.
v. 40 வயதிற்கு மேற்பட்டவராகவும் ஆய்வியல் நிறைஞ்் பட்ட்் பெற்றுவராகவும் இருக்க நிகழ்தகவு என்ゥ?

Solution:

i. Master degree only $=\frac{35}{100}$

$$
=\frac{7}{20}
$$

ii. M.phill and age below 30

$$
=\frac{5}{100}=\frac{1}{20}
$$

iii. Only a bachelor degree and age above 40

$$
=\frac{40}{100}=\frac{2}{5}
$$

iv. Only a master degree and in age $30-40=\frac{20}{100}$

$$
=\frac{1}{5}
$$

v. M.Phil and age above $40=\frac{5}{100}$

$$
=\frac{1}{20}
$$

6. In a recent year, of the 1184 centum scorers in various subjects in tenth standard public exams, 233 were in mathematics. 125 in social science and

106 in science. If one of the student is selected at random, find the probability of that selected student,
(i) is a centum scorer in Mathematics
(ii) is not a centum scorer in Science

பத்தாம் வகுப்பு இறுதித் தேர்வில் பல்வேறு பாடங்களில் நூற்றுக்கு நூறு மதிப்பெண்கள் பெற்ற 1184 மாணவ்்களில், 233 போ் கணிதத்திலும், 125 போ் சமூக அறிவியலிலும், 106 போ் அறிவியலிலும் நூற்றுக்கு நூறு பெற்றுள்ளன். சம வாய்ப்பு முறையில் ஒரு மாணவரைக் தோந்தெடுக்கும்போது அந்த மாணவா
i. கணிதத்தில் நூற்றுக்கு நூறு மதிப்பெண் பெற்றவராக இருக்க.
ii. அறிவியலில் நூற்றுக்கு நூறு பெறாதவராக இருக்க நிகழ்தகவு காண்க.

Solution:

Total number of centum scorers $=1184$
Therefore $\mathrm{n}=1184$
(i) Let E_{1} be the event of getting a centum scorer in Mathematics.

Therefore $n\left(E_{1}\right)=233$, That is, $r_{1}=233$

$$
\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{r_{1}}{n}=\frac{233}{1184}
$$

ii. Let E_{2} be the event of getting a centum scorer in science.

Therefor $n\left(E_{2}\right)=106$, That is, $r_{2}=106$

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{2}\right) & =\frac{r_{2}}{n}=\frac{106}{1184} \\
\mathrm{P}\left(\mathrm{E}_{2}\right) & =1-\mathrm{P}\left(\mathrm{E}_{2}\right) \\
& =1-\frac{106}{1184} \\
& =\frac{1078}{1184}
\end{aligned}
$$

7. An integer is chosen from the first twenty natural numbers. What is the probability that it is a prime number?
ழுதல் இருபது இயல் எண்களிலிருந்து ஒரு முழு எண் சமவாய்ப்பு முறையைல் தோ்்ததடுக்கப்படுகிறது. அந்த எண் ஒரு பகா எண்ணாக இருப்பதற்கான ந்கழ்தகவிணைக் காண்க.

Solution:

Here $S=\{1,2,3$ 20\}

$$
n(S)=20
$$

Let A be the event of choosing a prime number.
Then,

$$
A=\{2,3,5,7,11,13,17,19\}
$$

$$
\mathrm{n}(\mathrm{~A})=8 .
$$

Hence $\mathrm{P}(\mathrm{A})=\frac{n(A)}{n(S)}=\frac{8}{20}=\frac{2}{5}$
8. One card is drawn randomly from a well shuffled deck of 52 playing cards. Find the probability that the drawn card is

நன்கு கலைத்து அடுக்கிய 52 சீட்டுகளைக் கொண்ட கட்டிலிருந்து சமவாய்ப்பு முறையில் ஒரு சீட்டு எடுக்கப்படுகிறது. பின்வருவனவற்றிற்கு நிகழ்த்தகவுகளைக் காண்க.

Spade	Heart	Clavor	Diamond
A	A	A	A
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9
10	10	10	10
J	J	J	J
Q	Q	Q	Q
K	K	K	K
13	13	13	13

i. a Diamond (எடுத்த சீட்டு டயமண்ட் ஆக இருக்க)

Solution: The total number of cards, $n(S)=52$
Let A be the event of getting a diamond card

$$
\begin{aligned}
\mathrm{n}(\mathrm{~A}) & =13 \quad[\because \text { There are } 13 \text { diamond cards }] \\
\therefore P(A) & =\frac{n(A)}{n(S)}=\frac{13}{52}=\frac{1}{4}
\end{aligned}
$$

ii. not a Diamond (எடுத்த சீட்டு டயமண்ட் இல்லாமல் இருக்க)

Solution: Probability of getting a non-diamond card

$$
P(\bar{A})=1-P(A)=1-\frac{1}{4}=\frac{3}{4}
$$

iii. not an Ace

எடுத்த சீட்டு ஏஸ் சீட்டாக இல்லாமல் இருக்க
Solution: Let B be the event of getting an Ace card

$$
\begin{aligned}
n(B) & =4 \\
\therefore P(B) & =\frac{4}{52}=\frac{1}{13}
\end{aligned}
$$

Hence probability of getting not an Ace card $=P(\bar{B})=1-P(B)=1-\frac{1}{13}=\frac{12}{13}$
9. A letter is chosen at random from the letters of the word "ENTERTAINMENT". Find the probability that the chosen letter is a vowel or T. (repetition of letters is allowed)
"ENTERTAINMENT" என்ற சொல்லிலுள்ள எழுத்துக்களிலிருந்து சமவாய்ப்பு முறையில் ஒரு எழுத்தைத் தேர்வு செய்ய, அவ்வவழுத்து ஆங்கில உயிதெழுத்தாகவோ அல்லது எழுத்து T ஆகவோ இருப்பதற்கான நிகழ்தகவினைக் காண்க. (எழுத்துகள் திரும்பத் திரும்ப வரலாம்)

Solution:

There are 13 letters in the word ENTERTAINMENT.

$$
n(S)=13 .
$$

Let A be the event of getting a vowel.

$$
\mathrm{n}(\mathrm{~A})=5
$$

Hence $\quad \mathrm{P}(\mathrm{A})=\frac{n(A)}{n(S)}=\frac{5}{13}$
Let B be the event of getting the letter T.

$$
n(B)=3
$$

Hence, $\mathrm{P}(\mathrm{B})=\frac{n(B)}{n(S)}=\frac{3}{13}$. Then

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \quad \mathrm{A} \text { and } \mathrm{B} \text { are mutually exclusive events } \\
&=\frac{5}{13}+\frac{3}{13}=\frac{8}{13}
\end{aligned}
$$

10. In a group of students, 65 play football, 45 play hockey, 42 play cricket, 20 play football and hockey, 25 play football and cricket, 15 play hockey and cricket and 8 play all the three games. Find the number of students in the group. (Assume that each student in the group plays at least one game.)
ஒரு குழுவில் 65 மாணவர்கள் கால்பந்தும், 45 பே் @ாக்கியும், 43 பேர் கிரிக்கெட்டும் விளையாடுகிறார்கள். 20 பேi் கால்பந்தாட்டமும் ஹாக்கியும், 25 பேர் கால்பந்தாட்டமும் கிர்க்ககட்டும், 15 போ் ஹாக்கியும் கிிிக்ககட்டும் மற்றுு் 8 பேர் முன்று விறையாட்டுகளையும் விளையாடுகிறாi்கள். அக்குழுவில் உள்ள மாணவர்களின் எண்ணிக்கையைக் காண்க.
(ஒவ்வொரு மாணவனும் குறறந்தது ஒரு விளையாட்டினை விளையாடுவா்் எனக் கொள்க)

Solution:

Let F, H and C represent the set of students who play foot ball, hockey and cricket respectively. Then $n(F)=65, n(H)=45$, and $n(C)=42$.

Also, $n(\mathrm{~F} \cap \mathrm{H})=20, \mathrm{n}(\mathrm{F} \cap \mathrm{C})=25, \mathrm{n}(\mathrm{H} \cap \mathrm{C})=15$ and $\mathrm{n}(\mathrm{F} \cap \mathrm{H} \cap \mathrm{C})=8$.
We want to find the number of students in the whole group; that is $n(F \cup H \cup$ C). By the formula, we have

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~F} \cup \mathrm{H} \cup \mathrm{C})= \mathrm{n}(\mathrm{~F}) \\
&-\mathrm{n}(\mathrm{H})+\mathrm{n}(\mathrm{C})-\mathrm{n}(\mathrm{~F} \cap \mathrm{H}) \\
&-\mathrm{n}(\mathrm{H} \cap \mathrm{C})-\mathrm{n}(\mathrm{~F} \cap \mathrm{C})+\mathrm{n}(\mathrm{~F} \cap \mathrm{H} \cap \mathrm{C}) \\
&=65+45+42-20-25-15+8=100
\end{aligned}
$$

Hence, the number of students in the group $=100$.
11. A and B are two candidates seeking admission to IIT, the probability that A getting selected is 0.5 and the probability that both A and B getting selected is 0.3 . Prove that the probability of B being selected is at most 0.8 .
A மற்றும் B ஆகிய இரு விண்ணப்பதாரர்கள் IIT - யில் சேர்வதற்காகக் காத்திருப்பவா்கள். இவா்களில் A தோ்்ததடுக்கப்படுவதற்கான நிகழ்தகவு 0.5, A மற்றுய் B இருவரும் தேர்ந்தெடுக்கப்படுவதற்கான நிகழ்தகவு 0.3 எனில், B தேர்ந்தெடுக்கப்படுவதற்கான அதிகபட்ச நிகழ்தகவு 0.8 என நிரூபிக்க.

Solution:

$$
\mathrm{P}(\mathrm{~A})=0.5, \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.3
$$

We have $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B}) \leq 1$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) & \leq 1 \\
0.5+\mathrm{P}(\mathrm{~B})-0.3 & \leq 1 \\
\mathrm{P}(\mathrm{~B}) & \leq 1-0.2 \\
\mathrm{P}(\mathrm{~B}) & \leq 0.8
\end{aligned}
$$

Therefore, probability of B getting selected is at most 0.8 .
Easy

1. A coin is tossed thrice. What is the probability of getting two consecutive tails?
ஒரு நாணயம் மூன்று முறை சுண்டப்படுகிறது. இரண்டு அடுத்தடுத்த பூக்கள் கிடைப்பதற்கான நிகழ்தகவு என்ன?
2. In a box there are 20 non-defective and some defective bulbs. If the probability that a bulb selected at random from the box found to be defective is $\frac{3}{8}$ then, find the number of defective bulbs.
ஒரு ிபட்டியில் 20 குறைபாடில்லாத விளக்குகளும் ஒரு சில குறைபாடுமைய விளக்குகளும் உள்ளன. பெட்டயயிலிருந்து சமவாய்ப்பு முறறயில் தேர்ந்ดதடுக்கப்படும் ஒரு விளக்கானது குறைபாடுமையதாக இருப்பதற்கான வாய்ப்பு $\frac{3}{8}$ எனில், குறைபாடுடைய விளக்குகளின் எண்ணிக்கையைக் காண்க.
3. A box contains 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears
(i) a two-digit number
(ii) a perfect square number

CHENNAI
(iii) a number divisible by 5 .

ஒரு ดபட்டியில் 1 முதல் 90 வரை எண்ணப்பட்ட 90 வட்டவில்லைகள் உள்ளன. பபட்டியிலிருந்து ஒரு வட்டவில்லை சமவாய்ப்பு முறையில் தேர்ந்ததடுக்கப்பட்டால், அது
(i) ஓர் ஈரிலக்க எண்
(ii) ஒரு முழு வர்க எண்
(iii) 5 ஆல் வகுபடும் ஒரு எண்ணைக் கொண்டிடுப்பதற்கான நிகழ்தகவைக் கண்டறியவும்.
4. A die is rolled and a coin is tossed simultaneously. Find the probability that the die shows an odd number and the coin shows a head.
ஒரு பகடை உருட்டப்படும் அதே நேரத்தில் ஒரு நாணயமும் சுண்டப்படுகிறதது. பகடையில் ஒற்றைப்படை எண் கிடைப்பதற்கும், நாணயத்தில் தலைக் கிடைப்பதற்குமான ந்கழ்தகவைக் காண்க.
5. If A is an event of a random experiment such that $\mathrm{P}(\mathrm{A}): \mathrm{P}(\bar{A})=7: 12$, then find $\mathrm{P}(\mathrm{A})$.
ஒரு சமவாய்ப்புச் சோதளையில் ஒரு நிகழ்ச்ச்சி A என்க. அந்நிகழ்ச்சியின் நிரப்பு நிகழ்ச்சி \bar{A} என்க. $P(A): P(\bar{A})=7: 12$ எனில், $\mathrm{P}(\mathrm{A})$ ஐக் காண்க.

Moderate

6. Find the probability that
(i) a leap year selected at random will have 53 Fridays
(ii) a leap year selected at random will have only 52 Fridays
(iii) a non-leap year selected at random will have 53 Fridays.

பின்வருவனவற்றறற்காா நிகழ்தகவிணைக் காண்க.
i. சமவாய்ப்பு ழுறையில் தோந்ததடுக்கப்படும் நெட்டாண்டில் 53 வெள்ளிக் கிழமைகள் இருத்தல்
ii. சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்படும் நநட்டாண்டில் 52 வெள்ளிக் கிழமைகள் மட்டுமே இருத்தல்.
iii. சமவாய்ப்பு முறையில் தோ்்ததடுக்கப்படும் சாதாரண வடுடத்தில் (Non-leap year) 53 வெள்ளிக்கிழமைகள் இருத்தல்
7. The probability that a person will get an electrification contract is $\frac{3}{5}$ and the probability that he will not get plumbing contract is $\frac{5}{8}$. The probability of getting atleast one contract is $\frac{5}{7}$. What is the probability that he will get both? ஒருவருக்கு மின்சார ஒப்பந்தம் கிடைப்பதற்கான நிகழ்தகவு $\frac{3}{5}$ மற்றும் குழாய்கள் பபாருத்துவதற்கான ஒப்பந்தம் கிடைக்காமல் இருப்பதற்கான நிகழ்தகவு $\frac{5}{8}$ ஆகும்.

மேலும் குறைந்தபட்சம் ஏதாவது ஒரு ஒப்பந்தம் கிடைக்கப்பபறுவதற்கான நிகழ்தகவு $\frac{5}{7}$ எனில், இரண்டு ஒப்பந்தங்களும் கிடைப்பதற்கான நிகழ்தகவு என்ன?
8. Three fair coins are tossed together. Find the probability of getting
(i) all heads
(ii) atleast one tail
(iii) atmost one head
(iv) atmost two tails

மூன்று சீரான நாணயங்கள் முறையாக ஒரே நேரத்தில் சுண்டப்படுகின்றன.
i. அளைத்தும் தலையாகக் கிடைக்க
ii. குறைந்தபட்ச்் ஒரு பூ கிடைக்க
iii. அதிகபட்ச்் ஒரு தலை கிடைக்க
iv. அதிகபட்சம் இரண்டு பூக்கள் கிடைக்க ஆகியவற்றிற்கான நிகழ்தகவுகளைக் காண்க.
9. A box contains cards numbered 3,5, 7, 9, 35, 37. A card is drawn at random from the box. Find the probability that the drawn card have either multiples of 7 or a prime number.
ஒரு பெட்டியில் 3, 5, 7, 9, 35, 37 என்ற எண்கள் குறிக்கப்பட்ட சீட்டுகள் உள்ளன. சமவாய்ப்பு முறையில் எடுக்கப்படும் ஒரு சீட்டு ஆனது 7-ன் மடங்காக அல்லது பகா எண்ணாக இருப்பதற்கான நிகழ்தகவைக் காண்க.
10. A box contains 10 white, 6 red and 10 black balls. A ball is drawn at random. Find the probability that the ball drawn is white or red.
ஒரு பைய|ல் 10 வவள்ளை, 6 சிவப்பு மற்றும் 10 கருப்பு நிறப் பந்துகள் உள்ளன. சமவாய்ப்பு முறையில் ஒரு பந்திளை எடுக்கும்போது அது வெள்ளை அல்லது சிவப்பு நிறப் பந்தாக இருப்பதற்கான நிகழ்தகவியைக் காண்க.
11. A bag contains 12 blue balls and x red balls. If one ball is drawn at random (i) what is the probability that it will be a red ball? (ii) If 8 more red balls are put in the bag, and if the probability of drawing a red ball will be twice that of the probability in (i), then find x.
ஒரு பையில் 12 நீல நிறப்பந்துகளும், x சிவப்பு நிறப்பந்துகளும் உள்ளன. சமவாய்ப்பு முறையில் ஒரு பந்து தேர்ந்ததடுக்கப்படுகிறது. (i) அது சிவப்பு நிறப்பந்தாக இருப்பதற்கான நிகழ்தகவைக் காண்க (ii) 8 புதிய சிவப்பு நிறப்பந்துகள் அப்பையில் வைத்த பின்ளj, ஒரு சிவப்பு நிறப்பந்றை தேர்்ததட்ப்பற்கான நிகழ்தகவானது (i)-uில் பபறப்பட்ட நிகழ்தகவைப் போல இருமடங்கு எனில், x-ø் மதிப்பனைக் காண்க.

Hard

12. The probability that a girl will be selected for admission in a medical college is 0.16 . The probability that she will be selected for admission in an
engineering college is 0.24 and the probability that she will be selected in both, is 0.11
I. Find the probability that she will be selected in at least one of the two colleges.
II. Find the probability that she will be selected either in a medical college only or in an engineering college only.
ஒரு மாணவிக்கு மருத்துவக் கல்லூாியில் சச்க்கை கிடைப்பதற்கான நிகழ்தகவு 0.16 என்க. பொறியியல் கல்லூரியில் சோ்க்கை கிடைப்பதற்கான நிகழ்தகவு 0.24 மற்றும் இரு கல்லூாிகளிலும் சோ்்கை கிடைப்பதற்கான நிகழ்தகவு 0.11 எனில்,
I. மருத்துவம் மற்றும் பொறியியல் கல்லூரிகளில் ஏதேனும் ஒரு கல்லூாியில் சோ்்கை கிடைப்பதற்கான நிகழ்தகவு காண்க.
II. மருத்துவக் கல்லூரியலல் மட்டுமோ அல்லது பொறியியல் கல்லூாியலல் மட்டுமோ சோ்்கை கிடைப்பதற்கான நிகழ்தகவு காண்க.
13. An Urn contains 3 Yellow and 4 Green balls. Find the probability distribution of the number of Green balls in three draws when a ball is drawn at random with replacement. Also find its mean and variance.
ஒரு கொள்கலனில் 3 மஞ்சள் மற்றுு்ம் பச்சை நிறப்பந்துகள் உள்ளன. திரும்ப வைக்குமாறு சம வாய்ப்பு முறறயலல் 3 முறை பந்துகளை ஒன்றன்பின் ஒன்றாக எடுக்கும் போது கிடைக்கும் பச்யை நிறப் பந்துகளிண் எண்ணிக்கையின் நிகட்தகவுப் பரவலலக் காண்க. மேலும் சராசரி, பரவற்புி ஆகியவற்றற்் காண்க.
(GROUP 1, 2019, Section A, 10 Mark)
14. The probability that a girl will be selected for admission in a medical college is 0.21 . The probability that she will be selected for admission in an engineering college is 0.26 and the probability that she will be selected in both is 0.12 .
a. Find the probability that she will be selected in at least one of the two colleges.
b. Find the probability that she will be selected either in a medical college only or in an engineering college only.
ஒரு மாணவிக்கு மருத்துவக் கல்லூாியில் சோ்்கை கிடைப்பதற்கான நிகழ்தகவு 0.21 என்க. पபாறியியல் கல்லூாரியில் சோ்்கை கிடைப்பதற்கான நிகழ்தகவு 26 மற்றும் இரு கல்லூரிகளிலும் சோ்க்க கிடைப்பதற்கான நிகழ்தகவு 0.12 எனில்,
a. மருத்துவம் மற்றும் பொறியியல் கல்லூாிகளில் ஏதேனும் ஒரு கல்லூரியில் சேர்க்கை கிடைப்பதற்கான நிகழ்தகவு காண்க.
b. மருத்துவக் கல்லாரியில் மட்டுமே அல்லது பொறியியல் கல்லாாியலல் மட்டுமோ சோ்க்கை கிடைப்பதற்கான நிகழ்தகவு காண்க.
(GROUP 1, 2019, Section B, 15 Mark)
15. (a) One card is drawn randomly from a well shuffled deck of 52 playing cards. Find the probability that the drawn card is
i. a diamond ii. not a diamond iii. not and ace
(b) a number is selected at random from integers 1 to 100 . Find the probability that it is
i. a perfect square
ii. not a perfect cube.
(a) நன்கு கலைத்து அடுக்கிய 52 சீட்டுகளைக் கொண்ட கட்டிலிருந்து சமவாய்ப்பு முறையில் ஒரு சீட்டு எடுக்கப்படுகிறது. பின்வருனவற்றறற்கு நிகழ்தகவுகளளக் காண்க.
i. எடுத்த சீட்டு டயமண்ட் ஆக இருக்க
ii. எடுத்த சீட்டு டயமண்ட் இல்லாமல் இருக்க
iii. எடுத்த சீட்டு ஏஸ் சீட்டாக இல்லாமல் இருக்க
(b) 1 முதல் 100 வரையிலான முழு எண்களிலிருந்து சமவாய்ப்பு முறையில் தோ்்ததடுக்கப்படும் ஒரு எண்
i. ஒரு முழு வா்்க்மாக (இருக்க.
ii. முழு கனமாக இல்லாமல் (not a cube) இருக்க ஆகியவற்றிற் நிகழ்தகவுகளைக் காண்க.
(DEO, 2019, Section A, 10 Mark)
16. (a) A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball from the bag is thrice that of drawing a red ball, then find the number of blue balls in the bag.
(b) If A is an event of a random experiment such that $\mathrm{P}(\mathrm{A}): \mathrm{P}(\bar{A})=7$: 12 then find $\mathrm{P}(\mathrm{A})$
(c) There are 7 defective items in a sample of 35 items. Find the probability
that an item chosen at random is non-defective.
(a) ஒரு பையில் 5 சிவப்பு மற்றும் சில நீல நிறப் பந்துகள் உள்ளள. அப்பையிலிருந்து ஒரு நீல நிறப் பந்தை எடுப்பதற்கான நிகழ்தகவு, ஒரு சிவப்பு நிறப்பந்தை எடுப்பதாற்கான நிகழ்தகவின் 3 மடங்கு எனில் அப்பையில் உள்ள நீல நிறப்பந்துகளின் எண்ணிக்கையைத் காண்க.
(b) ஒரு சமவாய்ப்புச் சோதனையில் ஒரு நிகழ்ச்சி A என்க. அதில் $P(A)$: $\mathrm{P}(A)=7: 12$ எனில் $\mathrm{P}(\mathrm{A})$ ஐ காண்க.
(c) 35 பொருட்கள் அடங்கிய தொகுப்பு ஒன்றலல் 7 பொருட்கள் குறைபாடுமையன. அத்தொகுப்பிலிருந்த தே்்்்தடுக்கும் போது $\begin{array}{cc}\text { ஒரு } & \text { பபாருள்ள் } \\ \text { அுறுபாடற்ற }\end{array}$ சமவாய்ப்பு

முறையில் நிகழ்தகவு காண்க.
(DEO, 2019, Section B, 15 Mark)

