
1 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

Electricity
TEST -8

12th Vol- I Unit - 1 Electristatics
Unit - 2 Current Electricity

12TH PHYSICS
UNIT – 1 -Electrostatics

Electricity is really just organized lightning
– George Carlin

In this unit, student is exposed to

· Historical background of electricity and magnetism
· The role of electrostatic force in day – to-day life
· Coulomb’s law and superposition principle
· The concept of electric field
· Calculation of electric field for various charge configurations
· Electrostatic potential and electrostatic potential energy
· Electric dipole and dipole moment
· Electric field and electrostatic potential for a dipole
· Electric flux
· Gauss law and its various applications
· Electrostatic properties of conductors and dielectrics
· Polarisation
· Capacitors in series and parallel combinations
· Effect of a dielectric in a capacitor
· Distribution of charges in conductors, corona discharge
· Working of a Van de Graff generator

INTRODUCTION

Electromagnetism  is  one  of  the  most  important  branches  of  physics.  The
technological  developments  of  the  modern  21st  century  are  primarily  due  to  our
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understanding  of  electromagnetism.  The  forces  we  experience  in  everyday  life  are
electromagnetic in nature except gravity.

In  standard  XI,  we  studied  about  the  gravitational  force,  tension,  friction,  normal
force  etc.  Newton treated them to  be  independent  of  each other  with  each force  being a
separate natural force. But what is the origin of all these forces? It is now understood that
except  gravity,  all  forces  which  we  experience  in  every  day  life  (tension  in  the  string,
normal force from the surface, friction etc.)  arise from electromagnetic forces with in the
atoms. Some examples are

(i) When an object is pushed, the atoms in our hand interact with the atoms in the
object and this interaction is basically electromagnetic in nature.

(ii) When we stand on Earth's surface, the gravitational force on us acts downwards
and  the  normal  force  acts  upward  to  counter  balance  the  gravitational  force.
What is the origin of this normal force?

It arises due to the electromagnetic interaction of atoms on the surface of
the  Earth  with  the  atoms  present  in  the  feet  of  the  person.  Though,  we  are
attracted by the gravitational force of the Earth, we stand on Earth only because
of electromagnetic force of atoms.

(iii) When  an  object  is  moved  on  a  surface,  static  friction  resists  the  motion  of  the
object.  This static friction arises due to electromagnetic interaction between the
atoms  present  in  the  object  and  atoms  on  the  surface.  Kinetic  friction  also  has
similar origin.

From these examples, it is clear that understanding electromagnetism is very
essential to understand the universe in a holistic manner. The basic principles of
electromagnetism are dealt with in volume 1 at XII standard physics. This unit
deals with the behaviour and other related phenomena of charges at rest.  This
branch  of  electricity  which  deals  with  stationary  charges  is  called
Electrostatics

Historical background of electric charges

Two  millenniums  ago,  Greeks  noticed  that  amber  (a  solid,  translucent  material
formed  from  the  resin  of  a  fossilized  tree)after  rubbing  with  animal  fur  attracted  small
pieces  of  leaves  and  dust.  The  amber  possessing  this  property  is  said  to  be  ‘charged’.  It
was  initially  thought  that  amber  has  this  special  property.  Later  people  found  that  not
only amber but even a glass rod rubbed with silk cloth, attracts pieces of papers. So glass
rod also becomes ‘charged’ when rubbed with a suitable material.

Consider  a  charged  rubber  rod  hanging  from  a  thread  as  shown  in  Figure  1.1.
Suppose another  charged rubber  rod is  brought  near  the  first  rubber  rod;  the  rods repel
each  other.  Now  if  we  bring  a  charged  glass  rod  close  to  the  charged  rubber  rod,  they
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attract each other. At the same time, if a charged glass rod is brought near another charged
glass rod, both the rods repel each other.

From these observations, the following inferences are made

(i) The charging of rubber rod and that of glass rod are different from one another.

(ii) The charged rubber rod repels another charged rubber rod, which implies that
‘like  charges  repel  each  other’.  We  can  also  arrive  at  the  same  inference  by
observing that a charged glass rod repels another charged glass rod.

(iii) The charged rubber rod attracts the charged glass rod, implying that the charge
in the glass rod is not the same kind of charge present in the rubber. Thus unlike
charges attract each other.

Therefore, two kinds of charges exist in the universe. In the 18th century, Benjamin
Franklin called one type of charge as positive (+) and another type of charge as negative (–
).  Based  on  Franklin’s  convention,  rubber  and  amber  rods  are  negatively  charged  while
the glass rod is positively charged. If the net charge is

zero in the object, it is said to be electrically neutral.

Following the pioneering work of J.  J.  Thomson and E. Rutherford, in the late 19th

century  and  in  the  beginning  of  20th  century,  we  now  understand  that  the  atom  is
electrically neutral and is made up of the negatively charged electrons, positively charged
protons, and neutrons which have zero charge. The material objects made up of atoms are
neutral in general. When an object is rubbed with another object (for example rubber with
silk  cloth),  some  amount  of  charge  is  transferred  from  one  object  to  another  due  to  the
friction between them and the object is then said to be electrically charged. Charging the
objects through rubbing is called triboelectric charging.

Basic properties of charges

(i) Electric charge

Most objects in the universe are made up of atoms, which in turn are made
up  of  protons,  neutrons  and  electrons.  These  particles  have  mass,  an  inherent
property  of  particles.  Similarly,  the  electric  chargeis  another  intrinsic  and
fundamental  property  of  particles.  The  nature  of  charges  is  understood  through
various experiments performed in the 19th and 20th century. The SI unit of charge is
coulomb.

(ii)  Conservation of charges

Benjamin  Franklin  argued  that  when  one  object  is  rubbed  with  another
object,  charges  get  transferred from one to  the  other.  Before  rubbing,  both objects
are electrically neutral and rubbing simply transfers the charges from one object to
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the  other.  (For  example,  when  a  glass  rod  is  rubbed  against  silk  cloth,  some
negative  charge  are  transferred  from  glass  to  silk.  As  a  result,  the  glass  rod  is
positively charged and silk cloth becomes negatively charged).

From  these  observations,  he  concluded  that  charges  are  neither  created  or
nor  destroyed but  can only  be  transferred from one object  to  other.  This  is  called
conservation  of  total  charges  and  is  one  of  the  fundamental  conservation  laws  in
physics. It is stated more generally in the following way.

The total electric charge in the universe is constant and charge can neither be
created  nor  be  destroyed.  In  any  physicalprocess,  the  net  change  in  charge  will
always be zero.

(iii) Quantisation of charges

What  is  the  smallest  amount  of  charge  that  can  be  found  in  nature?
Experiments show that the charge on an electron is - e and the charge on the proton
is + e. Here, e denotes the fundamental unit of charge. The charge q on any object is
equal to an integral multiple of this fundamental unit of charge e.

q = ne

Here  n  is  any  integer  (0,  ±1,  ±2,  ±3,  ±4…).  This  is  called  quantisation  of  electric
charge.

Robert Millikan in his famous experiment found that the value of e = 1.6 ×
10–19 C. The charge of an electron is −1.6 × 10–19 C and the charge of the proton is
+1.6  ×  10–19 C.When  a  glass  rod  is  rubbed  with  silk  cloth,  the  number  of  charges
transferred  is  usually  very  large,  typically  of  the  order  of  1010.  So  the  charge
quantisation  is  not  appreciable  at  the  macroscopic  level.  Hence  the  charges  are
treated to be continuous (not discrete). But at the microscopic level, quantisation of
charge plays a vital role.

EXAMPLE

Calculate the number of electrons in one coulomb of negative charge.

Solution

According to the quantisation of charge,

q = ne

Here q = 1C. So the number of electrons in 1 coulomb of charge is

19

q 1n=
e 1.6 10

C
-=

´
 = 186.25 10´ electrons
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COULOMB’S LAW

In  the  year  1786,  Coulomb  deduced  the  expression  for  the  force  between  two
stationary point charges in vacuum or free space. Consider two point charges q1 and q2 at
rest  in  vacuum,  and  separated  by  a  distance  of r as  shown  in  Figure  1.2.  According  to
Coulomb, the force on the point charge q2 exerted by another point charge q1 is

1 2
21 122 ˆF q qK r

r
=

r

where 12r̂ is the unit vector directed from charge q1 to charge q2 and k is the proportionality
constant.

Coulomb force between two positive point charges

Important aspects of Coulomb’s law

(i) Coulomb's law states that the electrostatic force is directly proportional to the product
of the magnitude of the two point charges and is inversely proportional to the square
of the distance between the two point charges.

(ii) The force on the charge q2 exerted by the charge q1 always lies along the line joining
the two charges. 12r̂ is the unit vector pointing from charge q1 to q2 .It is shown in the
Figure 1.2. Likewise, the force on the charge q1 exerted by q2 is along - 12r̂  (i.e., in the
direction opposite to 12r̂ ).

(iii) In SI units,
0

1
4

K
p

=
Î

and its value is 9 × 109 N m2 C–2. Here є◦is the permittivity of

free space or vacuum and its value is

12 2 1 2
0

1 8.85 10
4

C N m
Kp

- - -Î = = ´

(iv) The magnitude of the electrostatic force between two charges each of one coulomb
and separated by a distance of 1 m is calculated as follows:

9
9

2

9 10 1 1| | 9 10
1

F N´ ´ ´
= = ´

This  is  a  huge  quantity,  almost  equivalent  to  the  weight  of  one  million  ton.  We
never come across 1 coulomb of charge in practice. Most of the electrical phenomena in
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day-to-day  life  involve  electrical  charges  of  the  order  of  μC  (micro  coulomb)  or  nC
(nano coulomb).

(v) In SI units, Coulomb’s law in vacuum takes the form 1 2
21 122

0

1 ˆF
4

q q r
rp

=
Î

r

In  a  medium  of  permittivity  e,  the  force  between  two  point  charges  is  given  by
1 2

21 122

1 ˆF
4

q q r
rp

=
Î

r
Since 0Î >Î , the force between two point charges in a medium other

than vacuum is always less than that in vacuum. We define the relative permittivity for

a given medium as
0

r
Î

Î =
Î

For vacuum or air, rÎ = 1 and for all other media rÎ > 1.

(vi) Coulomb’s  law  has  same  structure  as  Newton’s  law  of  gravitation.  Both  are
inversely  proportional  to  the  square  of  the  distance  between  the  particles.  The
electrostatic force is directly proportional to the product of the magnitude of two point
charges and gravitational force is directly proportional to the product of two masses.
But there are some important differences between these two laws. ]

• The  gravitational  force  between  two  masses  is  always  attractive  but
Coulomb  force  between  two  charges  can  be  attractive  or  repulsive,
depending on the nature of charges.

• The value of the gravitational constant G = 6.67 × 10–11 N m2 kg–2. The value
of  the  constant  k  in  Coulomb law is  k  = 9  × 109 N m2 C–2.  Since k is  much
more  greater  than  G,  the  electrostatic  force  is  always  greater  in  magnitude
than gravitational force for smaller size objects.

• The gravitational force between two masses is independent of the medium.
For  example,  if  1  kg  of  two  masses  are  kept  in  air  or  inside  water,  the
gravitational  force  between  two  masses  remains  the  same.  But  the
electrostatic  force  between  the  two  charges  depends  on  nature  of  the
medium in which the two charges are kept at rest.

(vii) The  force  on  a  charge  q1  exerted  by  a  point  charge  q2 is  given
by

1 2
21 212

1 ˆF
4 o

q q r
rp

=
Î

r

Here 21r̂  is the unit vector from charge q2 to q1. But 21r̂ = - 12r̂

1 2
12 122

o

1 ˆF ( )
4

q q r
rp

= -
Î

r
 = - 1 2

122
o

1 ˆ( )
4

q q r
rp Î

  (or) 12F
r

 = - 21F
r

Therefore, the electrostatic force obeys Newton’s third law.
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(viii) The  expression  for  Coulomb  force  is  true  only  for  point  charges.  But  the
point  charge  is  an  ideal  concept.  However  we  can  apply  Coulomb’s  law  for  two
charged objects whose sizes are very much smaller than the distance between them.
In  fact,  Coulomb  discovered  his  law  by  considering  the  charged  spheres  in  the
torsion balance as point charges. The distance between the two charged spheres is
much greater than the radii of the spheres.

EXAMPLE

Consider two point charges q1 and q2 at rest as shown in the figure.

They  are  separated  by  a  distance  of  1m.  Calculate  the  force  experienced  by  the  two
charges for the following cases:

(a) q1 = +2 μC and q2 = +3 μC
(b) q1 = +2 μC and q2 = –3 μC
(c) q1= +2 μC and q2= –3 μC kept in water ( rÎ  = 80)

(a)  q1 =  +2  μC,  q2 =  +3  μC,  and  r  =  1m.  Both  are  positive  charges.  so  the  force  will  be
repulsive.
Force experienced by the charge q2 due to q1 is given by

1 2
21 122

1 ˆ
4 o

q qF r
rp

=
Î

r

Here 12r̂  is the unit vector from q1 to q2. Since q2 is located on the right of q1, we have

12
ˆr̂ i= and 91 9 10

4 op
= ´

Î

9 6 6

21 2

9 10 2 10 3 10 ˆ
1

F i
- -´ ´ ´ ´ ´

=
r

3 ˆ54 10 iN-= ´
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According  to  Newton’s  third  law,  the  force  experienced  by  the  charge  q1 due  to  q2  is
12 21F F=-
r r

 Therefore,

3
12

ˆ54 10F iN-=- ´
r

The directions of 21F
r

and 12F
r

are shown in the above figure in case (a)

(b) q1 =  +2  μC,  q2  =  –3  μC,  and  r  =  1m.  They  are  unlike  charges.  So  the  force  will  be
attractive.
Force experienced by the charge q2 due to q1 is given by

( ) ( )9 6 6

21 122

9 10 2 10 3 10
ˆ

1
F r

- -´ ´ ´ ´ - ´
=

r

3 ˆ54 10 N i-= - ´ 12
ˆˆ(Using   )r i=

The  charge  q2 will  experience  an  attractive  force  towards  q1  which  is  in  the  negative  x
direction.
According  to  Newton’s  third  law,  the  force  experienced  by  the  charge  q1 due  to  q2  is

12 21F F=-
r r

 Therefore,

3
12

ˆ54 10F iN-= - ´
r

The directions of 21F
r

 and 12F
r

 are shown in the figure (case (b)).
(c) If these two charges are kept inside the water, then the force experienced by q2 due to
q1

1 2
21 122

1 ˆ
4

W q qF r
rp

=
Î

r

Since r oÎ =Î Î

We have 1 2 21
21 122

1 ˆ
4

W

r o r

q q FF r
rp

= =
Î Î Î

r
r

Therefore,

3
3

21
54 10 ˆ ˆ0.675 10

80
W NF i Ni

-
-´

= - = - ´
r

EXAMPLE 1.3
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Two small-sized identical equally charged spheres,  each having mass 1 g are hanging in
equilibrium as shown in the figure. The length of each string is 10 cm and the angle θ is
30° with the vertical. Calculate the magnitude of the charge in each sphere.

Solution

If the two spheres are neutral, the angle between them will be 0o when
hanged vertically. Since they are positively charged spheres, there will be a repulsive force
between them and they will be at equilibrium with each other at an angle of 30° with the
vertical. At equilibrium, each charge experiences zero net force in each direction. We can
draw a free body diagram for one of the charged spheres and apply Newton’s second law
for both vertical and horizontal directions.

The free body diagram

In the x-direction, the acceleration of the charged sphere is zero.

Using Newton’s second law ( )totF ma=
ur r

we have

sin 0
sin

e

e

T i F i
T F

q
q

- =
=

$ $

Here T is the tension acting on the charge due to the string and Fe is the electrostatic
force between the two charges.

In the y-direction also, the net acceleration experienced by the charge is zero.

$ $cos 0
cos

T j mg j
T mg

q
q

- =
=

By dividing equation (1) by equation

tan eF
mg

q =
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Since they are equally charged, the magnitude of the electrostatic force is

2

2
0

1
4e

qF k where k
r p

= =
Î

Here r = 2a = 2Lsinθ. By substituting these values in equation (3),

( )

2

2tan
2 sin

qk
mg L

q
q

=

Rearranging the equation (4) to get q

3

9

8

tan2 sin

10 10 tan302 0.1 sin 30
9 10

8.01 10 80.1

o
o

mgq L
k

q C nC

q
q

-

-

=

´ ´
= ´ ´ ´

´
= ´ =

EXAMPLE
E 1.4
Calculate  the  electrostatic  force  and  gravitational  force  between  the  proton  and  the
electron  in  a  hydrogen  atom.  They  are  separated  by  a  distance  of  5.3  ×  10–11 m.  The
magnitude of charges on the electron and proton are 1.6 × 10–19 C. Mass of the electron is
me = 9.1 × 10–31 kg and mass of proton is mp= 1.6 × 10–27 kg.

Solution

The  proton  and  the  electron  attract  each  other.  The  magnitude  of  the  electrostatic  force
between these two particles is given by

( )
( )

29 192

22 11

7 8

9 10 1.6 10

5.3 10

9 2.56 10 8.2 10
28.09

e
keF
r

N

-

-

- -

´ ´ ´
= =

´

´
= ´ = ´

The gravitational force between the proton and the electron is attractive. The magnitude of
the gravitational force between these particles is
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( )

2

11 31 27

11

47 47

6.67 10 9.1 10 1.6 10
5.3 10

97.11 10 3.4 10
28.09

e p
G

Gm m
F

r

N

- - -

-

- -

=

´ ´ ´ ´ ´
=

´

= ´ = ´

The ratio of the two forces

8
39

47

8.2 10 2.41 10
3.4 10

e

G

F
F

-

-

´
= = ´

´

Note that 3910e GF F»

The  electrostatic  force  between  a  proton  and  an  electron  is  enormously  greater  than  the
gravitational  force  between  them.  Thus  the  gravitational  force  is  negligible  when
compared with the electrostatic force in many situations such as for small size objects and
in the atomic domain. This is the reason why a charged comb attracts an uncharged piece
of paper with greater force even though the piece of paper is attracted downward by the
Earth.

Superposition principle

Coulomb’s  law  explains  the  interaction  between  two  point  charges.  If  there  are
more than two charges,  the force on one charge due to all  the other charges needs to be
calculated.  Coulomb’s  law  alone  does  not  give  the  answer.  The  superposition  principle
explains the interaction between multiple charges.

According to this superposition principle, the total force acting on a given charge
is equal to the vector sum of forces exerted on it by all the other charges.

Consider a system of n charges, namely q1, q2, q3 ….qn. The force on q1 exerted by
the charge q2

1 2
12 212

21

q qF k r
r

=
ur

$

where 21r$ is the unit vector from q2 to q1 along the line joining the two charges and r21is the
distance between the charges q1and q2. The electrostatic force between two charges is not
affected by the presence of other charges in the neighbourhood.

The force on q1 exerted by the charge q3 is
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1 3
12 312

31

q qF k r
r

=
ur

$

By continuing this, the total force acting on the charge q1 due to all other charges is given
by

�

1 12 13 14 18

1 3 11 2 1 4
1 21 31 41 12 2 2 2

21 31 41 1

..........

.......

tot

tot n
n

n

F F F F F

q q q qq q q qF k r r r F
r r r r

= + + +

ì ü
= + + +í ý

î þ

ur ur ur ur ur

ur
$ $ $

EXAMPLE

Consider four equal charges q1, q2, q3 and q4 = q= +1 μC located at four different points on
a circle of radius 1m, as shown in the figure. Calculate the total force acting on the charge
q1 due to all the other charges.

Solution

According  to  the  superposition  principle,  the  total  electrostatic  force  on  charge  q1 is  the
vector sum of the forces due to the other charges,

1 12 13 14F
tot

F F F= + +
r ur ur ur

The following diagram shows the direction of each force on the charge q1.

The charges q2 and q4 are equi-distant from q1. As a result the strengths (magnitude) of the
forces 12F

ur
and 14F

ur
are  the  same  even  though  their  directions  are  different.  Therefore  the

vectors  representing these two forces  are  drawn with equal  lengths.  But  the charge q3  is
located  farther  compared  to  q2 and  q4.  Since  the  strength  of  the  electrostatic  force
decreases as distance increases, the strength of the force 13F

ur
is lesser than that of forces 12F

ur

and 14F
ur

.  Hence  the  vector  representing  the  force 13F
ur

is  drawn  with  smaller  length
compared to that for forces 12F

ur
and 14F

ur
.
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From the figure, 21 41 312 2r m r and r m= = =

The magnitudes of the forces are given by

2 9 12

12 2
31

9 10 10
4

kqF
r

-´ ´
= =

13
13

2 9 12

13 142
21

3

2.25 10

9 10 10
2

4.5 10

F N

kqF F
r

N

-

-

-

= ´

´ ´
= = =

= ´

From the figure, the angle θ = 45o. In terms of the components, we have
$

$

$

$

12 12 12

3 3

3
13 13

14 14 14

3 3

cos sin
1 14.5 10 4.5 10
2 2

2.25 10

cos sin
1 14.5 10 4.5 10
2 2

F F i F j

i j

F F i Ni

F F i F j

i j

q q

q q

- -

-

-

= -

= ´ ´ - ´ ´

= = ´

= +

= ´ ´ + ´ ´

ur
$

$

ur
$ $

ur
$

$

Then the total force on q1 is

$( ) $

$( )
( )
( ) $

1 12 12 13

14 14

1 12 13 14

12 14

cos sin

cos sin

cos cos

sin sin

tot j

tot

F F i F j F

F i F j

F F F F i

F F j

q q

q q

q q

q q

= - +

+ +

= + +

+ - +

ur
$

$

ur
$

Since F12 = F14, the jth component is zero. Hence we have

( )1 12 13 14cos cos
tot

F F F F iq q= + +
ur

$

Substituting the values in the above equation,

( )

3

3

3
1

4.5 4.52.25 10
2 2

4.5 2 2.25 10

8.61 10
tot

i

i

F iN

-

-

-

æ ö= + ´ç ÷
è ø

= + ´

= ´

$

$

ur
$
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The resultant force is along the positive x axis.

ELECTRIC FIELD AND ELECTRIC FIELD LINES
Electric Field

The  interaction  between  two  charges  is  determined  by  Coulomb’s  law.  How  does  the
interaction itself occur? Consider a point charge kept at a point in space. If another point
charge  is  placed  at  some  distance  from  the  first  point  charge,  it  experiences  either  an
attractive  force  or  repulsive  force.  This  is  called  ‘action at  a  distance’.  But  how does  the
second charge know about existence of the first charge which is located at some distance
away from it? To answer this question, Michael Faraday introduced the concept of field.

According to  Faraday,  every charge in the universe creates  an electric  field in the
surrounding space, and if another charge is brought into its field, it will interact with the
electric  field  at  that  point  and  will  experience  a  force.  It  may  be  recalled  that  the
interaction  of  two  masses  is  similarly  explained  using  the  concept  of  gravitational  field
(Refer  unit  6,  volume  2,  XI  physics).  Both  the  electric  and  gravitational  forces  are  non-
contact forces, hence the field concept is required to explain action at a distance.

Consider a source point charge q located at a point in space. Another point charge
qo  (test charge) is placed at some point P which is at a distance r from the charge q. The
electrostatic force experienced by the charge qo due to qis given by Coulomb’s law.

0 0
2 2

0 0

1 1
4 4

kqp qqF r r where k
r rp p

= = =
Î Î

ur
$ $

The  charge  q  creates  an  electric  field  in  the  surrounding  space  within  which  its
effect can be felt by another charge. It is measured in
terms  of  a  quantity  called  electric  field  intensity  or  simply  called  electric  field E

ur
.The

electric field at the point P at a distance r from the point charge q is defined as the force
that would be experienced by a unit positive charge placed at that point P and is given by

2 2
0 0

1
4

F kq qE r r
q r rp

= = =
Î

ur
ur

$ $

Here r$ is  the  unit  vector  pointing from q to  the point  of  interest  P.  The electric  field is  a
vector quantity and its SI unit is newton per coulomb (NC–1).

Important aspects of Electric field

(i) If  the  charge q is  positive  then  the  electric  field  points  away  from  the  source
charge and if q is negative, the electric field points towards the source charge q.

(ii) If the electric field at a point P is E
ur

,then the force experienced by the test charge
qo placed at the point P is
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0F q E=
ur ur

(iii) The equation (1.4) implies that the electric field is independent of the test charge
qo and it depends only on the source charge q.

(iv) Since the electric field is a vector quantity, at every point in space, this field has
unique  direction  and  magnitude  as  shown  in  Figures  1.6(a)  and  (b).  From
equation (1.4), we can infer that as distance increases, the electric field decreases
in magnitude.

Note  that  in  Figures  1.6  (a)  and (b)  the  length of  the  electric  field  vector  is
shown for three different points. The strength or magnitude of the electric field
at point P is stronger than at the points Q and R because the point P is closer to
the source charge.

(a) Electric field due to positive charge (b) Electric field due to negative
charge

(v) In  the  definition  of  electric  field,  it  is  assumed  that  the  test  charge q0 is  taken
sufficiently  small,  so  that  bringing  this  test  charge  will  not  move  the  source
charge. In other words, the test charge is made sufficiently small such that it will
not modify the electric field of the source charge.

(vi) The  expression  (1.4)  is  valid  only  for  point  charges.  For  continuous  and  finite
size charge distributions, integration techniques must be used (Refer Appendix
A1.1).  However,  this  expression  can  be  used  as  an  approximation  for  a  finite-
sized charge if the test point is very far away from the finite sized source charge.
Note  that  we  similarly  treat  the  Earth  as  a  point  mass  when  we  calculate  the
gravitational field of the Sun on the Earth (Refer unit 6, volume 2, XI physics).

(vii) There  are  two  kinds  of  the  electric  field:  uniform  (constant)  electric  field  and
non-uniform  electric  field.  Uniform  electric  field  will  have  the  same  direction
and  constant  magnitude  at  all  points  in  space.  Non-uniform  electric  field  will
have different  directions  or  different  magnitudes  or  both at  different  points  in
space.  The  electric  field  created  by  a  point  charge  is  basically  a  non  uniform
electric field. This non-uniformity arises, both in direction and magnitude, with
the direction being radially outward (or inward) and the magnitude changes as
distance increases. These are shown in Figure 1.7.

EXAMPLE
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Calculate  the  electric  field  at  points  P,  Q  for  the  following  two  cases,  as  shown  in  the
figure.

(a) A positive point charge +1 μC is placed at the origin

(b) A negative point charge –2 μC is placed at the origin

Solution

Case (a)

The magnitude of the electric field at point P is

9 6

2
0

3 1

1 9 10 1 10
4 4

2.25 10

qE
r

NC

p

-

-

´ ´ ´
= =

Î

= ´

ur

Since the source charge is positive, the electric field points away from the charge. So the
electric field at the point P is given by

3 12.25 10pE iNC-= ´
ur

$

For the point Q

9 6
3 19 10 1 10 0.56 10

16
QE NC

-
-´ ´ ´

= = ´
ur

Hence $3 10.56 10QE jNC-= ´
ur

Case (b)

The magnitude of the electric field at point P
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9 6

2 2
0

3 1

1 9 10 2 10
4 4

4.5 10

p
kq qE
r r

NC

p

-

-

´ ´ ´
= = =

Î

= ´

ur

Since  the  source  charge  is  negative,  the  electric  field  points  towards  the  charge.  So  the
electric field at the point P is given by

3 14.5 10pE iNC -= - ´
ur

$

For the point

9 6

3

3 1

9 10 2 10
36

0.5 10

QQ E

iNC

-

-

´ ´ ´
=

= ´

ur

$

3 10.5 10QE iNC -= ´
ur

$

At the point Q the electric field is directed along the positive x-axis.

Electric field due to the system of point charges

Suppose  a  number  of  point  charges  are  distributed  in  space.  To  find  the  electric
field  at  some  point  P  due  to  this  collection  of  point  charges,  superposition  principle  is
used. The electric field at an arbitrary point due to a collection of point charges is simply
equal to the vector sum of the electric fields created by the individual point charges. This
is called superposition of electric fields.

Consider  a  collection  of  point  charges  q1,q2,q3……..qnlocated  at  various  points  in
space. The total electric field at some point P due to all these n charges is given by

1 2 3

1 2 2
1 2 32 2 2 2

0 1 2 3

........

1 .......
4

tot n

n
tot p p p np

p p p np

E E E E E

qq q qE r r r r
r r r rp

= + + + +

ì üï ï= + + + +í ýÎ ï ïî þ

ur ur ur ur ur

ur
$ $ $ $

Where 1 2 3, , ,...............P P P nPr r r r are  the  distance  of  the  charges 1 2 3, , ,............... nq q q q from  the

point  P  respectively.  Also 1 2 3, , ,...............P P P nPr r r r$ $ $ $ are  the  corresponding  unit  vectors
directed from 1 2 3, , ,............... nq q q q toP. Equation (1.7) can be re-written as,

1
2

0

1
4

n

tot tP
t t tP

qE r
rp =

æ ö
= ç ÷Î è ø

å
ur

$

For  example  in  Figure  1.8,  the  resultant  electric  field  due  to  three  point  charges
1 2 3, ,q q q at point P is shown.
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Note that the relative lengths of the electric field vectors for the charges depend on
relative distances of the charges to the point P.

EXAMPLE

Consider  the  charge  configuration  as  shown  in  the  figure.  Calculate  the  electric  field  at
point A. If  an electron is placed at points A, what is the acceleration experienced by this
electron? (mass of the electron = 9.1 × 10–31 kg and charge of electron = −1.6 × 10–19 C)

Solution

By using superposition principle, the net electric field at point A is

1 2
1 22 2

0 1 0 2

1 1
4 4

A A A

A A

q qE r r
r rp p

= +
Î Î

ur
$ $

where r1A and r2A are the distances of point A from the two charges respectively.

( )
$( )

( )
( )

9 6 9 6

2 21 3

9 10 2 10 9 10 2 10

2 10 2 10
AE j i

- -

- -

´ ´ ´ ´ ´ ´
= +

´ ´

ur
$

$ $( )9 9 92.25 10 2.25 10 2.25 10j i i j= ´ + ´ = ´ +$ $

The magnitude of electric field

( ) ( )2 29 9

9 1

2.25 10 2.25 10

2.25 2 10

AE

NC-

= ´ + ´

= ´ ´

ur

The direction of AE
ur

is given by
$( ) $( )9

9

2.25 10

2.25 2 10 2
A

A

i j i jE
E

´ + +
= =

´ ´

ur $ $

ur  which is the unit vector along

OA as shown in the figure.

The acceleration experienced by an electron placed at point A is
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The electron is accelerated in a direction exactly opposite to AE
ur

.

Electric field due to continuous charge distribution

The  electric  charge  is  quantized  microscopically.  The  expressions  (1.2),  (1.3),  (1.4)
are applicable to only point charges. While dealing with the electricfield due to a charged
sphere  or  a  charged  wire  etc.,  it  is  very  difficult  to  look  at  individual  charges  in  these
charged  bodies.  Therefore,  it  is  assumed  that  charge  is  distributed  continuously  on  the
charged bodies and the discrete nature of charges is not considered here. The electric field
due to such continuous charge distributions is found by invoking the method of calculus.
(For further reading, refer Appendix A1.1).

EXAMPLE 1.8

A  block  of  mass m carrying  a  positive  charge q is  placed  on  an  insulated  frictionless
inclined plane as shown in the figure. A uniform electric field E is applied parallel to the
inclined surface such that the block is at rest. Calculate the magnitude of the electric field
E.

Solution

Note: A similar problem is solved in XIth Physics volume I, unit 3 section 3.3.2.

There are three forces that acts on the mass m:

(i) The downward gravitational force exerted by the Earth (mg)

(ii) The normal force exerted by the inclined surface (N)

(iii) The Coulomb force given by uniform electric field (qE)

The free body diagram for the mass m is drawn below.
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A convenient inertial coordinate system is located in the inclined surface as shown
in the figure. The mass m has zero net acceleration both in x and y-direction.

Along x-direction, applying Newton’s second law, we have

sin 0
sin 0

sin

mg i qEi
mg qE

mgE
q

q
q

q

- =
- =

=

$ $

Note that the magnitude of the electric field is directly proportional to the mass m
and  inversely  proportional  to  the  charge q.  It  implies  that,  if  the  mass  is  increased  by
keeping the charge constant, then a strong electric field is required to stop the object from
sliding. If the charge is increased bykeeping the mass constant, then a weak electric field is
sufficient to stop the mass from sliding down the plane.

The electric  field also can be expressed in  terms of  height  and the length of  the  inclined
surface of the plane.

mghE
qL

=

Electric field lines

Electric field vectors are visualized by the concept of electric field lines. They form a set
of continuous lines which are the visual representation of the electric field in some region
of space. The following rules are followed while drawing electric field lines for charges.

· The electric field lines start from a positive charge and end at negative charges or at
infinity.  For  a  positive  point  charge  the  electric  field  lines  point  radially  outward
and for a negative point charge, the electric field lines point radially inward. These
are shown in Figure 1.9 (a) and (b).
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Electric field lines for isolated positive and negative charges

Note  that  for  an  isolated  positive  point  charge  the  electric  field  line  starts
from the charge and ends only at infinity. For an isolated negative point charge the
electric field lines start at infinity and end at the negative charge.

· The electric field vector at a point in space is tangential to the electric field line at
that point. This is shown in Figure 1.10

Electric field at a point P

· The electric field lines are denser (more closer) in a region where the electric field
has larger magnitude and less dense in a region where the electric field is of smaller
magnitude.  In  other  words,  the  number  of  lines  passing  through  a  given  surface
area perpendicular to the lines is proportional to the magnitude of

Electric field has larger magnitude at surface A than B

Figure  1.11  shows  electric  field  lines  from  a  positive  point  charge.  The
magnitude  of  the  electric  field  for  a  point  charge  decreases  as  the  distance

increases 2

1E
r

æ öµç ÷
è ø

ur
. So the electric field has greater magnitude at the surface A

than at B. Therefore, the number of lines crossing the surface A is greater than
the  number  of  lines  crossing  the  surface  B.  Note  that  at  surface  B  the  electric
field lines are farther apart compared to the electric field lines at the surface A.
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· No  two  electric  field  lines  intersect  each  other.  If  two  lines  cross  at  a  point,  then
there  will  be  two  different  electric  field  vectors  at  the  same  point,  as  shown  in
Figure 1.12.

Two electric field lines never intersect each other

As a consequence, if  some charge is placed in the intersection point,  then it
has  to  move  in  two  different  directions  at  the  same  time,  which  is  physically
impossible. Hence, electric field lines do not intersect.

· The number of electric field lines that emanate from the positive charge or end at a
negative charge is directly proportional to the magnitude of the charges.

For example in the Figure 1.13, the electric field lines are drawn for charges
+q and  –2q.  Note  that  the  number  of  field  lines  emanating  from  +q is  8  and  the
number of field lines ending at –2q is 16. Since the magnitude of the second charge
is twice that of the first  charge,the number of field lines drawn for –2q is twice in
number than that for charge +q.

Electric field lines and magnitude of the charge

EXAMPLE

The following pictures depict electric field lines for various charge configurations.

(i) In figure (a) identify the signs of two charges and find the ratio 1

2

q
q

(ii) In figure (b), calculate the ratio of two positive charges and identify the strength
of the electric field at three points A, B, and C

(iii) Figure (c) represents the electric field lines for three charges. If q2 = –20 nC, then
calculate the values of q1 and q3
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Solution

(i) The electric field lines start at q2 and end at q1. In figure (a), q2 is positive and q1

is negative. The number of lines starting from q2 is 18 and number of the lines

ending  at q1  is  6.  So q2  has  greater  magnitude.  The  ratio  of 1 1

2 2

6 1
18 3

q N
q N

= = = .It

implies that 2 13q q=

(ii) In figure (b), the number of field lines emanating from both positive charges are
equal  (N=18).  So  the  charges  are  equal.  At  point  A,  the  electric  field  lines  are
denser compared to the lines at point B. So the electric field at point A is greater
in  magnitude  compared  to  the  field  at  point  B.  Further,  no  electric  field  line
passes through C, which implies that the resultant electric field at C due to these
two charges is zero.

(iii) In  the  figure  (c),  the  electric  field  lines  start  at q1  and q3  and  end  at q2.  This
implies that q1 and q3 are positive charges. The ratio of the number of field lines
is qqqq123281612===,implying that q1and q3 are half of the magnitude of q2. So
q1 = q3 = +10 nC.

ELECTRIC DIPOLE AND ITS PROPERTIES

Electric dipole

Two  equal  and  opposite  charges  separated  by  a  small  distance  constitute  an
electric  dipole.  In  many  molecules,  the  centres  of  positive  and  negative  charge  do  not
coincide.  Such molecules  behave as  permanent  dipoles.  Examples:  CO,  water,  ammonia,
HCl etc.

Consider  two  equal  and  opposite  point  charges  (+q,  –q)  that  are  separated  by  a
distance 2a as shown in Figure 1.14(a).

The electric dipole moment is defined as

( )p qr q r+ -= + -
ur r r

Where r +

r
is  the  position  vector  of  +q from  the  origin  and r -

r
is  the  position  vector  of  –q

from the origin. Then, from Figure 1.14 (a),
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(a) Electric dipole (b) Electric field lines for the electric dipole

( ) 2p qai qa i qai= - - =
ur

$ $ $

The electric dipole moment vector lies along the line joining two charges and is directed
from –q to +q. The SI unit of dipole moment is coulomb metre (Cm). The electric field lines
for an electric dipole are shown in Figure 1.14 (b).

• For simplicity, the two charges are placed on the x-axis. Even if the two charges are
placed on y or z-axis, dipole moment will point from –q to +q.

• The  magnitude  of  the  electric  dipole  moment  is  equal  to  the  product  of  the
magnitude of one of the charges and the distance between them,

2p qa=
ur

 
· Though the electric dipole moment for two equal and opposite charges is defined, it

is  possible  to  define  and  calculate  the  electric  dipole  moment  for  a  collection  of
point  charges.  The  electric  dipole  moment  for  a  collection  of n point  charges  is
given by

1 1
1

n

t
p q r

=

= å
ur ur

Where 1r
r

is the position vector of charge qifrom the origin.

EXAMPLE

Calculate the electric dipole moment for the following charge configurations.

Solution
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Case (a) The position vector for the +q on the positive x-axis is ai$ and position vector for
the +q charge the negative x axis is -ai$ . So the dipole moment is,

( ) ( ) ( )( ) 0p q ai q ai= + + + - =
ur

$ $

Case (b) In this case one charge is placed at the origin, so its position vector is zero. Hence
only  the  second  charge  +q with  position  vector ai$ ai$ contributes  to  the  dipole  moment,
which is p qai=

ur
$ .

From both cases (a) and (b), we can infer that in general the electric dipole moment
depends on the choice of the origin and charge configuration. But for one special case, the
electric  dipole  moment  is  independent  of  the  origin.  If  the  total  charge  is  zero,  then  the
electric  dipole  moment  will  be  the  same  irrespective  of  the  choice  of  the  origin.  It  is
because of this reason that the electric dipole moment of an electric dipole (total charge is
zero) is always directed from –q to +q, independent of the choice of the origin.

Case (c) ( ) $ ( ) $( ) $2 2 4p q a j q a j qa j= - + - = -
ur

.Note that in this case r p is directed from –2q to

+q.

Case (d)
( ) $ $( )2

2

p qa i qa j qa j

qai

= - - + + -

=

ur
$

$

The  water  molecule  (H2O)  has  this  charge  configuration.  The  water  molecule  has
three atoms (two H atom and one O atom). The centres of positive (H) and negative (O)
charges  of  a  water  molecule  lie  at  different  points,  hence  it  possess  permanent  dipole
moment.  The electric  dipole  moment p

ur
is  directed from centre  of  negative  charge to  the

centre of positive charge, as shown in the figure.

Electric field due to a dipole

Case (i) Electric field due to an electric dipole at points on the axial line
Consider an electric dipole placed on the x-axis as shown in Figure 1.15. A point C

is located at a distance of r from the midpoint O of the dipole on the axial line.
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Electric field of the dipole along the axial line

The electric field at a point C due to +q is

( )2
0

1
4

qE
r ap

+ =
Î -

ur
along BC

Since the electric  dipole  moment vector P
ur

is  from –q to  +q and is  directed along BC,  the
above equation is rewritten as

( )
�

2
0

1
4

qE P
r ap

+ =
Î -

ur

Where �P is the electric dipole moment unit vector from –q to +q.
The electric field at a point C due to –q is

( )
�

2
0

1
4

qE P
r ap

+ = -
Î +

ur

Since  +q is  located  closer  to  the  point  C  than  –q, E+

ur
is  stronger  than E-

ur
.Therefore,  the

length of the E+

ur
vector is drawn larger than that of E-

ur
vector.

The total electric field at point C is calculated using the superposition principle of
the electric field.
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�

( )
�

2 2
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1 1
4 4

totE E E
q qP P

r a r ap p

+ -= +

= -
Î Î- +
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�

22 2
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1 4
4

tot
raE q P

r ap

æ ö
ç ÷=
ç ÷Î -è ø
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Note that the total electric field is along E+

ur
, since +q is closer to C than –q.The direction of

totE
ur

 is shown
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Total electric field of the dipole on the axial line

If  the  point  C is  very far  away from the dipole  (r >>a).  Then under  this  limit  the
term ( )22 2 4r a r- » . Substituting this into equation (1.16), we get

� ( )3
0

1 4
4

tot
aqE q P r a
rp

æ ö= >>ç ÷Î è ø

ur

�sin 2ce aq p P=
ur

( )3
0

1 2
4

tot
PE q r a

rp
= >>

Î

ur
ur

If  the point C is chosen on the left  side of the dipole,  the total  electric field is still  in the
direction  of r p.  We  infer  this  result  by  examining  the  electric  field  lines  of  the  dipole
shown in Figure 1.14(b).

Case (ii) Electric field due to an electric dipole at a point on the equatorial plane

Consider  a  point  C  at  a  distance r from  the  midpoint  O  of  the  dipole  on  the
equatorial plane as shown in Figure 1.17.
Since the point C is equi-distant from +q and –q, the magnitude of the electric fields at C
due to  +q and –q are  the  same.  The  directionof E+

ur
is  along BC and the  direction E-

ur
of  is

along CA. E+

ur
 and E-

ur
 can be resolved into two components; one component parallel to the

dipole  axis  and  the  other  perpendicular  to  it.  Since  perpendicular  components E+

ur
sinθ

and E-

ur
sinθ are eqaul in magnitude and oppositely directed, they cancel each other. The

magnitude of the total electric field at point C is the sum of the parallel components of E+

ur

and E-

ur
and its direction is along �p- as shown in the Figure 1.17.

� �cos costotE E p E pq q+ -= - -
ur ur ur

The magnitudes E+

ur
and E-

ur
 are the same and are given by

( )2 2
0

1
4

qE E
r ap

+ -= =
Î +

ur ur

By substituting equation (1.19) into equation (1.18), we get
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At very large distances (r >>a), the equation (1.20) becomes

( )2

1
4

tot

o

pE r a
rp

=
Î

ur
ur

�

Important inferences

(i) From equations (1.17) and (1.21), it is inferred that for very large distances, the
magnitude of the electric field at point on the dipole axis is twice the magnitude
of the electric field at the point at the same distance on the equatorial plane. The
direction  of  the  electric  field  at  points  on  the  dipole  axis  is  directed  along  the
direction of  dipole  moment  vector p

ur
but  at  points  on the equatorial  plane it  is

directed opposite to the dipole moment vector, that is along - p
ur

.

(ii) At very large distances, the electric field due to a dipole varies as 3

1
r

. Note that

for  a  point  charge,  the  electric  field 2

1
r

.  varies  as  This  implies  that  the  electric

field due to a dipole at very large distances goes to zero faster than the electric
field  due  to  a  point  charge.  The  reason  for  this  behavior  is  that  at  very  large
distance,  the  two charges  appear  to  be  close  to  each other  and neutralize  each
other.

(iii) The  equations  (1.17)  and  (1.21)  are  valid  only  at  very  large  distances  (r>>a).
Suppose the distance 2a approaches zero and q approaches infinity such that the
product  of  2aq = p is  finite,  then  the  dipole  is  called  a  point  dipole.  For  such
point dipoles, equations (1.17) and (1.21) are exact and hold true for any r.

Torque experienced by an electric dipole in the uniform electric field

Consider an electric dipole of dipole moment p
ur

placed in a uniform electric field E
ur

whose field lines are equally spaced and point in the same direction. The charge +q will
experience a force q E

ur
in the direction of the field and charge –q will experience a force –q
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E
ur

in a direction opposite to the field. Since the external field E
ur

is uniform, the total force
acting  on  the  dipole  is  zero.  These  two  forces  acting  at  different  points  will  constitute  a
couple  and the  dipole  experience  a  torque as  shown in  Figure  1.18.  This  torque tends to
rotate the dipole.  (Note that electric field lines of a uniform field are equally spaced and
point in the same direction).

The total torque on the dipole about the point O
 

( )OA qE OB qEt = ´ - + ´
r uuur ur uuur ur

Using right-hand corkscrew rule (Refer XI, volume 1, unit 2), it is found that total torque is
perpendicular to the plane of the paper and is directed into it.
The magnitude of the total torque ( )sin sinOA qE Ob qEt q q= - +

uuur ur uuur ur

.2 sinqE at q=

where θ is the angle made by p
ur

with E
ur

. Since p = 2aq, the torque is written in terms of the
vector product as

p Et = ´
r ur ur

The magnitude of this torque is τ θ = pEsinand is maximum when θ=90o.

This torque tends to rotate the dipole and align it with the electric field E
ur

. Once p
ur

is
aligned with E

ur
, the total torque on the dipole becomes zero.

If the electric field is not uniform, then the force experienced by +q is different from
that  experienced  by  –q.  In  addition  to  the  torque,  there  will  be  net  force  acting  on  the
dipole.

EXAMPLE

A sample of HCl gas is placed in a uniform electric field of magnitude 3 × 104 N C–1. The
dipole  moment  of  each  HCl  molecule  is  3.4  ×  10–30 Cm.  Calculate  the  maximum  torque
experienced by each HCl molecule.

Solution

The maximum torque experienced by the dipole is when it is aligned perpendicular to the
applied field.

30 4
max

26
max

sin 90 3.4 10 3 10

10.2 10

opE

Nm

t

t

-= = ´ ´ ´

= ´
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ELECTROSTATIC POTENTIAL AND POTENTIAL ENERGY

Introduction

In  mechanics,  potential  energy  is  defined  for  conservative  forces.  Since
gravitational force is a conservative force, its gravitational potential energy is defined in XI
standard physics  (Unit  6).  Since  Coulomb force  is  an inverse-square-law force,  its  also  a
conservative  force  like  gravitational  force.  Therefore,  we  can  define  potential  energy  for
charge configurations.

Electrostatic Potential energy and Electrostatic potential

Consider  a  positive  charge q kept  fixed  at  the  origin  which  produces  an  electric
field E

ur
around it.  A positive test charge q′  is brought from point R to point P against the

repulsive force between q and q′ as shown in Figure 1.20. Work must be done to overcome
the repulsion between the charges and this work done is stored as potential energy of the
system.

Work done is equal to potential energy

The test charge q′ is  brought from R to P with constant velocity which means that
external force used to bring the test charge q′ from R to P must be equal and opposite to
the coulomb force ( )ext coulompF F= -

ur ur
. The work done is

.
P

ext

R

W F dr= ò
ur r

Since coulomb force  is  conservative,  work done is  independent  of  the path and it
depends  only  on  the  initial  and  final  positions  of  the  test  charge.  If  potential  energy
associated  with q′ at  P  is UP and  that  at  R  is UR,  then  difference  in  potential  energy  is
defined as the work done to bring a test charge q′ from point R to P and is given as

UP – UR = W = ΔU

.
P

ext

R

U F d rD = ò
ur r

'ext coulombSince F F q E= - = -
ur ur ur

( ) ( )' . ' .
P P

R R

U q E d r q E drD - - - -ò ò
ur r ur r

The potential energy difference per unit charge is given by



31 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

( )' .
.

' '

P

P
R

R

q E d r
U E d r

q q

-
D

= = -
ò

ò

ur r

ur r

The  above  equation  is  independent  of q′.  The  quantity .
'

P

R

U E dr
q

D
= -ò

ur r
is  called

electric potential difference between P and R and is denoted as VP – VR = ΔV.

In  otherwords,  the  electric  potential  difference  is  defined as  the  work done by an
external force to bring unit positive charge from point R to point P.

.
P

P R
R

V V V E dr- = D = -ò
ur r

The electric potential energy difference can be written as
ΔU = q′ ΔV. Physically potential difference between two points is a meaningful quantity.
The value  of  the  potential  itself  at  one  point  is  not  meaningful.  Therefore  the  point  R is
taken to infinity and the potential at infinity is considered as zero ( )0V¥ = .

Then the electric potential at a point P is equal to the work done by an external
force to bring a unit positive charge with constant velocity from infinity to the point P
in the region of the external electric field E

ur
. Mathematically this is written as

.
P

PV E dr
¥

= ò
ur r

Important points

1. Electric potential at point P depends only on the electric field which is due to the
source charge q and not on the test charge q′. Unit positive charge is brought from
infinity  to  the  point  P  with  constant  velocity  because  external  agency  should  not
impart any kinetic energy to the test charge.

2. From  equation  (1.29),  the  unit  of  electric  potential  is  Joule  per  coulomb.  The
practical  unit  is  volt  (V)  named  after  Alessandro  Volta  (1745-1827)  who  invented
the  electrical  battery.  The  potential  difference  between  two points  is  expressed  in
terms of volt.

Electric potential due to a point charge

Consider a positive charge q kept fixed at the origin. Let P be a point at distance r
from the charge q.
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Electrostatic potential at a point P

The electric potential at the point P is

( ). .
r r

V E dr E d r
¥ ¥

= - = -ò ò
ur r ur r

Electric field due to positive point charge q is

2
0

1
4

qE r
rpe

=
ur

$

2
0

1 .
4

r qV r dr
rpe ¥

-
= ò

r
$

The infinitesimal displacement vector, dr drr=
r

$  and using . 1r r =$ $ , we have

2 2

1 1.
4 4

r r

o o

q qV r drr dr
r rp p¥ ¥

= = -
Î Îò ò$ $

After the integration,

1 1 1
4 4

r

o o

qV q
r rp p

ì ü= - =í ýÎ Îî þ

Hence the electric potential due to a point charge q at a distance r is

1
4

qV
rp

=
Î

Important points

(i) If the source charge q is positive, V > 0. If q is negative, then V is negative and

equal to 1
4

qV
rp

=
Î

(ii) From  expression  (1.33),  it  is  clear  that  the  potential  due  to  positive  charge
decreases  as  the  distance  increases,  but  for  a  negative  charge  the  potential
increases as the distance is increased. At infinity (r=∞)  electrostatic potential is
zero (V = 0).
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 In  the  case  of  gravitational  force,  mass  moves  from  a  point  of  higher
gravitational potential to a point of lower

gravitational  potential  (Figure  1.22).  Similarly  a  positive  charge  moves  from  a  point  of
higher  electrostatic  potential  to  a  point  of  lower  electrostatic  potential.  However  a
negative charge moves from lower electrostatic potential to higher electrostatic potential.
This comparison is shown in Figure 1.23.

(iii) The  electric  potential  at  a  point  P  due  to  a  collection  of  charges q1,q2,q3,...qn  is
equal to sum of the electric potentials due to individual charges.

31 2
1

1 2 3

1......
4

nn i
tot i

on i

kq kq qkq kqV
r r r r rp -

= + + + + =
Î å

Where 1 2, 3, ....... nr r r r are the distances of 1 2, 3, ....... nq q q q respectively from P

Electrostatic potential due to collection of charges

EXAMPLE

(a) Calculate the electric potential at points P and Q as shown in the figure below.
(b) Suppose  the  charge  +9  μC  is  replaced  by  –9  μC  find  the  electrostatic  potentials  at

points P and Q

(c) Calculate  the  work  done  to  bring  a  test  charge  +2  μC  from  infinity  to  the  point  Q.
Assume the charge +9 μC is held fixed at origin and +2 μC is brought from infinity to
P.
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Solution

(a) Electric potential at point P is given by

9 6
31 9 10 9 10 8.1 10

4 10p
o p

qV V
rp

-´ ´ ´
= = = ´

Î

Electric potential at point Q is given by

9 6
31 9 10 9 10 5.06 10

4 16Q
o Q

qV V
rp

-´ ´ ´
= = = ´

Î

Note that the electric potential at point Q is less than the electric potential at point
P. If we put a positive charge at P, it moves from P to Q. However if we place a negative
charge at P it will move towards the charge +9 μC.

The potential difference between the points P and Q is given by

33.04 10p QV V V VD = - = + ´

(b) Suppose we replace the charge +9 μC by –9 μC, then the corresponding potentials
at the points P and Q are,

3 38.1 10 , 5.06 10p QV V V V= - ´ = - ´

Note that in this case electric potential at the point Q is higher than at point P.

The potential difference between the points P and Q is given by

33.04 10p QV V V VD = - = - ´

(c) The  electric  potential  V  at  a  point  Q  due  to  some  charge  is  defined  as  the
work done by an external force to bring a unit positive charge from infinity to Q. So
to bring the q amount of charge from infinity to the point Q, work done is given as
follows.

W = qV
6 3 32 10 5.06 10 10.12 10QW J- -= ´ ´ ´ = ´

EXAMPLE

Consider a point charge +q placed at the origin and another point charge -2q placed at a
distance of 9 m from the charge +q. Determine the point between the two charges at which
electric potential is zero.
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Solution

According  to  the  superposition  principle,  the  total  electric  potential  at  a  point  is
equal to the sum of the potentials due to each charge at that point.

Consider the point at which the total potential zero is located at a distance x from
the charge +q as shown in the figure.

Since the total electric potential at P is zero,

( )0

1 2 0( )
4 9tot

q qV or
x xpe

æ ö
= - =ç ÷ç ÷-è ø

( )
2 ( )

9
q q or
x x

=
-

( )
1 2

9x x
=

-

Hence, x = 3m

Electrostatic potential at a point due to an electric dipole

Consider  two  equal  and  opposite  charges  separated  by  a  small  distance  2a  as
shown  in  Figure  1.25.  The  point  P  is  located  at  a  distance  r  from  the  midpoint  of  the
dipole. Let θ be the angle between the line OP and dipole axis AB.

Potential due to electric dipole

Let r1 be the distance of point P from +q and r2 be the distance of point P from –q.

Potential at P due to charge
0 1

1
4

qq
rpe

+ =



36 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

Potential at P due to charge
0 2

1
4

qq
rpe

- =

Total potential at the point P

0 1 2

1 1 1
4

V q
r rpe

æ ö
= -ç ÷

è ø

Suppose if  the point P is far away from the dipole,  such that r>>a, then equation can be
expressed in terms of r.

By the cosine law for triangle BOP

2 2 2
1 2 cosr r a ra q= + -

2
2 2

1 2

21 cosa ar r
r r

q
æ ö

= + -ç ÷
è ø

Since the point P is very far from the dipole (r>>a). As a result the term
2

2

a
r

 is very small

and can be neglected. Therefore

2 2
1

cos1 2r r a
r

qæ ö= -ç ÷
è ø

1
2

1
2( ) 1 cosaor r r
r

qæ ö= -ç ÷
è ø

1
2

1

1 1 21 cosa
r r r

qæ ö= -ç ÷
è ø

Since a
r

<<1, we can use binomial theorem and retain the terms up to first order

1

1 1 21 cosa
r r r

qæ ö= -ç ÷
è ø

Similarly applying the cosine law for triangle AOP,

2 2 2
2 2 cos(180 )r r a ra q= + - -

sincecosθ (180−θ) = − cosθ we get



37 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

2 2 2
2 2 cosr r a ra q= + +

Neglecting the term
2

2
2

a
r

 (because r>>a)

2 2
2

2 cos1 ar r
r

qæ ö= +ç ÷
è ø

1
2

2
2 cos1 ar r

r
qæ ö= +ç ÷

è ø

Using Binomial theorem, we get

1

1 1 cos1 a
r r r

qæ ö= -ç ÷
è ø

Substituting equation

0

1 1 cos 1 cos1 1
4

V q a a
r r r r

q q
pe

æ öæ ö æ ö- + - -ç ÷ ç ÷ç ÷è ø è øè ø

0

1 cos cos1 1
4

qV a a
r r r

q q
pe

æ öæ ö= + - +ç ÷ç ÷è øè ø

2
0

1 2 cos
4

aqV
r

q
pe

=

But the electric dipole moment p = 2qa and we get,

2
0

1 cos
4

pV
r

q
pe

æ ö= ç ÷
è ø

Now we can write p cosθ = p
ur

. r$ ,  where r$  is  the unit vector from the point O to point P.
Hence the electric potential at a point P due to an electric dipole is given by

2
0

1 .
4

p rV
rpe

=
ur

$
 (r>>a)

Equation  is  valid  for  distances  very  large  compared  to  the  size  of  the  dipole.  But  for  a
point dipole, the equation is valid for any distance.

Special cases
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Case (i) If the point P lies on the axial line of the dipole on the side of +q, then θ = 0. Then
the electric potential becomes

2
0

1
4

pV
rpe

=

Case (ii)If the point P lies on the axial line of the dipole on the side of
–q, then θ = 180o. Then

2
0

1
4

pV
rpe

= -

Case (iii)If the point P lies on the equatorial line of the dipole,
then θ = 90o. Hence

V=0

Equi-potential Surface

Consider a point charge q located at some point in space and an imaginary sphere
of  radius  r  is  chosen  by  keeping  the  charge  q  at  its  centre.  The  electric  potential  at  all
points  on  the  surface  of  the  given  sphere  is  the  same.  Such  a  surface  is  called  an
equipotential surface.

An  equipotential  surface  is  a  surface  on  which  all  the  points  are  at  the  same
electric  potential. For  a  point  charge  the  equipotential  surfaces  are  concentric  spherical
surfaces as shown. Each spherical surface is an equipotential surface but the value of the
potential is different for different spherical surfaces.

Equipotential surface of point Charge

Equipotential surface for uniform electric field

For a uniform electric field, the equipotential surfaces form a set of planes normal to the
electric field E

ur
.
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Properties of equipotential surfaces

(i) The work done to move a charge q between any two points A and B, W = q (VB

– VA). If the points A and B lie on the same equipotential surface, work done is
zero because VA = VB.

(ii) The electric field is normal to an equipotential surface. If it  is not normal, then
there  is  a  component  of  the  field  parallel  to  the  surface.  Then  work  must  be
done  to  move  a  charge  between  two  points  on  the  same  surface.  This  is  a
contradiction.  Therefore  the  electric  field  must  always  be  normal  to
equipotential surface.

Relation between electric field and potential

Consider a positive charge q kept fixed at the origin. To move a unit positive charge
by a small distance dx towards q in the electric field E, the work done is given by dW = −E
dx. The minus sign implies that work is done against the electric field. This work done is
equal to electric potential difference. Therefore,

dW = dV.

(or) dV = −E dx

Hence dVE
dx

= -

The electric field is the negative gradient of the electric potential. In vector form,

$ $V V VE i j k
x y z

æ ö¶ ¶ ¶
= - + +ç ÷¶ ¶ ¶è ø

ur
$

EXAMPLE

The following figure represents the electric potential as a function of x – coordinate. Plot
the corresponding electric field as a function of x.

Solution  In  the  given  problem,  since  the  potential  depends  only  on  x,  we  can  use
dVE i
dx

= -
ur

$  (the other two terms V
y

¶
¶

 and V
z

¶
¶

 are zero)

From 0 to 1 cm, the slope is constant and so dV
dx

 = − 25 1 Vcm-1.

So 125E Vcm i-= -
ur

$
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From 1 to 4 cm, the potential is constant, V = 25 V. It implies that dV
dx

=0. So E
ur

=0

From 4 to 5 cm, the slope dV
dx

=-25 Vcm-1. So E
ur

=+25 V cm-1 i$ .

The plot of electric field for the various points along the x axis is given below.

Electrostatic potential energy for collection of point charges

The electric potential at a point at a distance r from point charge q1 is given by

0

1
4

pV
rpe

=

This potential V is the work done to bring a unit positive charge from infinity to the point.
Now if the charge q2 is brought from infinity to that point at a distance r from q1, the work
done is the product of q2 and the electric potential at that point. Thus we have

W = q2 V

This  work  done  is  stored  as  the  electrostatic  potential  energy  U  of  a  system  of
charges q1 and q2 separated by a distance r. Thus we have

1 2
2

0

1
4

q qU q V
rpe

= =

The  electrostatic  potential  energy  depends  only  on  the  distance  between  the  two
point  charges.  In  fact,  the  expression  is  derived  by  assuming  that  q1 is  fixed  and  q2  is
brought  from  infinity.  The  equation  holds  true  when  q2 is  fixed  and  q1  is  brought  from
infinity or both q1 and q2 are simultaneously brought from infinity to a distance r between
them.  Three  charges  are  arranged  in  the  following  configuration  as  shown.  To  calculate
the total  electrostatic  potential  energy,  we use  the  following procedure.  We bring all  the
charges one by one and arrange them according to the configuration as shown.
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Electrostatic potential energy for collection of point charges

(i) Bringing  a  charge  q1  from  infinity  to  the  point  A  requires  no  work,  because
there are no other charges already present in the vicinity of charge q1.

(ii) To  bring  the  second  charge  q2  to  the  point  B,  work  must  be  done  against  the
electric field created by the charge q1. So the work done on the charge q2 is W =
q2 V1B. Here V1B is the electrostatic potential due to the charge q1 at point B.

1 2
1

0 12

1
4

q qU
rpe

=

Note that the expression is same when q2 is brought first and then q1 later.

(iii) Similarly to bring the charge q3 to the point C, work has to be done against the
total electric field due to both charges q1 and q2. So the work done to bring the
charge  q3 is  =  q3 (V1C  +  V2C).  Here  V1C  is  the  electrostatic  potential  due  to
charge  q1 at  point  C  and  V2C  is  the  electrostatic  potential  due  to  charge  q2  at
point C.

The electrostatic potential energy is

1 3 2 3

0 13 23

1
4II

q q q qU
r rpe

æ ö
= +ç ÷

è ø
(iv) Adding equations, the total electrostatic potential energy for the system of three

charges q1, q2 and q3 is U = UI + UII

1 3 2 31 2

0 12 13 23

1
4

q q q qq qU
r r rpe

æ ö
= + +ç ÷

è ø

Note that this stored potential energy U is equal to the total external work done to
assemble the three charges at the given locations. The expression is same if the charges are
brought  to  their  positions  in  any other  order.  Since  the  Coulomb force  is  a  conservative
force,  the  electrostatic  potential  energy  is  independent  of  the  manner  in  which  the
configuration of charges is arrived at.

EXAMPLE

Four  charges  are  arranged  at  the  corners  of  the  square  PQRS  of  side  a  as  shown  in  the
figure.
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(a) Find the work required to assemble these charges in the given configuration.
(b) Suppose  a  charge  q′ is  brought  to  the  centre  of  the  square,  by  keeping  the  four

charges fixed at the corners, how much extra work is required for this?

Solution

(a) The  work  done  to  arrange  the  charges  in  the  corners  of  the  square  is
independent of the way they are arranged. We can follow any order.

(i) First,  the  charge  +q  is  brought  to  the  corner  P.  This  requires  no  work
since no charge is already present,
WP = 0

(ii) Work required to bring the charge –q to the corner
Q = (–q) × potential at a point Q due to +q located at a point P.

2

0 0

1 1
4 4Q

q qW q
a ape pe

= - ´ = -

(iii) Work required to bring the charge +q to the corner R = q × potential at
the point R due to charges at the point P and Q.

0

1
4 2R

q qW q
a ape

æ ö= ´ - +ç ÷
è ø

2

0

1 11
4 2

q
ape

æ ö= - +ç ÷
è ø

(iv) Work  required  to  bring  the  fourth  charge  –q  at  the  position  S  =  q  ×
potential at the point S due the all the three charges at the point P, Q and
R

0

1
4 2S

q q qW q
a a ape

æ ö= ´ + -ç ÷
è ø

2

0

1 12
4 2S

qW
ape

æ ö= - -ç ÷
è ø

(b) Work required to bring the charge q′ to the centre of the square = q′ × potential
at the centre point O due to all the four charges in the four corners
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The  potential  created  by  the  two  +q  charges  are  canceled  by  the  potential
created by the –q charges which are located in the opposite corners.  Therefore
the net electric potential at the centre O due to all  the charges in the corners is
zero.

Hence no work is required to bring any charge to the point O. Physically this
implies that if any charge q′ when brought close to O, then it moves to the point
O without any external force.

Electrostatic potential energy of a dipole in a uniform electric field

Consider  a  dipole  placed  in  the  uniform  electric  field E
ur

 as  shown.  A  dipole
experiences  a  torque  when  kept  in  an  uniform  electric  field E

ur
.  This  torque  rotates  the

dipole  to  align it  with the  direction of  the  electric  field.  To rotate  the  dipole  (at  constant
angular velocity) from its initial angle θ′ to another angle θ against the torque exerted by
the electric field, an equal and opposite external torque must be applied on the dipole.

The dipole in a uniform electric field

The work done by the  external  torque to  rotate  the  dipole  from angle  θ′  to  θ  at  constant
angular velocity is

'
extW d

q

q

t q= ò

Since extt
r

 is equal and opposite to E p Et = +
r ur ur

, we have

ext E p Et t= = +
r r ur ur

Substituting equation, we get

'

sinW pE d
q

q

q q= ò
( )cos ' cosW pE q q= -

This  work  done  is  equal  to  the  potential  energy  difference  between  the  angular
positions θ and θ′.

( ) ( )' cos cos 'U U U pE pEq q q q- = D = - +
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If the initial angle is θ′ = 90o and is taken as reference point, then
U (θ′) = pEcos90o.

The potential energy stored in the system of dipole kept in the uniform electric field
is given by

cos .U pE p Eq= - = -
ur ur

In addition to p and E, the potential energy also depends on the orientation θ of the
electric dipole with respect to the external electric field.

The potential energy is maximum when the dipole is aligned anti-parallel (θ = π) to
the external electric field and minimum when the dipole is aligned parallel (θ = 0) to the
external electric field.

EXAMPLE

A water molecule has an electric dipole moment of 6.3 × 10–30 Cm. A sample contains 1022

water molecules, with all the dipole moments aligned parallel to the external electric field
of  magnitude  3   ×   105    NC–1.  How  much  work  is  required  to  rotate  all  the  water
molecules from
θ = 0o to 90o?

Solution

When  the  water  molecules  are  aligned  in  the  direction  of  the  electric  field,  it  has
minimum potential energy. The work done to rotate the dipole from θ = 0o to 90o is equal
to the potential energy difference between these two configurations.

( ) ( )90 0W U U U= D = -o o

From  the  equation,  we  write  U  =  −  pEcosθ,  Next  we  calculate  the  work  done  to
rotate one water molecule from θ = 0o to 90o.

For one water molecule

cos90 cos0W pE pE pE= - + =o o

30 5 256.3 10 3 10 18.9 10W J- -= ´ ´ ´ = ´

For 1022 water molecules, the total work done is

25 22 318.9 10 10 18.9 10totW J- -= ´ ´ = ´

GAUSS LAW AND ITS APPLICATIONS
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Electric Flux

The  number  of  electric  field  lines  crossing  a  given  area  kept  normal  to  the
electric field lines is called electric flux. It is usually denoted by the Greek letter ΦE and
its unit is N m2 C–1. Electric flux is a scalar quantity and it can be positive or negative. For
a simpler understanding of electric flux, the following

Electric flux

The  electric  field  of  a  point  charge  is  drawn  in  this  figure.  Consider  two  small
rectangular  area  elements  placed  normal  to  the  field  at  regions  A  and  B.  Even  though
these elements have the same area, the number of electric field lines crossing the element
in region A is more than that crossing the element in region B. Therfore the electric flux in
region  A  is  more  than  that  in  region  B.  Since  electric  field  strength  for  a  point  charge
decreases  as  the  distance  increases,  electric  flux  also  decreases  as  the  distance  increases.
The above discussion gives a qualitative idea of electric flux. However a precise definition
of electric flux is needed.

Electric flux for uniform Electric field

Consider  a  uniform  electric  field  in  a  region  of  space.  Let  us  choose  an  area  A
normal to the electric field lines as shown

(a) The electric flux for this case is ΦE = EA
Suppose the same area A is kept parallel to the uniform electric field, then no

electric field lines pass through the area A, as shown.

(b) The electric flux for this case is zero. ΦE = 0
If the area is inclined at an angle θ with the field, then the component of the

electric field perpendicular to the area alone contributes to the electric flux. The
electric  field  component  parallel  to  the  surface  area  will  not  contribute  to  the
electric flux. This is shown

(c) For this case, the electric flux

 ΦE = (E cosθ) A

Further,  θ  is  also  the  angle  between  the  electric  field  and  the  direction
normal to the area. Hence in general, for uniform electric field, the electric flux
is defined as
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. cosE E A EA qF = =
ur ur

Here, note that A
ur

 is the area vector $A An=
ur

. Its magnitude is simply the area
A  and  its  direction  is  along  the  unit  vector $n  perpendicular  to  the  area  as
shown.  Using  this  definition  for  flux, .E E AF =

ur ur
,  equations  can  be  obtained  as

special cases.

In (a), θ = 0o. Therefore,

.E E A EAF = =
ur ur

In (b), θ = 90o. Therefore,

. 0E E AF = =
ur ur

The electric flux for Uniform electric field

EXAMPLE

Calculate the electric flux through the rectangle of sides 5 cm and 10 cm kept in the region
of  a  uniform  electric  field  100  NC–1.  The  angle  θ is  60o.  If  θ becomes  zero,  what  is  the
electric flux?

Solution

The electric flux through the rectangular area

. cosE E A EA qF = = =
ur ur

4100 5 10 10 cos 60-= ´ ´ ´ ´ o

ΦE = 0.25 Nm2 C- 1

For θ = 0o,
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.E E A EAF = =
ur ur

4100 5 10 10-= ´ ´ ´

=0.5 Nm2 C- 1

Electric flux through an arbitrary area kept in a non uniform electric field

Suppose the electric field is not uniform and the area A is not flat surface. Then the
entire area can be divided into n small  area segments 1 2 3, , ,... nA A A AD D D D

uur uur uur uur
 such that each

area element is almost flat and the electric field over such area element can be considered
uniform.

The electric flux for the entire area A is approximately written as

Electric flux for non - uniform electric Fi

1 1 2 2 3 3. . . ... .E n nE A E A E A E AF = D + D + D D
uur uur uur uur uur uur uur uur

1
.

n

i i
i

E A
=

= Då
uur uur

By  taking  the  limit iAD
uur

→ 0  (for  all  i)  the  summation  in  equation  becomes
integration. The total electric flux for the entire area is given by

.E E d AF = ò
ur ur

From Equation, it is clear that the electric flux for a given surface depends on both
the electric field pattern on the surface area and orientation of the surface with respect to
the electric field.

Electric flux for closed surfaces

In  the  previous  section,  the  electric  flux  for  any  arbitrary  curved  surface  is
discussed.  Suppose  a  closed  surface  is  present  in  the  region  of  the  non-uniform  electric
field as shown (a).
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Electric flux over a closed surface

The total electric flux over this closed surface is written as

.E E d AF = ò
ur ur
�

Note the difference between equations. The integration in equation a closed surface
integration  and  for  each  areal  element,  the  outward  normal  is  the  direction  of d A

ur
 as

shown in the Figure (b).

The total electric flux over a closed surface can be negative, positive or zero. In the
Figure (b), it is shown that in one area element, the angle between d A

ur
 and E

ur
 is less than

90o , then the electric flux is positive and in another areal element, the angle between d A
ur

and E
ur

 is greater than 90o , then the electric flux is negative.

In  general,  the  electric  flux  is  negative  if  the  electric  field  lines  enter  the  closed
surface and positive if the electric field lines leave the closed surface.

Gauss law

A  positive  point  charge  Q  is  surrounded  by  an  imaginary  sphere  of  radius  r  as
shown in Figure 1.34. We can calculate the total electric flux through the closed surface of
the sphere using the equation.

. cosE E d A EdA qF = =ò ò
ur ur
� �

The electric field of the point charge is directed radially outward at all points on the
surface of the sphere. Therefore, the direction of the area element d A

ur
  is along the electric

field E
ur

  and θ = 0°.

E EdAF = ò� sin cos 0ce o
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Total electric flux of point charge

E is uniform on the surface of the sphere,

E E dAF = ò�

Substituting for 24dA rp=ò�  and 2
0

1
4

QE
rpe

=  in equation

We get

2
2

0

1 4
4E

Q r
r

p
pe

F = ´
0

14
4

Qp
pe

=

0
E

Q
e

F =

The equation is called as Gauss’s law.

The remarkable  point  about  this  result  is  that  the  equation is  equally  true for  any
arbitrary shaped surface which encloses the charge Q and as shown in the Figured below.
It is seen that the total electric flux is the same for closed surfaces A1, A2 and A3 as shown.

Gauss law for arbitrarily shaped surface

Gauss’s law states that if a charge Q is enclosed by an arbitrary closed surface, then the
total electric flux ΦE through the closed surface is

. encl
E

QE d A
e

F = =ò
o

ur ur
�

Where Qencl denotes the charges within the closed surface

Discussion of Gauss law

(i) The total  electric  flux through the  closed surface  depends only  on the  charges
enclosed  by  the  surface  and  the  charges  present  outside  the  surface  will  not
contribute to the flux and the shape of the closed surface which can be chosen
arbitrarily.

(ii) The  total  electric  flux  is  independent  of  the  location  of  the  charges  inside  the
closed surface.
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(iii) To  arrive  at  equation,  we  have  chosen  a  spherical  surface.  This  imaginary
surface  is  called  a  Gaussian  surface.  The  shape  of  the  Gaussian  surface  to  be
chosen depends on the type of charge configuration and the kind of symmetry
existing in that charge configuration. The electric field is spherically symmetric
for  a  point  charge,  therefore  spherical  Gaussian  surface  is  chosen.  Cylindrical
and  planar  Gaussian  surfaces  can  be  chosen  for  other  kinds  of  charge
configurations.

(iv) In the LHS of equation, the electric field E
ur

 is due to charges present inside and
outside the Gaussian surface but the charge Qencl denotes the charges which lie
only inside the Gaussian surface.

EXAMPLE

(i) In figure (a), calculate the electric flux through the closed areas A1 and A2.
(ii) In figure (b), calculate the electric flux through the cube

Solution

(i) In  figure  (a),  the  area  A1  encloses  the  charge  Q.  So  electric  flux  through  this

closed surface A1 is Q
eo

. But the closed surface A2  contains no charges inside, so

electric flux through A2 is zero.
(ii) In figure (b), the net charge inside the cube is 3q and the total electric flux in the

cube is therefore 3
E

q
e

F =
o

. Note that the charge -10q lies outside the cube and it

will not contribute the total flux through the surface of the cube.

Applications of Gauss law

Electric  field  due  to  any  arbitrary  charge  configuration  can  be  calculated  using
Coulomb’s  law  or  Gauss  law.  If  the  charge  configuration  possesses  some  kind  of
symmetry,  then  Gauss  law  is  a  very  efficient  way  to  calculate  the  electric  field.  It  is
illustrated in the following cases.

(i) Electric field due to an infinitely long charged wire

Consider  an  infinitely  long  straight  wire  having  uniform  linear  charge  density
λ(charge per unit length).  Let P be a point located at a perpendicular distance r from
the wire (a). The electric field at the point P can be found using Gauss law.

We choose  two small  charge  elements  A1 and A2 on the  wire  which are  at  equal
distances from the point P. The resultant electric field due to these two charge elements
points radially away from the charged wire and the magnitude of electric field is same
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at all  points on the circle of radius r.  This is shown in the (b).  Since the charged wire
possesses

Electric field due to infinite long charged wire

a cylindrical symmetry, let us choose a cylindrical Gaussian surface of radius r and
length L as shown.

The total electric flux through this closed surface is calculated as follows.

.E E d AF = ò
ur ur
�

. . .
Curved top bottom
surface surface surface

E d A E d A E d A= + +ò ò ò
ur ur ur ur ur ur

It  is  seen  from  Figure  shown  below  that  for  the  curved  surface, E
ur

 is  parallel  to A
ur

and
.E d A EdA=

ur ur
. For the top and bottom surfaces, E

ur
 is perpendicular to A

ur
 and . 0E d A =

ur ur

Substituting these values in the equation and applying Gauss law to the cylindrical
surface, we have

encl
E

Curved
surface

QEdA
e

F = =ò
o

Since the magnitude of the electric field for the entire curved surface is constant, E
is taken out of the integration and Qencl is given by Qencl = L λ, where λ is the linear charge
density (charge present per unit length).

Curved
surface

LE dA l
e

=ò
o

Cylindrical Gaussian surface
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Here
Curved
surface

dA =ò  total  area  of  the  curved surface  =  2πrL.  Substituting this  in  equation,  we

get

.2 LE rL lp
e

=
o

1
2

E
r
l

pe
=

o

In vector form,

1
2

E r
r
l

pe
=

o

ur
$

The  electric  field  due  to  the  infinite  charged  wire  depends  on 1
r

 rather  than 2

1
r

which is for a point charge.

Equation indicates that the electric field is always along the perpendicular direction

( )r$  to wire. In fact, if λ > 0 then E
ur

 points perpendicularly outward ( )r$  from the wire and

if λ < 0, then E
ur

 points perpendicularly inward ( )r-$ .

The equation is true only for an infinitely long charged wire. For a charged wire of
finite length, the electric field need not be radial at all points. However, equation for such
a wire  is  taken approximately  true  around the  mid-point  of  the  wire  and far  away from
the both ends of the wire

(ii) Electric field due to charged infinite plane sheet

Consider an infinite plane sheet of charges with uniform surface charge density σ
(charge  present  per  unit  area).  Let  P  be  a  point  at  a  distance  of  r  from  the  sheet  as
shown

Since  the  plane  is  infinitely  large,  the  electric  field  should  be  same  at  all  points
equidistant  from  the  plane  and  radially  directed  outward  at  all  points.  A  cylindrical
Gaussian surface of length 2r and two flats surfaces each of area A is chosen such that the
infinite  plane  sheet  passes  perpendicularly  through  the  middle  part  of  the  Gaussian
surface.

Total electric flux linked with the cylindrical surface,
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0'

.

. . .

E

encl

Curved p p
surplus

E d A

QE d A E d A E d A

f =

= + + =
Î

ò

ò ò ò

ur ur

ur ur ur ur ur ur
�

The  electric  field  is  perpendicular  to  the  area  element  at  all  points  on  the  curved
surface and is parallel to the surface areas at P and P′ (Figure 1.38). Then, applying Gauss'
law,

0'

encl
E

P P

QEdA EdAf = + =
Îò ò

Since the magnitude of the electric field at these two equal flat surfaces is uniform,
E is taken out of the integration and Qenclis given by Q encl= σ A, we get

0

2
p

AE dA s
=

Îò
The total area of surface either at P or P′

$

0 0

0

2
2

,
2

p

dA A

AHence EA orE

In vector from E n

s s

s

=

= =
Î Î

=
Î

ò

ur

Here $n  is the outward unit vector normal to the plane. Note that the electric field
due  to  an  infinite  plane  sheet  of  charge  depends  on  the  surface  charge  density  and  is
independent of the distance r.

The electric field will be the same at any point farther away from the charged plane.
Equation  implies  that  if  σ >  0  the  electric  field  at  any  point  P  is  along  outward
perpendicular $n drawn to the plane and if
σ< 0, the electric field points inward perpendicularly to the plane (- $n ).

For a finite charged plane sheet, equation is approximately true only in the middle
region of the plane and at points far away from both ends.

(iii) Electric field due to two parallel charged infinite sheets

Consider  two  infinitely  large  charged  plane  sheets  with  equal  and  opposite
charge densities +σ and -σ which are placed parallel to each other as shown.
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Electric field due to two parallel charged sheets

The  electric  field  between  the  plates  and  outside  the  plates  is  found  using  Gauss

law. The magnitude of the electric field due to an infinite charged plane sheet is
02

s
Î

and it

points perpendicularly outward if σ > 0 and points inward if σ < 0.

At the points P2 and P3, the electric field due to both plates are equal in magnitude
and opposite in direction. As a result, electric field at a point outside the plates is zero. But
between the plates, electric fields are in the same direction i.e., towards the right and the
total electric field at a point P1 is

0 0 02 2insideE s s s
= + =

Î Î Î

The  direction  of  the  electric  field  between  the  plates  is  directed  from  positively
charged plate to negatively charged plate and is uniform everywhere between the plates.

(iv) Electric field due to a uniformly charged spherical shell

Consider a uniformly charged spherical shell of radius R carrying total charge Q as
shown. The electric field at points outside and inside the sphere can be found using Gauss
law.

Case (a) At a point outside the shell (r >R)

Let us choose a point P outside the shell  at  a distance r from the centre as shown
(a). The charge is uniformly distributed on the surface of the sphere (spherical symmetry).
Hence the electric field must point radially outward if Q > 0 and point radially inward if Q
< 0. So a spherical Gaussian surface of radius r is chosen andthe total charge enclosed by
this Gaussian surface is Q. Applying Gauss law

0

.
Gaussian
surface

QE d A =
Îò

ur ur
�

The electric field due to a charged spherical shell
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The electric field E
ur

and d A
ur

point in the same direction (outward normal) at all the
points on the Gaussian surface. The magnitude of E

ur
is also the same at all  points due to

the spherical symmetry of the charge distribution.

0Gaussian
surface

QHence E dA =
Îò�

But
Gaussian
surface

dAò� =  total  area  of  Gaussian  surface  =  4πr2.  Substituting  this  value  in  equation

(1.74)

( )

2

0

2
2

0 0

.4

1.4
4

QE r

Q QE r or E
r

p

p
p

=
Î

= =
Î Î

In vector form,

2
0

1
4

QE r
rp

=
Î

ur
$

The electric  field  is  radially  outward if Q > 0  and radially  inward if Q < 0.  From
equation, we infer that the electric field at a point outside the shell will be the same as if
the entire charge Q is concentrated at the centre of the spherical shell. (A similar result is
observed in gravitation, for gravitational force due to a spherical shell with mass M)

Case (b): At a point on the surface of the spherical shell (r = R)

The electrical field at points on the spherical shell (r = R) is given by

2
0

1
4

QE r
Rp

=
Î

ur
$

Case (c): At a point inside the spherical shell (r <R)

Consider  a  point  P  inside  the  shell  at  a  distance r from  the  centre.  A
Gaussiansphere of radius r is constructed as shown (b). Applying Gauss law

.
Gaussian
surface

QE d A
e

=ò
o

ur ur
�

2.4 QE rp
e

=
o
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Since Gaussian surface encloses no charge, Q = 0. The equation becomes

E = 0 (r < R)

The electric field due to the uniformly charged spherical shell  is zero at all  points inside
the shell. A graph is plotted between the electric field and radial distance. This is shown

Electric field versus distance for a spherical shell of radius R

ELECTROSTATICS OF CONDUCTORS AND DIELECTRICS

Conductors at electrostatic equilibrium

An  electrical  conductor  has  a  large  number  of  mobile  charges  which  are  free  to
move  in  the  material.  In  a  metallic  conductor,  these  mobile  charges  are  free  electrons
which  are  not  bound  to  any  atom  and  therefore  are  free  to  move  on  the  surface  of  the
conductor.  When  there  is  no  external  electric  field,  the  free  electrons  are  in  continuous
random motion in all directions. As a result, there is no net motion of electrons along any
particular direction which implies that the conductor is in electrostatic equilibrium. Thus
at  electrostatic  equilibrium,  there  is  no  net  current  in  the  conductor.  A  conductor  at
electrostatic equilibrium has the following properties.

(i) The electric field is zero everywhere inside the conductor. This is true regardless
of whether the conductor is solid or hollow.

This  is  an  experimental  fact.  Suppose  the  electric  field  is  not  zero  inside  the
metal,  then there  will  be  a  force  on the  mobile  charge carriers  due to  this  electric
field.  As  a  result,  there  will  be  a  net  motion  of  the  mobile  charges,  which
contradicts the conductors being in electrostatic equilibrium. Thus the electric field
is  zero  everywhere  inside  the  conductor.  We  can  also  understand  this  fact  by
applying an external uniform electric field on the conductor. This is shown

Electric field of conductors

Before  applying  the  external  electric  field,  the  free  electrons  in  the  conductor  are
uniformly distributed in the conductor. When an electric field is applied, the free electrons
accelerate to the left causing the left plate to be negatively charged and the right plate to
be positively charged as shown.
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Due  to  this  realignment  of  free  electrons,  there  will  be  an  internal  electric  field
created  inside  the  conductor  which  increases  until  it  nullifies  the  external  electric  field.
Once  the  external  electric  field  is  nullified  the  conductor  is  said  to  be  in  electrostatic
equilibrium.  The  time  taken  by  a  conductor  to  reach  electrostatic  equilibrium  is  in  the
order of 10–16s, which can be taken as almost instantaneous.

(ii) There is no net charge inside the conductors. The charges must reside only on the
surface of the conductors.

We  can  prove  this  property  using  Gauss  law.  Consider  an  arbitrarily  shaped
conductor  as  shown  in  Figure  1.43.  A  Gaussian  surface  is  drawn  inside  the
conductor such that it is very close to the surface of the conductor. Since the electric
field is zero everywhere inside the conductor, the net electric flux is also zero over
this  Gaussian  surface.  From  Gauss’s  law,  this  implies  that  there  is  no  net  charge
inside  the  conductor.  Even  if  some  charge  is  introduced  inside  the  conductor,  it
immediately reaches the surface of the conductor.

No net charge inside the conductor

(iii) The  electric  field  outside  the  conductor  is  perpendicular  to  the  surface  of  the

conductor and has a magnitude of s
eo

 where σ is  the surface charge density at

that point.

If  the electric field has components parallel  to the surface of the conductor,
then  free  electrons  on  the  surface  of  the  conductor  would  experience
acceleration (Figure (a)). This means that the conductor is not in equilibrium.

(a) Electric field is along the surface (b)Electric field is perpendicular to
the surface of the conductor
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Therefore at electrostatic equilibrium, the electric field must be perpendicular to the
surface of the conductor. This is shown in Figure (b).

We  now  prove  that  the  electric  field  has  magnitude s
eo

 just  outside  the

conductor’s surface. Consider a small cylindrical Gaussian surface, as shown. One
half of this cylinder is embedded inside the conductor.

The electric field on the surface of the conductor

Since electric field is normal to the surface of the conductor, the curved part of the
cylinder has zero electric flux. Also inside the conductor,  the electric field is zero. Hence
the bottom flat part of the Gaussian surface has no electric flux.

Therefore the top flat surface alone contributes to the electric flux. The electric field
is  parallel  to  the  area  vector  and  the  total  charge  inside  the  surface  is  σA.  By  applying
Gaus’s law,

AEA s
e

=
o

In vector form,

$E ns
e

=
o

ur

Where $n  represents  the  unit  vector  outward  normal  to  the  surface  of  the  conductor.
Suppose σ < 0, then electric field points inward perpendicular to the surface.

(iv) The electrostatic potential has the same value on the surface and inside of the
conductor.

We know that the conductor has no parallel electric component on the surface which
means that charges can be moved on the surface without doing any work. This is possible
only  if  the  electrostatic  potential  is  constant  at  all  points  on  the  surface  and  there  is  no
potential difference between any two points on the surface.

Since  the  electric  field  is  zero  inside  the  conductor,  the  potential  is  the  same  as  the
surface  of  the  conductor.  Thus  at  electrostatic  equilibrium,  the  conductor  is  always  at
equipotential.
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Electrostatic shielding

Using Gauss law, we can prove that the electric field inside the charged spherical
shell  is  zero,  Further,  we  can  show  that  the  electric  field  inside  both  hollow  and  solid
conductors is zero. It is a very interesting property which has an important consequence.

Consider  a  cavity  inside  the  conductor  as  shown  in  Figure  (a).  Whatever  be  the
charges  at  the  surfaces  and  whatever  be  the  electrical  disturbances  outside,  the  electric
field  inside  the  cavity  is  zero.  A  sensitive  electrical  instrument  which  is  to  be  protected
from  external  electrical  disturbance  can  be  kept  inside  this  cavity.  This  is  called
electrostatic shielding.

(a) Electric field inside the cavity (b) Faraday cage

Faraday  cage  is  an  instrument  used  to  demonstrate  this  effect.  It  is  made  up  of
metal  bars  as  shown  in  Figure  (b).  If  an  artificial  lightning  jolt  is  created  outside,  the
person inside is not affected.

During lightning accompanied by a thunderstorm, it is always safer to sit inside a
bus than in open ground or under a tree. The metal body of the bus provides electrostatic
shielding, since the electric field inside is zero. During lightning, the charges flow through
the body of the conductor to the ground with no effect on the person inside that bus.

Electrostatic induction

In  section  1.1,  we  have  learnt  that  an  object  can  be  charged  by  rubbing  using  an
appropriate material.  Whenever a charged rod is touched by another conductor, charges
start  to  flow  from  charged  rod  to  the  conductor.  Is  it  possible  to  charge  a  conductor
without  any contact?  The answer is  yes.  This  type of charging without  actual  contact  is
called electrostatic induction.

(i) Consider  an  uncharged  (neutral)  conducting  sphere  at  rest  on  an  insulating
stand. Suppose a negatively charged rod is brought near the conductor without
touching it, as shown in Figure (a).

The negative charge of the rod repels the electrons in the conductor to the opposite
side.  As  a  result,  positive  charges  are  induced  near  the  region  of  the  charged  rod  while
negative charges on the farther side.

Before  introducing the  charged rod,  the  free  electrons  were  distributed uniformly
on  the  surface  of  the  conductor  and  the  net  charge  is  zero.  Once  the  charged  rod  is
brought  near  the  conductor,  the  distribution  is  no  longer  uniform  with  more  electrons
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located on the farther side of the rod and positive charges are located closer to the rod. But
the total charge is zero.

Various steps in electrostatic induction

(ii) Now  the  conducting  sphere  is  connected  to  the  ground  through  a  conducting
wire. This is called grounding. Since the ground can always receive any amount
of electrons, grounding removes the electron from the conducting sphere. Note
that positive charges will  not flow to the ground because they are attracted by
the negative charges of the rod (Figure (b)).

(iii) When the grounding wire is removed from the conductor, the positive charges
remain near the charged rod (Figure (c))

(iv) Now the charged rod is taken away from the conductor. As soon as the charged
rod is removed, the positive charge gets distributed uniformly on the surface of
the  conductor  (Figure  (d)).  By  this  process,  the  neutral  conducting  sphere
becomes positively charged.

For  an  arbitrary  shaped  conductor,  the  intermediate  steps  and  conclusion  are  the
same  except  the  final  step.  The  distribution  of  positive  charges  is  not  uniform  for
arbitrarily-shaped conductors. Why is it not uniform? The reason for it is discussed in the
section

EXAMPLE

A small ball of conducting material having a charge +q and mass m is thrown upward at
an  angle  θ to  horizontal  surface  with  an  initial  speed  vo  as  shown  in  the  figure.  There
exists an uniform electric field E downward along with the gravitational field g. Calculate
the range, maximum height and time of flight in the motion of this charged ball. Neglect
the effect of air and treat the ball as a point mass.

Solution
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If  the  conductor  has  no net  charge,  then its  motion is  the  same as  usual  projectile
motion of  a  mass  m which we studied in  Kinematics  (unit  2,  vol-1  XI  physics).  Here,  in
this problem, in addition to downward gravitational force, the charge also will experience
a downward uniform electrostatic force.

The acceleration of the charged ball due to gravity = -g $j

The acceleration of the charged ball due to uniform electric field = $qE j
m

-

It is important here to note that the acceleration depends on the mass of the object.
Galileo’s conclusion that all objects fall at the same rate towards the Earth is true only in a
uniform gravitational field. When a uniform electric field is included, the acceleration of a

charged object depends on both mass and charge. But still the acceleration qEa g
m

æ ö= +ç ÷
è ø

 is

constant throughout the motion. Hence we use kinematic equations to calculate the range,

maximum height and time of flight. In fact we can simply replace g by qEg
m

+  in the usual

expressions of range, maximum height and time of flight of a projectile.

Without charge With the charge +q
Time of flight T 2 sinv

g
qo 2 sinv

qEg
m

q
æ ö+ç ÷
è ø

o

Maximum height hmax 2 2sin
2

v
g

qo
2 2sin

2

v
qEg
m

q
æ ö+ç ÷
è ø

o

Range R 2 sin 2v
g

qo
2 sin 2v

qEg
m

q
æ ö+ç ÷
è ø

o

Note that the time of flight,  maximum height, range are all  inversely proportional

to  the  acceleration  of  the  object.  Since qEg
m

æ ö+ç ÷
è ø

>g  for  charge  +q,  the  quantities  T,  hmax,

and R will  decrease  when compared to  the  motion of  an  object  of  mass  m and zero  net

charge. Suppose the charge is –q, then qEg
m

æ ö-ç ÷
è ø

<g, and the quantities T, hmax and R will

increase. Interestingly the trajectory is still parabolic as shown
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Dielectrics or insulators

A dielectric is a non-conducting material and has no free electrons. The electrons in
a  dielectric  are  bound  within  the  atoms.  Ebonite,  glass  and  mica  are  some  examples  of
dielectrics.  When  an  external  electric  field  is  applied,  the  electrons  are  not  free  to  move
anywhere but they are realigned in a specific way. A dielectric is made up of either polar
molecules or nonpolar molecules.

Non-polar molecules

A  non-polar  molecule  is  one  in  which  centres  of  positive  and  negative  charges
coincide.  As  a  result,  it  has  no  permanent  dipole  moment.  Examples  of  non-polar
molecules are hydrogen (H2), oxygen (O2), and carbon dioxide (CO2) etc.

When  an  external  electric  field  is  applied,  the  centres  of  positive  and  negative
charges are separated by a small distance which induces dipole moment in the direction of
the external electric field. Then the dielectric is said to be polarized by an external electric
field. This is shown

Non polar molecules (a) without external field (b) with the external field

Polar molecules

In  polar  molecules,  the  centres  of  the  positive  and negative  charges  are  separated
even in the absence of an external electric field. They have a permanent dipole moment.
Due to thermal motion, the direction of each dipole moment is oriented randomly (Figure
(a)).  Hence  the  net  dipole  moment  is  zero  in  the  absence  of  an  external  electric  field.
Examples of polar molecules are H2O, N2O, HCl, NH3.

When  an  external  electric  field  is  applied,  the  dipoles  inside  the  material  tend  to
align in the direction of the electric field. Hence a net dipole moment is induced in it. Then
the dielectric is said to be polarized by an external electric field (Figure (b)).

(a) Randomly oriented polar molecules (b) Align with the external electric field

Polarisation



63 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

In  the  presence  of  an  external  electric  field,  the  dipole  moment  is  induced  in  the
dielectric material. Polarisation p

ur
 is defined as the total dipole moment per unit volume

of  the  dielectric. For  most  dielectrics  (linear  isotropic),  the  Polarisation  is  directly
proportional to the strength of the external electric field. This is written as extep Ec=

ur ur

Induced Electric field inside the dielectric

When an external electric field is applied on a conductor, the charges are aligned in
such  a  way  that  an  internal  electric  field  is  created  which  tends  to  cancel  the  external
electric  field.  But  in  the  case  of  a  dielectric,  which  has  no  free  electrons,  the  external
electric  field  only  realigns  the  charges  so  that  an  internal  electric  field  is  produced.  The
magnitude  of  the  internal  electric  field  is  smaller  than  that  of  external  electric  field.
Therefore the net electric field inside the dielectric is not zero but is parallel to an external
electric field with magnitude less than that of the external electric field. For example, let us
consider  a  rectangular  dielectric  slab  placed  between  two  oppositely  charged  plates
(capacitor) as shown.

The uniform electric  field  between the  plates  acts  as  an external  electric  field extE
ur

which polarizes the dielectric placed between plates. The positive charges are induced on
one side surface and negative charges are induced on the other side of surface. But inside
the  dielectric,  the  net  charge  is  zero  even  in  a  small  volume.  So  the  dielectric  in  the
external  field  is  equivalent  to  two  oppositely  charged  sheets  with  the  surface  charge
densities +σb and –σb . These charges are called bound charges. They are not free to move
like free electrons in conductors. This is shown in the Figure

Induced electric field lines inside the dielectric

For example, the charged balloon after rubbing sticks onto a wall. The reason is that
the negatively charged balloon is brought near the wall,  it  polarizes opposite charges on
the surface of the wall, which attracts the balloon. This is shown

(a) Balloon sticks to the wall (b) Polarisation of wall due to the electric field
created by the balloon

Dielectric strength
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When the external  electric  field applied to a  dielectric  is  very large,  it  tears  the
atoms apart so that the bound charges become free charges. Then the dielectric starts to
conduct electricity. This is called dielectric breakdown.  The maximum electric field the
dielectric  can  withstand  before  it  breaksdown  is  called  dielectric  strength.  For  example,
the dielectric strength of air is 3 × 106 V m–1.If the applied electric field increases beyond
this, a spark is produced in the air. The dielectric strengths of some dielectrics are given in
the Table

Dielectric strength

Substance Dielectric strength (Vm-1)
Mica 100×106

Teflon 60×106

Paper 16×106

Air 3×106

Pyrex glass 14×106

CAPACITORS AND CAPACITANCE

Capacitors

Capacitor is a device used to store electric charge and electrical energy. It  consists
of  two  conducting  objects  (usually  plates  or  sheets)  separated  by  some  distance.
Capacitors  are  widely  used  in  many  electronic  circuits  and  have  applications  in  many
areas of science and technology.

A  simple  capacitor  consists  of  two  parallel  metal  plates  separated  by  a  small
distance as shown

(a) Parallel plate capacitor (b) Capacitor connected with a battery (c) Symbolic
representation of capacitor.

When a  capacitor  is  connected to  a  battery of  potential  difference V,  the  electrons
are  transferred  from  one  plate  to  the  other  plate  by  battery  so  that  one  plate  becomes
negatively charged with a charge of
–Q and the other plate positively charged with +Q. The potential difference between the
plates is equivalent to the battery’s terminal voltage. This is shown in Figure 1.52 (b). If the
battery  voltage  is  increased,  the  amount  of  charges  stored  in  the  plates  also  increase.  In
general,  the  charge  stored  in  the  capacitor  is  proportional  to  the  potential  difference
between the plates.
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Q Vµ
so that Q = CV

Where  the  C  is  the  proportionality  constant  called  capacitance.The  capacitance  C  of  a
capacitor is defined as the ratio of the magnitude of charge on either of the conductor
plates to the potential difference existing between them.

QC
V

=

The  SI  unit  of  capacitance  is  coulomb  per  volt  or  farad  (F)  in  honor  of  Michael
Faraday.  Farad is  a  larger  unit  of  capacitance.  In  practice,  capacitors  are  available  in  the
range of microfarad (1µF = 10–6 F) to picofarad (1pF = 10–12 F). A capacitor is represented
by the symbol  or  .  Note  that  the  total  charge stored in  the  capacitor  is  zero (Q –  Q = 0).
When  we  say  the  capacitor  stores  charges,  it  means  the  amount  of  charge  that  can  be
stored in any one of the plates.

Nowadays  there  are  capacitors  available  in  various  shapes  (cylindrical,  disk)  and
types (tantalum, ceramic and electrolytic), as shown. These capacitors are extensively used
in various kinds of electronic circuits.

Capacitance of a parallel plate capacitor

Consider  a  capacitor  with  two  parallel  plates  each  of  cross-sectional  area  A  and
separated by a distance d as shown.

The  electric  field  between  two  infinite  parallel  plates  is  uniform  and  is  given  by

E s
e

=
o

 where  σ is  the  surface  charge  density  on  either  plates Q
A

sæ ö=ç ÷
è ø

If  the  separation

distance d is very much smaller than the size of the plate (d2<< A), then the above result
can be used even for finite–sized parallel plate capacitor.

Capacitance of a parallel plate capacitor

The electric field between the plates is

QE
Ae

=
o

Since  the  electric  field  is  uniform,  the  electric  potential  difference  between  the
plates having separation d is given by
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QdV Ed
Ae

= =
o

Therefore the capacitance of the capacitor is given by

AQ QC
V dQd

A

e

e

= = =
æ ö
ç ÷
è ø

o

o

From equation,  it  is  evident  that  capacitance  is  directly  proportional  to  the  area  of  cross
section  and  is  inversely  proportional  to  the  distance  between  the  plates.  This  can  be
understood from the following.

(i) If the area of cross-section of the capacitor plates is increased, more charges can be
distributed  for  the  same  potential  difference.  As  a  result,  the  capacitance  is
increased.

(ii) If  the  distance  d  between  the  two  plates  is  reduced,  the  potential  difference
between  the  plates  (V  =  Ed)  decreases  with  E  constant.  As  a  result,  voltage
difference between the terminals of the battery increases which in turn leads to an
additional  flow  of  charge  to  the  plates  from  the  battery,  till  the  voltage  on  the
capacitor equals to the battery’s terminal voltage. Suppose the distance is increased,
the capacitor voltage increases and becomes greater than the battery voltage. Then,
the charges flow from capacitor plates to battery till both voltages becomes equal.

EXAMPLE

A parallel plate capacitor has square plates of side 5 cm and separated by a distance of 1
mm.

(a) Calculate the capacitance of this capacitor.
(b) If a 10 V battery is connected to the capacitor, what is the charge stored in any one

of the plates?
(The value of eo  = 8.85 × 10–12 N–1m–2C2)

Solution

(a) The capacitance of the capacitor is

12 4

3

8.85 10 25 10
1 10

AC
d
e - -

-

´ ´ ´
= =

´
o

13221.2 10 F-= ´
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1222.12 10 22.12C F pF-= ´ =

(b) The charge stored in any one of the plates is Q = CV, Then

12 1222.12 10 10 221.2 10Q C- -= ´ ´ = ´

221.2C pC=

Energy stored in the capacitor

Capacitor  not  only  stores  the  charge  but  also  it  stores  energy.  When  a  battery  is
connected to the capacitor,  electrons of total charge –Q are transferred from one plate to
the  other  plate.  To  transfer  the  charge,  work  is  done  by  the  battery.  This  work  done  is
stored as electrostatic potential energy in the capacitor.

To transfer an infinitesimal charge dQ for a potential difference V, the work done is
given by

dW = V dQ

Where QV
C

=

The total work done to charge a capacitor is

2

0 2

Q Q QW dQ
C C

= =ò

This work done is stored as electrostatic potential energy (UE) in the capacitor.

2
21 ( )

2 2E
QU CV Q CV
C

= = \ =

Where Q = CV is used. This stored energy is thus directly proportional to the capacitance
of the capacitor and the square of the voltage between the plates of the capacitor.

But where is this energy stored in the capacitor? To understand this question, the
equation (1.87) is rewritten as follows using the results

AC
d
e

= o and V = Ed

( ) ( )2 21 1
2 2E

AU Ed Ad E
d
e eæ ö= =ç ÷è ø

o
o
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Where Ad = volume of the space between the capacitor plates.  The energy stored

per unit volume of space is defined as energy density E
UU

Volume
= . From the equation we

get,

21
2EU Ee= o

From equation, we infer that the energy is stored in the electric field existing between the
plates of the capacitor. Once the capacitor is allowed to discharge, the energy is retrieved.

It is important to note that the energy density depends only on the electric field and
not on the size of the plates of the capacitor. In fact, expression (1.89) is true for the electric
field due to any type of charge configuration.

Applications of capacitors

Capacitors are used in various electronics circuits. A few of the applications.

(a) Flash  capacitors  are  used  in  digital  cameras  for  taking  photographs.  The  flash
which  comes  from  the  camera  when  we  take  photographs  is  due  to  the  energy
released from the capacitor, called a flash capacitor

(b) During cardiac  arrest,  a  device  called heart  defibrillator  is  used to  give  a  sudden
surge  of  a  large  amount  of  electrical  energy  to  the  patient’s  chest  to  retrieve  the
normal heart function.

(c) Capacitors  are  used  in  the  ignition  system  of  automobile  engines  to  eliminate
sparking

(d) Capacitors are used to reduce power fluctuations in power supplies and to increase
the efficiency of power transmission.

However,  capacitors  have  disadvantage  as  well.  Even  after  the  battery  or
power supply is removed, the capacitor stores charges and energy for some time.
For example if the TV is switched off, it is always advisable to not touch the back
side of the TV panel

Effect of dielectrics in capacitors

In  earlier  discussions,  we assumed that  the  space between the parallel  plates  of  a
capacitor is either empty or filled with air. Suppose dielectrics like mica, glass or paper are
introduced  between  the  plates,  then  the  capacitance  of  the  capacitor  is  altered.  The
dielectric  can  be  inserted  into  the  plates  in  two  different  ways.  (i)  when  the  capacitor  is
disconnected from the battery. (ii) when the capacitor is connected to the battery.

(i) When the capacitor is disconnected from the battery
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Consider a capacitor with two parallel plates each of cross-sectional area A and are
separated  by  a  distance  d.  The  capacitor  is  charged  by  a  battery  of  voltage  V0 and  the
charge stored is Q0. The capacitance of the capacitor without the dielectric is

0
0

0

QC
V

=

The  battery  is  then  disconnected  from  the  capacitor  and  the  dielectric  is  inserted
between the plates.

(a) Capacitor is charged with a battery (b) Dielectric is inserted after the battery is
disconnected

The  introduction  of  dielectric  between  the  plates  will  decrease  the  electric  field.
Experimentally it is found that the modified electric field is given by

0

r

EE
e

=

where Eo is the electric field inside the capacitors when there is no dielectric and re  is the
relative permittivity of the dielectric or simply known as the dielectric constant. Since re >
1, the electric field E <Eo.

As a result, the electrostatic potential difference between the plates (V = Ed) is also
reduced.  But  at  the  same  time,  the  charge  Qo  will  remain  constant  once  the  battery  is
disconnected.

Hence the new potential difference is

0 0

r r

E VV Ed d
e e

= = =

We  know  that  capacitance  is  inversely  proportional  to  the  potential  difference.
Therefore as V decreases, C increases.

Thus new capacitance in the presence of a dielectric is

0 0
0

0
r r

Q QC C
V V

e e= = =
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Since re >  1,  we  have  C  >  Co.  Thus  insertion  of  the  dielectric  increases  the
capacitance.

Using equation

r A AC
d d

e e e
= =o

Where e  = re eo  is the permittivity of the dielectric medium.

The energy stored in the capacitor before the insertion of a dielectric is given by

2
0

0
0

1
2

QU
C

=

After the dielectric is inserted, the charge Q0 remains constant but the capacitance is
increased. As a result, the stored energy is decreased.

2 2
0 0 0

0

1 1
2 2 r r

Q Q UU
C Ce e

= = =

Since re >  1  we  get  U  <Uo.  There  is  a  decrease  in  energy  because,  when  the
dielectric is inserted, the capacitor spends some energy in pulling the dielectric inside.

(ii) When the battery remains connected to the capacitor

Let us now consider what happens when the battery of voltage V0  remains connected
to the capacitor when the dielectric is inserted into the capacitor.

The  potential  difference  V0  across  the  plates  remains  constant.  But  it  is  found
experimentally (first shown by Faraday) that when dielectric is inserted, the charge stored
in the capacitor is increased by a factor re .

(a) Capacitor is charged through a battery (b) Dielectric is inserted when the battery is
connected.

0rQ Qe=
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Due to this increased charge, the capacitance is also increased. The new capacitance
is

0
0

0 0
r r

QQC C
V V

e e= = =

However  the  reason  for  the  increase  in  capacitance  in  this  case  when  the  battery
remains  connected  is  different  from  the  case  when  the  battery  is  disconnected  before
introducing the dielectric.

Now, 0
AC
d
e

= o

And AC
d

e
=

The energy stored in the capacitor before the insertion of a dielectric is given by

2
0 0 0

1
2

U C V=

Note that here we have not used the expression
2
0

0
0

1
2

QU
C

=  because here, both charge and

capacitance are changed, whereas in equation (1.100), Vo remains constant.

After the dielectric is inserted, the capacitance is increased; hence the stored energy
is also increased.

2 2
0 0 0 0

1 1
2 2 r rU CV C V Ue e= = =

Since re > 1 we have U >Uo.

It  may  be  noted  here  that  since  voltage  between  the  capacitor  V0 is  constant,  the
electric field between the plates also remains constant.

The energy density is given by

2
0

1
2

u Ee=

Where e  is the permittivity of the given dielectric material.

The results of the above discussions are summarised in the following Table
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Table 1.2 Effoect of dielectrics in capacitors
S.
No

Dielectric
is nserted

Charge Q Voltage V Electric
field E

Capacitance  C  Energy  U

1  When  the
battery  is
disconnected

Constant  decreases  Decreases  Increases Decreases

2  When  the
battery  is
connected

Increases  Constant  Constant  Increases Increases

EXAMPLE

A parallel plate capacitor filled with mica having εr= 5 is connected to a 10 V battery. The
area  of  each  parallel  plate  is  6  cm2 and  separation  distance  is  6  mm.  (a)  Find  the
capacitance and stored charge.

(b)  After  the  capacitor  is  fully  charged,  the  battery  is  disconnected  and  the  dielectric  is
removed carefully.

Calculate the new values of capacitance, stored energy and charge.

Solution

(a) The capacitance of the capacitor in the presence of dielectric is

12 4
0

3

5 8.85 10 6 10
6 10

r AC
d

- -

-

Î Î ´ ´ ´ ´
= =

´
1344.25 10 4.425F pF-= ´ =

The stored charge is

13

13

44.25 10 10
44.25 10 44.25

Q CV
C pC

-

-

= = ´ ´

= ´ =

The stored energy is
2 13

10

1 1 44.25 10 100
2 2
2.21 10

U CV C

J

-

-

= = ´ ´ ´

= ´
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(b)  After  the removal  of  the dielectric,  since the battery is  already disconnected the total
charge will  not  change.  But  the  potential    difference  between the  plates  increases.  As  a
result, the capacitance is decreased.

New capacitance is

12

0
4.425 10

5r

CC
e

-´
= =

120.885 10 0.885F pF-= ´ =

The stored charge remains same and 44.25 pC. Hence newly stored energy is

22

0
02 2

r
r

QQU U
C C

Î
= = =Î

10 105 2.21 10 11.05 10J J- -= ´ ´ = ´

The increased energy is
 

ΔU =(11.05 – 2.21)×10-10 J = 8.84×10-10 J

When the dielectric  is  removed,  it  experiences  an inward pulling force due to  the
plates. To remove the dielectric, an external agency has to do work on the dielectric which
is stored as additional energy. This is the source for the extra energy 8.84 × 10–10 J.

Capacitor in series and parallel

(i) Capacitor in series

Consider  three  capacitors  of  capacitance  C1,  C2 and  C3 connected  in  series  with  a
battery of voltage V as shown in the Figure 1.58 (a).

As  soon  as  the  battery  is  connected  to  the  capacitors  in  series,  the  electrons  of
charge

–Q are transferred from negative terminal to the right plate of C3 which pushes the
electrons  of  same  amount  –Q  from  left  plate  of  C3 to  the  right  plate  of  C2  due  to



74 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

electrostatic induction. Similarly, the left plate of C2 pushes the charges of –Q to the right
plate of C1 which induces the positive charge +Q on the left plate of C1. At the same time,
electrons  of  charge  –Q  are  transferred  from  left  plate  of  C1  to  positive  terminal  of  the
battery.

By  these  processes,  each  capacitor  stores  the  same  amount  of  charge  Q.  The
capacitances  of  the  capacitors  are  in  general  different,  so  that  the  voltage  across  each
capacitor is also different and are denoted as V1, V2 and V3 respectively.

The sum of the voltages across the capacitor must be equal to the voltage of the battery.
V = V1 + V2 + V3 (1.103)

Since, Q = CV, we have V =
1 2 3

Q Q Q
C C C

+ +

1 2 3

1 1 1Q
C C C

æ ö
= + +ç ÷

è ø

If three capacitors in series are considered to form an equivalent single capacitor Cs

shown in Figure 1.58(b), then we have V =
S

Q
C

Substituting this expression into equation

(1.104), we get

1 2 3

1 1 1

S

Q Q
C C C C

æ ö
= + +ç ÷

è ø

1 2 3

1 1 1 1

SC C C C
= + +

Thus, the inverse of the equivalent capacitance CS  of three capacitors connected in
series is equal to the sum of the inverses of each capacitance. This equivalent capacitance
CS is always less than the smallest individual capacitance in the series.

(ii) Capacitance in parallel

Consider three capacitors of capacitance C1, C2 and C3 connected in parallel with a
battery of voltage V as shown in Figure 1.59 (a).

Since corresponding sides of the capacitors are connected to the same positive and
negative terminals of the battery, the voltage across each capacitor is equal to the battery’s
voltage. Since capacitances of the capacitors are different
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the  charge  stored  in  each  capacitor  is  not  the  same.  Let  the  charge  stored  in  the  three
capacitors  be  Q1,  Q2,  and  Q3 respectively.  According  to  the  law  of  conservation  of  total
charge, the sum of these three charges is equal to the charge Q transferred by the battery,

Q = Q1 +Q2 +Q3

Since Q = CV, we have
Q = C1V + C2V + C3V

If these three capacitors are considered to form a single equivalent capacitance CP
which stores the total charge Q as shown in the Figure 1.59(b), then we can write Q = CPV.
Substituting this in equation (1.107), we get

CPV = C1V + C2V + C3V
CP = C1 + C2 + C3

Thus, the equivalent capacitance of capacitors connected in parallel is equal to the sum of
the  individual  capacitances.  The  equivalent  capacitance  CP  in  a  parallel  connection  is
always  greater  than  the  largest  individual  capacitance.  In  a  parallel  connection,  it  is
equivalent  as  area  of  each  capacitance  adds  to  give  more  effective  area  such  that  total
capacitance increases.

EXAMPLE

Find  the  equivalent  capacitance  between  P  and  Q  for  the  configuration  shown  below  in
the figure (a).

Solution

The capacitors 1 μF and 3 μF are connected in parallel  and 6 μF and 2 μF are also
separately  connected  in  parallel.  So  these  parallel  combinations  reduced  to  equivalent
single capacitances in their respective positions, as shown in the figure (b).

Ceq = 1 + 3 = 4 μF
Ceq = 6 + 2 = 8 μF

From  the  figure  (b),  we  infer  that  the  two  4  μF  capacitors  are  connected  in  series
and the two 8 μF capacitors are connected in series. By using formula for the series, we can
reduce to their equivalent capacitances as shown in figure (c).

1 1 1 1 2 F
4 4 2 eq

eq

C
C

m= + + Þ =

and
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1 1 1 1 4 F
8 8 4 eq

eq

C
C

m= + + Þ =

From the figure (c), we infer that 2 μF and 4 μF are connected in parallel. So the equivalent
capacitance is given in the figure (d).
Ceq = 2 + 4 = 6 μF

Thus the combination of capacitances in figure (a) can be replaced by a single capacitance
6 μF.

DISTRIBUTION OF CHARGES IN A CONDUCTOR AND ACTION AT POINTS

Distribution of charges in a conductor

Consider two conducting spheres A and B of radii r1 and r2 respectively connected
to each other by a thin conducting wire as shown in the Figure 1.60. The distance between
the spheres is much greater than the radii of either spheres.

Figure 1.60 Two conductors are connected through conducting wire

If  a  charge  Q  is  introduced  into  any  one  of  the  spheres,  this  charge  Q  is
redistributed into both the spheres such that the electrostatic potential is same in both the
spheres.  They  are  now  uniformly  charged  and  attain  electrostatic  equilibrium.  Let  q1  be
the charge residing on the surface of sphere A and q2 is the charge residing on the surface
of sphere B such that Q = q1 + q2. The charges are distributed only on the surface and there
is no net charge inside the conductor.

The electrostatic potential at the surface of the sphere A is given by
1

0 1

1
4A

qV
rp

=
Î

The electrostatic potential at the surface of the sphere B is given by
2

0 2

1
4B

qV
rp

=
Î

The surface  of  the  conductor  is  an equipotential.  Since  the  spheres  are  connected by the
conducting wire, the surfaces of both the spheres together form an equipotential surface.
This implies that

VA = VB    or 1 2

1 2

q q
r r

=
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Let the charge density on the surface of sphere A be σ1 and that on the surface of sphere B
be σ2. This implies that q1 = 4π 2

1r σ1 and
q2 = 4π 2

2r σ2. Substituting these values into equation (1.112), we get

σ1r1 = σ2r2 (1.113)

from which we conclude that
σr = constant

Thus the surface charge density σ is inversely proportional to the radius of the sphere. For
a smaller radius, the charge density will be larger and vice versa.

EXAMPLE

Two  conducting  spheres  of  radius  r1  =  8  cm  and  r2  =  2  cm  are  separated  by  a  distance
much  larger  than  8  cm  and  are  connected  by  a  thin  conducting  wire  as  shown  in  the
figure. A total charge of Q = +100 nC is placed on one of the spheres. After a fraction of a
second, the charge Q is redistributed and both the spheres attain electrostatic equilibrium.

(a) Calculate the charge and surface charge density on each sphere.
(b) Calculate the potential at the surface of each sphere.

Solution

(a) The electrostatic potential on the surface of the sphere A is

1

0 1

1
4A

qV
rp

=
Î

The electrostatic potential on the surface of the sphere B is 2

0 2

1
4B

qV
rp

=
Î

Since VA = VB. We have

1 2 1
1 2

1 2 2

q q rq q
r r r

æ ö
= Þ =ç ÷

è ø

But  from  the  conservation  of  total  charge,  Q  =  q1 +  q2,  we  get  q1 =  Q  –  q2.  By
substituting this in the above equation

Q – q2 1
2

2

r q
r

æ ö
=ç ÷

è ø
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So that q2  = Q 2

1 2

r
r r

æ ö
ç ÷+è ø

Therefore,

9
2

2100 10 20
10

q nC- æ ö= ´ ´ =ç ÷
è ø

and q1 = Q – q2 = 80nC

The electric charge density on sphere A is 1
1 2

14
q

r
s

p
=

The electric charge density on sphere B is 2
2 2

24
q

r
s

p
=

Therefore,
9

6 2
1 4

80 10 0.99 10
4 64 10

Cms
p

-
- -

-

´
= = ´

´ ´
and

9
6 2

2 4

20 10 3.9 10
4 4 10

Cms
p

-
- -

-

´
= = ´

´ ´

Note  that  the  surface  charge  density  is  greater  on  the  smaller  sphere  compared  to  the

larger sphere (σ2 ≈ 4σ1) which confirms the result 1 2

2 1

r
r

s
s

=

The potential on both spheres is the same. So we can calculate the potential on any
one of the spheres.

1

0 1

1
4A

qV
rp

=
Î

    =
9 9

2

9 10 80 10 9
8 10

KV
-

-

´ ´ ´
=

´

Action of points or Corona discharge

Consider a charged conductor of irregular shape as shown in Figure 1.61 (a).

We know that smaller the radius of curvature, the larger is the charge density. The
end  of  the  conductor  which  has  larger  curvature  (smaller  radius)  has  a  large  charge
accumulation as shown in Figure 1.61 (b).

As  a  result,  the  electric  field  near  this  edge  is  very  high  and  it  ionizes  the
surrounding  air.  The  positive  ions  are  repelled  at  the  sharp  edge  and  negative  ions  are
attracted towards the sharper edge. This reduces the total charge of the conductor near the
sharp edge. This is called action of points or corona discharge.

1.9.3 Lightning arrester or lightning conductor

This is a device used to protect tall buildings from lightning strikes. It works on the
principle of action at points or corona discharge.
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This  device  consists  of  a  long  thick  copper  rod  passing  from  top  of  the  building  to  the
ground. The upper end of the rod has a sharp spike or a sharp needle as shown in Figure
1.62 (a) and (b).

The lower end of the rod is connected to copper plate which is buried deep into the
ground.  When  a  negatively  charged  cloud  is  passing  above  the  building,  it  induces  a
positive charge on the spike. Since the induced charge density on thin sharp spike is large,
it results in a corona discharge. This positive charge ionizes the surrounding air which in
turn  neutralizes  the  negative  charge  in  the  cloud.  The  negative  charge  pushed  to  the
spikes  passes  through  the  copper  rod  andis  safely  diverted  to  the  Earth.  The  lightning
arrester does not stop the lightning; rather it diverts the lightning to the ground safely

Van de Graaff Generator

In the year 1929, Robert Van de Graaff designed a machine which produces a large
amount of electrostatic potential difference, up to several million volts (107 V). This Van
de Graff generator works on the principle of electrostatic induction and action at points.

A  large  hollow  spherical  conductor  is  fixed  on  the  insulating  stand  as  shown  in
Figure 1.63. A pulley B is mounted at the centre of the hollow sphere and another pulley C
is fixed at the bottom. A belt made up of insulating materials like silk or rubber runs over
both pulleys. The pulley C is driven continuously by the electric motor. Two comb shaped
metallic conductors E and D are fixed near the pulleys.

The comb D is maintained at a positive potential of 104 V by a power supply. The
upper comb E is connected to the inner side of the hollow metal sphere.

Due to  the  high electric  field  near  comb D,  air  between the  belt  and comb D gets
ionized  by  the  action  of  points.  The  positive  charges  are  pushed  towards  the  belt  and
negative charges are attracted towards the comb D. The positive charges stick to the belt
and move up. When the positive charges on the belt reach the point near the comb E, the
comb  E  acquires  negative  charge  and  the  sphere  acquires  positive  charge  due  to
electrostatic induction. As a result, the positive charges are pushed away from the comb E
and they reach the outer surface of the sphere. Since the sphere is a conductorthe positive
charges are distributed uniformly on the outer surface of the hollow sphere. At the same
time, the negative charges nullify the positive charges in the belt due to corona discharge
before it passes over the pulley.

When the belt descends, it has almost no net charge. At the bottom, it again gains a
large  positive  charge.  The  belt  goes  up  and  delivers  the  positive  charges  to  the  outer
surface of the sphere. This process continues until the outer surface produces the potential
difference of the order of 107 which is the limiting value. We cannot store charges beyond
this limit since the extra charge starts leaking to the surroundings due to ionization of air.
The leakage of charges can

be reduced by enclosing the machine in a gas filled steel chamber at very high pressure.
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The  high  voltage  produced  in  this  Van  de  Graaff  generator  is  used  to  accelerate
positive ions (protons and deuterons) for nuclear disintegrations and other applications

E X A M P L E 1.23
P L E 1.24
Dielectric strength of air is  3 × 106 V m–1. Suppose the radius of a hollow sphere in the
Van de Graff generator is R = 0.5 m, calculate the maximum potential difference created
by this Van de Graaff generator.
Solution

The electric field on the surface of the sphere is given by (by Gauss law)

2
0

1
4

QE
Rp

=
Î

The potential on the surface of the hollow metallic sphere is given by

0

1
4

QV ER
Rp

= =
Î

Since Vmax = EmaxR
Here Emax=3×106 Vm-1. 1So the maximum potential difference created is given by

Vmax = 3 × 106 × 0.5
= 1.5 × 106 V (or) 1.5 million volt
Like charges repel and unlike charges attract
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12th Physics
2nd lesson

CURRENT ELECTRICITY

ELECTRIC CURRENT

Matter  is  made  up  of  atoms.  Each  atom  consists  of  a  positively  charged  nucleus
with negatively charged electrons moving around the nucleus. Atoms in metals have one
or more electrons which are loosely bound to the nucleus. These electrons are called free
electrons  and  can  be  easily  detached  from  the  atoms.  The  substances  which  have  an
abundance  of  these  free  electrons  are  called  conductors.  These  free  electrons  move
randomly throughout the conductor at a given temperature. In general due to this random
motion, there is no net transfer of charges from one end of the conductor to other end and
hence no current  in  the conductor.  When a  potential  difference is  applied by the battery
across the ends of the conductor,  the free electrons drift  towards the positive terminal of
the  battery,  producing  a  net  electric  current.  This  is  easily  understandable  from  the
analogy given

Water current and Electric current

In  the  XI  Volume  2,  unit  6,  we  studied,  that  the  mass  move  from  higher
gravitational  potential  to  lower  gravitational  potential.  Likewise,  positive  charge  flows
from region of higher electric potential to region of lower electric potential and negative
charge flows from region of lower electric potential to region of higher electric potential.
So battery or electric cell simply creates potential difference across the conductor.

The electric current in a conductor is defined as the rate of flow of charges through
a given cross-sectional area A. It is shown

Charges flow across the area A

If a net charge Q passes through any cross section of a conductor in time t, then
the current is defined as I=Q/t. But charge flow is not always constant. Hence current can
more generally be defined as

Iavg = ∆Q/∆t

Where ∆Q is the amount of charge that passes through the conductor at any cross
section during the time interval ∆t.If the rate at which charge flows changes with time, the
current  also  changes.  The  instantaneous  current  I  is  defined  as  the  limit  of  the  average
current, as ∆t → 0
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0
lim

t

Q dQI
t dtD ®

D
= =

D

11
1
CA
s

=

That  is,  1A  of  current  is  equivalent  to  1  coulomb  of  charge  passing  through  a
perpendicular  cross  section in  a  conductor  in  one second.  The electric  current  is  a  scalar
quantity.

EXAMPLE

Compute the current in the wire if a charge of 120 C is flowing through a copper wire in 1
minute.

Solution

The current (rate of flow of charge) in the wire is

120 2
60

QI A
t

= = =

Conventional Current

Direction of conventional current and electron flow

In  an  electric  circuit,  arrow  heads  are  used  to  indicate  the  direction  of  flow  of
current. By convention, this flow in the circuit should be from the positive terminal of the
battery to the negative terminal. This current is called the conventional current or simply
current  and  is  in  the  direction  in  which  a  positive  test  charge  would  move.  In  typical
circuits  the  charges  that  flow  are  actually  electrons,  from  the  negative  terminal  of  the
battery  to  the  positive  terminal.  As  a  result,  the  flow  of  electrons  and  the  direction  of
conventional  current  point  in  opposite  direction as  shown.  Mathematically,  a  transfer  of
positive charge is thesame as a transfer of negative charge in the opposite direction.

v Electric current is not only produced by batteries. In nature, lightning bolt produces
enormous  electric  current  in  a  short  time.  During  lightning,  very  high  potential
difference  is  created  between  the  clouds  and  ground  and  hence  charges  flow
between the clouds and ground.

Drift velocity
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In  a  conductor  the  charge  carriers  are  free  electrons.  These  electrons  move  freely
through the conductor and collide repeatedly with the positive ions. If there is no electric
field,  the  electrons  move  in  random  directions,  and  hence  their  velocities  are  also
randomly oriented. On an average, the number of electrons travelling in any direction will
be equal to the number of electrons travelling in the opposite direction. As a result, there
is no net flow of electrons in any direction and hence there will not be any current.

Suppose a potential difference is set across the conductor by connecting a battery, an
electric  field r E  is  created  in  the  conductor.  This  electric  field  exerts  a  force  on  the
electrons,  producing  a  current.  The  electric  field  accelerates  the  electrons,  while  ions
scatter the electrons and change their direction of motion. Thus, we see zigzag motion of
electrons. In addition to the zigzag motion due to the collisions, the electrons move slowly
along the conductor in a direction opposite to that of E

ur
 as shown.

Ions

Any material is made up of neutral atoms with equal number of electrons and protons.
If the outermost electrons leave the atoms, they become free electrons and are responsible
for  electric  current.  The  atoms  after  losing  their  outer  most  electrons  will  have  more
positive charges and hence are called positive ions. These ions will not move freely within
the material like the free electrons. Hence the positive ions will not give rise to current.

Zig-zag motion and drift velocity

This velocity is called drift velocity dV
uur

. The drift velocity is the average velocity acquired
by the electrons inside the conductor whenit is subjected to an electric field. The average
time  between  two  successive  collisions  is  called  the  mean  free  time  denoted  by  τ.  The
acceleration a

r
 experienced by the electron in an electric field E

ur
 is given by

(sin )eEa ce F eE
m

-
= = -

ur
r ur ur

The drift velocity dV
uur

 is given by

dV at=
uur r

d
eV E
m
t

= -
uur ur

dV Em= -
uur ur
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E X AM P LE

If  an  electric  field  of  magnitude  570  N  C–1,  is  applied  in  the  copper  wire,  find  the
acceleration experienced by the electron.

Solution

E = 570 N C–1, e = 1.6 × 10–19 C,

m = 9.11 × 10–31 kg and a = ?

F = ma = eE

19

31

570 1.6 10
9.11 10

eEa
m

-

-

´ ´
= =

´

19 31912 10 10
9.11

-´ ´
=

14 21.001 10 ms-= ´

Misconception

i. There is a common misconception that the battery is the source of electrons. It is not
true. When a battery is connected across the given wire, the electrons in the closed
circuit resulting the current. Battery sets the potential difference (electrical energy)
due to which these electrons in the conducting wire flow in a particular direction.
The resulting electrical energy is used by electric bulb, electric fan etc. Similarly the
electricity board is supplying the electrical energy to our home.

ii. We often use the phrases like ‘charging the battery in my mobile’ and ‘my mobile
phone battery has no charge’ etc. These sentences are not correct.

When  we  say  ‘battery  has  no  charge’,  it  means,  that  the  battery  has  lost
ability  to  provide  energy  or  provide  potential  difference  to  the  electrons  in  the
circuit.  When  we  say  ‘mobile  is  charging’,  it  implies  that  the  battery  is  receiving
energy from AC power supply and not electrons.

Microscopic model of current

Consider a conductor with area of cross section A and let an electric field
E
ur

be applied to it from right to left. Suppose there are n electrons per unit volume in the
conductor  and  assume  that  all  the  electrons  move  with  the  same  drift  velocity dV

uur
 as

shown.
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Microscopic model of current

The drift velocity of the electrons = vd

If the electrons move through a distance dx within a small interval of dt, then

;d d
dxV dx v dt
dt

= =

Since A is the area of cross section of the conductor,  the electrons available in the
volume of length dx is

 = volume × number of electrons per unit volume
Adx n= ´

Substituting for dx from equation (2.7) in (2.8)

= (A vddt ) n

Total charge in the volume element dQ = (charge) × (number of electrons in the volume
element)

dQ = (e)(Avddt)n

Hence the current dQI
dt

=

dQI
dt

=

Current density (J)

The  current  density  (J)  is  defined  as  the  current  per  unit  area  of  cross  section  of  the
conductor.

IJ
A

=

The S.I unit of current density is A/m2 (or) A m–2
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dneAVJ
A

=

dJ neV=

The above expression is valid only when the direction of the current is perpendicular
to the area A. In general, the current density is a vector quantity and it is given by

dJ neV=
ur uur

Substituting dV
uur

 from equation (2.4)

2.n eJ E
m

t
= -

ur ur

J Es= -
ur ur

But  conventionally,  we  take  the  direction  of  (conventional)  current  density  as  the
direction of electric field. So the above equation becomes

J Es=
ur ur

Where
2.n e

m
t

s =  is called conductivity. The equation (2.12) is called microscopic form

of ohm’s law.

The inverse of conductivity is called resistivity (ρ) [Refer section 2.2.1]

21 .n e
m

t
r

s
= =

EXAMPLE

A copper wire of cross-sectional area 0.5 mm2 carries a current of
0.2  A.  If  the  free  electron  density  of  copper  is  8.4  ×  1028 m–3 then  compute  the  drift
velocity of free electrons.

Solution

The relation between drift velocity of electrons and current in a wire of crosssectional
area A is
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28 19 6

0.2
8.4 10 1.6 10 0.5 10d

IV
neA - -= =

´ ´ ´ ´ ´

3 10.03 10dV ms- -= ´

EXAMPLE

Determine the number of  electrons flowing per  second through a  conductor,  when a
current of 32 A flows through it.

Solution

 I = 32 A, t = 1 s
Charge of an electron, e = 1.6 × 10–19 C
The number of electrons flowing per second, n =?

q neI
t t

= =

Itn
e

=

19

32 1
1.6 10

n
C-

´
=

´

19 2020 10 2 10n electrons= ´ = ´

OHM’S LAW

The ohm’s law can be derived from the equation J = σE. Consider a segment of wire
of length l and cross sectional area A as shown in Figure 2.7.

Current through the conductor

When  a  potential  difference  V  is  applied  across  the  wire,  a  net  electric  field  is
created in the wire which constitutes the current in the wire. For simplicity, we assume
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that  the  electric  field  is  uniform  in  the  entire  length  of  the  wire,  then  the  potential
difference (voltage V) can be written as

V = El

As we know, the magnitude of current density

VJ E
l

s s= =

But IJ
A

= ,  so we write the equation

I V
A l

s=

By rearranging the above equation, we get

lV I
As

æ ö= ç ÷
è ø

The quantity l
As

 is called resistance of the conductor and it is denoted as R. Note that

the  resistance  is  directly  proportional  to  the  length  of  the  conductor  and  inversely
proportional to area of cross section.

Therefore, the macroscopic form of ohm’s law can be stated as

V = IR

From the above equation, the resistance is the ratio of potential difference across the
given conductor to the current passing through the conductor.

VR
I

=

The SI unit of resistance is ohm (Ω). From the equation (2.16), we infer that the graph
between  current  versus  voltage  isstraight  line  with  a  slope  equal  to  the  inverse  of
resistance R of the conductor. It is shown in the Figure 2.8 (a).



89 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

Current against voltage for
(a) a conductor which obeys Ohm’s law and

(b) for a non-ohmic device (Diode given in XII physics, unit 9 is an example of a non-
ohmic device)

Materials  for  which  the  current  versus  voltage  graph  is  a  straight  line  through  the
origin,  are  said to  obey Ohm’s  law and their  behaviour  is  said to  be  ohmic  as  shown in
Figure 2.8(a). Materials or devices that do not follow Ohm’s law are said to be nonohmic.
These materials have more complex relationships between voltage and current. A plot of I
versus V for a non-ohmic material is non-linear and they do not have a constant resistance
(Figure 2.8(b)).

E X AM P LE

A potential difference across 24 Ω resistor is 12 V. What is the current through the resistor?

 Solution

V = 12 V and R = 24 Ω
Current, I = ?

From Ohm’s law, 12 0.5
24

VI A
R

= = =

Resistivity

In the previous section, we have seen that the resistance R of any conductor is given by
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lR
As

=

Where σ is called the conductivity of the material and it depends only on the type of the
material used and not on its dimension.

The resistivity of a material is equal to the reciprocal of its conductivity.

1r
s

=

Now we can rewrite equation (2.18) using equation (2.19)

lR
A

r=

The resistance of a material is directly proportional to the length of the conductor and
inversely  proportional  to  the  area  of  cross  section  of  the  conductor.  The  proportionality
constant ρ is called the resistivity of the material.

If  l  =  1  m  and  A  =  1  m2,  then  the  resistance  R  =  ρ.  In  other  words, the  electrical
resistivity  of  a  material  is  defined  as  the  resistance  offered  to  current  flow  by  a
conductor of unit length having unit area of cross section. The SI unit of ρ is ohm-metre
(Ω  m).  Based  on  the  resistivity,  materials  are  classified  as  conductors,  insulators  and
semiconductors. The conductors have lowest resistivity, insulators have highest resistivity
and semiconductors have resistivity greater than conductors but less than insulators. The
typical resistivity values of some conductors,  insulators and semiconductors are given in
the Table 2.1

Resistivity for various materials

Material Resistivity, ρ (Ω m) at 20 ◦ C
Insulators
Pure Water 2.5 × 105

Glass 1010 – 1014

Hard Rubber 1013 – 1016

NaCl 1014

Fused Quartz 1016

Semiconductors
Germanium 0.46
Silicon 640
Conductors
Silver 1.6 × 10–8

Copper 1.7 × 10–8
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Aluminium 2.7 × 10–8

Tungsten 5.6 × 10–8

Iron 10 × 10–8

EXAMPLE

The resistance of a wire is 20 Ω. What will be new resistance, if it is stretched uniformly
8 times its original length?

Solution

R1 = 20 Ω, R2 = ?

Let the original length of the wire (l1) be l.
New length, l2 = 8l1 (i.,e) l2 =8l

Original resistance, 1
1

1

lR
A

r=

New resistance 2
2

2 2

(8 )l lR
A A

rr= =

Though the wire is stretched, its volume remains unchanged.

Initial volume = Final volume

A1l1 = A2 l2, A1l = A2 (8l)

1

2

8 8A l
A l

= =

By dividing equation for R2 by equation for R1, we get

2 1

1 2

(8 )R Al
R A l

r
r

= ´

2 1

1 2

8R A
R A

= ´

Substituting the value of 1

2

A
A

, we get

2

1

8 8 64R
R

= ´ =
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R2 = 64 × 20=1280 Ω

Hence, stretching the length of the wire has increased its resistance.

EXAMPLE

Consider a rectangular block of metal of height A, width B and length C as shown in
the figure.

If  a  potential  difference  of  V  is  applied  between  the  two  faces  A  and  B  of  the  block
(figure  (a)),  the  current  I  AB  is  observed.  Find  the  current  that  flows  if  the  same
potential  difference  V  is  applied  between  the  two  faces  B  and  C  of  the  block  (figure
(b)). Give your answers in terms of I AB.

Solution

In the first case, the resistance of the block

AB
length CR
Area AB

r r= =

The current .AB
AB

V V ABI
R Cr

= =

In the second case, the resistance of the block BC
AR

BC
r=

The current .BC
BC

V V BCI
R Ar

= =

To express IBCinterms of IAB, we multiply and divide equation (2) by AC, we get

2 2

2 2. . . .BC AB
V BC AB V AB C CI I

A C C A Ar r
æ ö

= = =ç ÷
è ø

Since C > A, the current IBC> IAB

v The  human  body  contains  a  large  amount  of  water  which  has  low  resistance  of
around 200 Ω and the dry skin has high resistance of around 500 k Ω. But when the
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skin  is  wet,  the  resistance  is  reduced  to  around1000  Ω.  This  is  the  reason  why
repairing the electrical connection with the wet skin is always dangerous.

Resistors in series and parallel

An  electric  circuit  may  contain  a  number  of  resistors  which  can  be  connected  in
different  ways.  For  each  type  of  circuit,  we  can  calculate  the  equivalent  resistance
produced by a group of individual resistors.

 Resistors in series

When two or more resistors are connected end to end, they are said to be in series.
The  resistors  could  be  simple  resistors  or  bulbs  or  heating  elements  or  other  devices.
Figure 2.9 (a) shows three resistors R1 , R2 and R3 connected in series.

The amount of charge passing through resistor R1 must also pass through resistors
R2 and R3 since the charges cannot accumulate anywhere in the circuit. Due to this reason,
the current I passing through all the three resistors is the same. According to Ohm’s law, if
same  current  pass  through  different  resistors  of  different  values,  then  the  potential
difference across each resistor must be different.

Resistors in series

If V1, V2 and V3 be the potential differences (voltage) across each of the resistors R1, R2 and
R3 respectively, then we can write V1 = IR1, V2 = IR2 and V3 = IR3. But the supply voltage V
must be equal to the sum of voltages(potential differences) across each resistor.

V = V1 + V2 + V3 = IR1 + IR2 + IR3 (2.21)
V = I (R1 + R2 + R3 )
V = IRS

When several resistors are connected in series, the total or equivalent resistance is the sum
of the individual resistances as shown in the Figure 2.9 (b). Note: The value of equivalent
resistance in series connection will be greater than each individual resistance. EXAMPLE
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2.8  Calculate  the  equivalent  resistance  for  the  circuit  which is  connected to  24  V battery
and also find the potential difference across each resistors in the circuit.

Solution Since the resistors are connected in series, the effective resistance in the circuit = 4
Ω + 6 Ω = 10 Ω current I in the circuit

Resistors  in  parallel  Resistors  are  in  parallel  when  they  are  connected  across  the  same
potential difference as shown in Figure 2.10 (a). In this case, the total current I that leaves
the  battery  is  split  into  three  separate  components.  Let  I  1  ,  I  2  and  I  3  be  the  current
through the resistors R1 , R2 and R3 respectively. Due to the conservation of charge, total
current in the circuit I is equal to sum of the currents through each of the three resistors. I
= I1 + I2 + I3 (2.24) Since the voltage across each resistor is the same, applying Ohm’s law
to each resistor, we have

Resistors in parallel
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Here  RP  is  the  equivalent  resistance  of  the  parallel  combination  of  the  resistors.  Thus,
when  a  number  of  resistors  are  connected  in  parallel,  the  sum  of  the  reciprocals  of
resistance of the individual resistors is equal to the reciprocal of the effective resistance of
the combination as shown in the Figure 2.10 (b). Note: The value of equivalent resistance
in  parallel  connection  will  be  lesser  than  each  individual  resistance.  House  hold
appliances are always connected in parallel  so that even if  one is switched off,  the other
devices could function properly.
EXAMPLE 2.9 Calculate the equivalent resistance in the following circuit and also find the
values of current I, I1 and I2 in the given circuit.

Solution  Since  the  resistances  are  connected  in  parallel,  the  equivalent  resistance  in  the
circuit is

The resistors are connected in parallel, the potential diffrence (voltage) across them is the
same.

The current I is the sum of the currents in the two branches. Then, I = I1 + I2 = 6 A + 4 A =
10 A
EXAMPLE  2.10  Two  resistors  when  connected  in  series  and  parallel,  their  equivalent
resistances are 15 Ω and 56 15Ω respectively. Find the values of the resistances.

R1
2
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+ 56 = 15 R1
R1
2
-15 R1
+ 56 = 0
The above equation can be solved using
factorisation.
R1 = 8 Ω (or) R1 = 7 Ω
If R1
= 8 Ω
Substituting in equation (1)
8 + R2 = 15
R2
 = 15 – 8 = 7 Ω ,
R2
 = 7 Ω i.e , (when R1
 = 8 Ω ; R2
 = 7 Ω)
If R1
= 7 Ω
Substituting in equation (1)
7 + R2 = 15
R2
 = 8 Ω ,i.e , (when R1
 = 7 Ω ; R2
 = 8 Ω )
EXAMPLE 2.11 Calculate the equivalent resistance between A and B in the given circuit

Solution In all the sections, the resistors are connected in parallel. Section 1
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Equivalent resistance is given by R R = +p p R R + p 1 2 3 R = 1 Ω + 2 Ω + 3 Ω = 6 Ω The
circuit becomes,

Equivalent resistance between A and B is

EXAMPLE 2.12  Five  resistors  are  connected in  the  configuration as  shown in  the  figure.
Calculate the equivalent resistance between the points a and b.

Solution Case (a) To find the equivalent resistance between the points a and b, we assume
that a current is entering the junction at a. Since all the resistances in the outside loop are
the  same (1Ω),  the  current  in  the  branches  ac  and ad must  be  equal.  Hence the  points  C
and D are at the same potential and no current through 5 Ω. It implies that the 5 Ω has no
role  in  determining  the  equivalent  resistance  and  it  can  be  removed.  So  the  circuit  is
simplified as shown in the figure.

The equivalent resistance of the circuit between a and b is R eq = 1 Ω

Colour code for Carbon resistors

Resistances used in laboratory

Carbon resistors consists of a ceramic core, on which a thin layer of crystalline carbon is
deposited as shown in Figure 2.11. These resistors are inexpensive, stable and compact in
size.  Colour  rings  are  used  to  indicate  the  value  of  the  resistance  according  to  the  rules
given in the Table 2.2. Three coloured rings are used to indicate the values of a resistor: the
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first  two  rings  are  significant  figures  of  resistances,  the  third  ring  indicates  the  decimal
multiplier after them. The fourth colour, silver or gold,

shows the tolerance of the resistor at 10% or 5% as shown in the Figure 2.12 .If there is no
fourth ring, the tolerance is 20%. For the resistor shown in Figure 2.12, the first digit = 5
(green), the second digit = 6 (blue), decimal multiplier = 103 (orange) and tolerance = 5%
(gold). The value of resistance = 56 × 103 Ω or 56 kΩ with the tolerance value 5%.

Resistor colour coding

Temperature  dependence  of  resistivity  The  resistivity  of  a  material  is  dependent  on
temperature.  It  is  experimentally  found  that  for  a  wide  range  of  temperatures,  the
resistivity  of  a  conductor  increases  with  increase  in  temperature  according  to  the
expression,

whereρT is the resistivity of a conductor at T o C, ρo is the resistivity of the conductor at
some reference temperature To (usually at 20o C) and α is  the temperature coefficient of
resistivity. It is defined as the ratio of increase in resistivity per degree rise in temperature
to its resistivity at To . From the equation (2.27), we can write
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where ∆ρ = ρT – ρo is change in resistivity for a change in temperature ∆T = T – To . Its
unit  is  per  o  C.  α  of  conductors  For  conductors  α  is  positive.  If  the  temperature  of  a
conductor  increases,  the  average  kinetic  energy  of  electrons  in  the  conductor  increases.
This  results  in  more frequent  collisions  and hence the  resistivity  increases.  The graph of
the equation (2.27) is shown in Figure 2.13. Even though, the resistivity of conductors like
metals varies linearly for wide range of temperatures, there also exists a nonlinear region
at very low temperatures. The resistivity approaches some finite value as the temperature
approaches absolute zero as shown in Figure 2.13(b).

(a) Temperature dependence of resistivity for a conductor (b) Non linear region at low
temperature

Using the equation ρ= R A l in equation (2.27), we get the expression for the resistance of a
conductor  at  temperature  T  o  C  as  R  R  T  =  +  (  )  T  T  − oo  1  α  (2.28)  The
temperature coefficient of resistivity can also be obtained from the equation (2.28),

where ∆R R = −T Ro is change in resistance during the change in temperature ∆T T = −To
α  of  semiconductors  For  semiconductors,  the  resistivity  decreases  with  increase  in
temperature.  As  the  temperature  increases,  more  electrons  will  be  liberated  from  their
atoms (Refer unit 9 for conduction in semi conductors).
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Temperature dependence of resistivity for a semiconductor

Hence the current increases and therefore the resistivity decreases as shown in Figure 2.14.
A  semiconductor  with  a  negative  temperature  coefficient  of  resistivity  is  called  a
thermistor. The typical values of temperature coefficients of various materials are given in
table 2.3.

We  can  understand  the  temperature  dependence  of  resistivity  in  the  following  way.  In
section  2.1.3,  we  have  shown  that  the  electrical  conductivity,  σ τ =  ne  m  2  .  As  the
resistivity is inverse of σ, it can be written as

The  resistivity  of  materials  is  i)  inversely  proportional  to  the  number  density  (n)  of  the
electrons  ii)  inversely  proportional  to  the  average  time  between  the  collisions  (τ).  In
metals,  if  the temperature increases, the average time between the collision (τ)  decreases
and  n  is  independent  of  temperature.  In  semiconductors  when  temperature  increases,  n
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increases and τ decreases, but increase in n is dominant than decreasing τ, so that overall
resistivity decreases.

v The resistance of certain materials become zero below certain temperature Tc. This
temperature  is  known  as  critical  temperature  or  transition  temperature.  The
materials  which  exhibit  this  property  are  known  as  superconductors.  This
phenomenon  was  first  observed  by  KammerlinghOnnes  in  1911.  He  found  that
mercury  exhibits  superconductor  behaviour  at  4.2  K.  Since  R  =  0,  current  once
induced in a superconductor persists without any potential difference.

EXAMPLE  2.13  If  the  resistance  of  coil  is  3  Ω at  200  C  and  α =  0.004/  0  C  then
determine its resistance at 100 0 C.

EXAMPLE  2.14  Resistance  of  a  material  at  200  C  and  400  C  are  45  Ω  and  85  Ω
respectively. Find its temperature coefficient of resistivity. Solution T0 = 20 0 C, T = 40
0 C, R0 = 45 Ω , R= 85 Ω

ENERGY  AND  POWER  IN  ELECTRICAL  CIRCUITS  When  a  battery  is  connected
between  the  ends  of  a  conductor,  a  current  is  established.  The  battery  is  supplying
energy  to  the  device  which  is  connected  in  the  circuit.  Consider  a  circuit  in  which  a
battery of voltage V is connected to the resistor as shown in Figure 2.15. Assume that a
positive  charge  of  dQ  moves  from  point  a  to  b  through  the  battery  and  moves  from
point c to d through the resistor and back to point a. When the charge
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Energy given by the battery

moves  from  point  a  to  b,  it  gains  potential  energy  dU  =  V.dQ  and  the  chemical
potential  energy  of  the  battery  decreases  by  the  same  amount.  When  this  charge  dQ
passes  through resistor  it  loses  the  potential  energy dU = V.dQ due to  collision with
atoms in  the  resistor  and again reaches  the  point  a.  This  process  occurs  continuously
till  the  battery  is  connected  in  the  circuit.  The  rate  at  which  the  charge  loses  its
electrical potential energy in the resistor can be calculated. The electrical power P is the
rate at which the electrical potential energy is delivered,

Since the electric current I dQdt= , the equation (2.31) can be rewritten as P = VI (2.32)
This  expression  gives  the  power  delivered  by  the  battery  to  any  electrical  system,
where I is the current passing through it and V is the potential difference across it. The
SI unit of electrical power is watt (1W = 1 Js–1). Commercially, the electrical bulbs used
in houses come with the power and voltage rating of 5W-220V, 30W-220V, 60W-220V
etc. (Figure 2.16).
Usually these voltage rating refers AC RMS voltages.  For a given bulb, if  the voltage
drop  across  the  bulb  is  greater  than  voltage  rating,  the  bulb  will  fuse.  Using  Ohm’s
law, power delivered to the resistance R is expressed in other forms

v The electrical power produced (dissipated) by a resistor is I2 R. It  depends on the
square of the current. Hence, if current is doubled, the power will increase by four
times. Similar explanation holds true for voltage also.

The  total  electrical  energy  used  by  any  device  is  obtained  by  multiplying  the  power
and  duration  of  the  time  when  it  is  ON.  If  the  power  is  in  watts  and  the  time  is  in
seconds,  the  energy  will  be  in  joules.  In  practice,  electrical  energy  is  measured  in
kilowatt hour (kWh). 1 kWh is known as 1 unit of electrical energy. (1 kWh = 1000 Wh
= (1000 W) (3600 s) = 3.6 × 106 J)

v The Tamilnadu Electricity Board is charging for the amount of energy you use and
not  for  the  power.  A  current  of  1A  flowing  through  a  potential  difference  of  1V
produces a power of 1W
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EXAMPLE  2.15  A  battery  of  voltage  V  is  connected  to  30  W  bulb  and  60  W  bulb  as
shown in the figure. (a) Identify brightest bulb (b) which bulb has greater resistance?
(c) Suppose the two bulbs are connected in series, which bulb will glow brighter?

Solution (a) The power delivered by the battery P = VI. Since the bulbs are connected
in parallel,  the voltage drop across each bulb is the same. If  the voltage is kept fixed,
then the power is directly proportional to current (P ∝ I). So 60 W bulb draws twice as
much as current as 30 W and it will glow brighter than 30 W bulb.

(b) To calculate the resistance of the bulbs, we use the relation P V R = 2 . In both the
bulbs,  the voltage drop is the same. So the power is inversely proportional to the
resistance or resistance is inversely proportional to the power R P ∝  1     

    . It implies that, the 30W has twice as much as resistance as 60 W bulb. (c)
When the  bulbs  are  connected in  series,  the  current  passing through each bulb  is
the same. It is equivalent to two resistors connected in series. The bulb which has
higher  resistance  has  higher  voltage  drop.  So  30W  bulb  will  glow  brighter  than
60W bulb. So the higher power rating does not always imply more brightness and
it depends whether bulbs are connected in series or parallel.  EXAMPLE 2.16 Two
electric bulbs marked 20 W – 220 V and 100 W – 220 V are connected in series to
440  V  supply.  Which  bulb  will  get  fused?  Solution  To  check  which  bulb  will  get
fused, the voltage drop across each bulb has to be calculated. The resistance of the
bulb,

(c)
For 100W-220V bulb,
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Both the bulbs are connected in series. So same current will pass through both the
bulbs. The current that passes through the circuit, I V Rtot= .

The 20 W bulb will get fused because the voltage across it is more than the voltage
rating.

ELECTRIC CELLS AND BATTERIES An electric cell converts chemical energy into
electrical energy to produce electricity. It contains two electrodes (carbon and zinc)
immersed in an electrolyte (sulphuric acid) as shown in Figure 2.17. Several electric
cells  connected  together  form  a  battery.  When  a  cell  or  battery  is  connected  to  a
circuit,  electrons flow from the negative terminal to the positive terminal through
the circuit. By using chemical reactions, a battery

Simple electric cell

produces  potential  difference  across  its  terminals.  This  potential  difference
provides  the  energy  to  move  the  electrons  through  the  circuit.  Commercially
available electric cells and batteries are shown in Figure 2.18.
Electromotive  force  and  internal  resistance  A  battery  or  cell  is  called  a  source  of
electromotive  force  (emf).  The  term  ‘electromotive  force’  is  a  misnomer  since  it
does not really refer to a force but describes a potential difference in volts. The emf
of a battery or cell is the voltage provided by the battery when no current flows in
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the external circuit.  It  is shown in Figure 2.19. Electromotive force determines the
amount of work a battery or cell has to do
move a certain amount of charge around the circuit. It is denoted by the symbol ε.
An ideal battery has zero internal resistance and the potential difference (terminal
voltage)  across  the  battery  equals  to  its  emf.  In  reality,  the  battery  is  made  of
electrodes  and  electrolyte,  there  is  resistance  to  the  flow  of  charges  within  the
battery. This resistance is called internal resistance r. For a real battery, the terminal
voltage  is  not  equal  to  the  emf  of  the  battery.  A  freshly  prepared  cell  has  low
internal  resistance  and  it  increases  with  ageing.  2.4.2  Determination  of  internal
resistance The circuit connections are made as shown in Figure 2.20. The emf of cell
ε is  measured  by  connecting  a  high  resistance  voltmeter  across  it  without
connecting the external resistance R as shown in Figure 2.20(a). Since the voltmeter
draws  very  little  current  for  deflection,  the  circuit  may  be  considered  as  open.
Hence the voltmeter reading gives the emf of the cell. Then, external resistance R is
included  in  the  circuit  and  current  I  is  established  in  the  circuit.  The  potential
difference across

Internal resistance of the cell

R is equal to the potential difference across the cell (V) as shown in Figure 2.20(b).
The potential drop across the resistor R is V = IR (2.35) Due to internal resistance r
of the cell,  the voltmeter reads a value V, which is less than the emf of cell  ε.  It  is
because, certain amount of voltage (Ir) has dropped across the internal resistance r.
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Since ε,  V and R are known,  internal  resistance r  can be determined.  We can also
find  the  total  current  that  flows  in  the  circuit.  Due  to  this  internal  resistance,  the
power  delivered  to  the  circuit  is  not  equal  to  power  rating  mentioned  in  the
battery. For a battery of emf ε, with an internal resistance r, the power delivered to
the circuit of resistance R is given by P = Iε = I (V + Ir) (from equation 2.36) Here V
is the voltage drop across the resistance R and it is equal to IR. Therefore, P = I (IR
+Ir)
P = I2 R + I2 r (2.38) Here I 2 r is the power delivered to the internal resistance and I
2 R is the power delivered to the electrical device (here it is the resistance R). For a
good battery, the internal resistance r is very small, then I 2 r << I 2 R and almost
entire power is delivered to the external resistance. EXAMPLE 2.17 A battery has
an emf of 12 V and connected to a resistor of 3 Ω. The current in the circuit is 3.93A.
Calculate  (a)  terminal  voltage and the internal  resistance of  the  battery (b)  power
delivered  by  the  battery  and  power  delivered  to  the  resistor  Solution  The  given
values I = 3.93 A, ε = 12 V, R = 3 Ω (a) The terminal voltage of the battery is equal to
voltage drop across the resistor V = IR = 3.93 × 3 = 11.79 V
The internal resistance of the battery

(b)  The  power  delivered  by  the  battery  P  =  Iε =  3.93  ×  12  =  47.1  W  The  power
delivered to the resistor = I 2 R = 46.3 W The remaining power P = (47.1 – 46.3) =
0.8 W is delivered to the internal resistance and cannot be used to do useful work.
(It  is  equal  to  I  2  r).  2.4.3  Cells  in  series  Several  cells  can  be  connected  to  form  a
battery.  In  series  connection,  the  negative  terminal  of  one cell  is  connected to  the
positive  terminal  of  the  second  cell,  the  negative  terminal  of  second  cell  is
connected  to  the  positive  terminal  of  the  third  cell  and  so  on.  The  free  positive
terminal  of  the  first  cell  and the free  negative  terminal  of  the  last  cell  become the
terminals of the battery. Suppose n cells, each of emf ε volts and internal resistance
r ohms are connected in series with an external resistance R as shown in Figure 2.21

cells in series

The total emf of the battery = nεThe total resistance in the circuit = nr + R By Ohm’s
law, the current in the circuit is
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Thus, if r is negligible when compared to R the current supplied by the battery is n
times that supplied by a single cell.

It is the current due to a single cell. That is, current due to the whole battery is the
same  as  that  due  to  a  single  cell  and  hence  there  is  no  advantage  in  connecting
several  cells.  Thus  series  connection  of  cells  is  advantageous  only  when  the
effective internal resistance of the cells is negligibly small compared with R.
EXAMPLE 2.18 From the given circuit,

Find  i)  Equivalent  emf  of  the  combination  ii)  Equivalent  internal  resistance  iii)
Total  current  iv)  Potential  difference  across  external  resistance  v)  Potential
difference across each cell Solution i) Equivalent emf of the combination ε eq = nε =
4 × 9 = 36 V ii) Equivalent internal resistance r eq = nr = 4 × 0.1 = 0.4 Ω

iv) Potential difference across external resistance V = IR = 3.46 × 10 = 34.6 V. The
remaining  1.4  V  is  dropped  across  the  internal  resistances  of  cells.  v)  Potential
difference across each cell V n = = 34 6 4 8 65 . . V
Cells  in  parallel  In  parallel  connection  all  the  positive  terminals  of  the  cells  are
connected to one point and all the negative terminals to a second point. These two
points  form  the  positive  and  negative  terminals  of  the  battery.  Let  n  cells  be
connected in parallel  between the points A and B and a resistance R is connected
between  the  points  A  and  B  as  shown  in  Figure  2.22.  Let  ε be  the  emf  and  r  the
internal resistance of each cell.
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Cells in parallel

The equivalent internal resistance of the battery is 1 1 1 1 r rrr n n r eq = + + = .... ( )
terms . So r r n eq = and the total resistance in the circuit = R r n + . The total emf is
the  potential  difference  between  the  points  A  and  B,  which  is  equal  to  ε.  The
current in the circuit is given by

where  I1  is  the  current  due to  a  single  cell  ε r          when R is
negligible.  Thus,  the  current  through  the  external  resistance  due  to  the  whole
battery is n times the current due to a single cell.

The  above  equation  implies  that  current  due  to  the  whole  battery  is  the  same  as
that due to a single cell. Hence it is advantageous to connect cells in parallel when
the external resistance is very small compared to the internal resistance of the cells.

EXAMPLE 2.19 For the given circuit
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Find  i)  Equivalent  emf  ii)  Equivalent  internal  resistance  iii)  Total  current  (I)  iv)
Potential difference across each cell v) Current from each cell Solution i) Equivalent
emf ε eq = 5 V ii) Equivalent internal resistance,

iv) Potential difference across each cell V = IR = 0.5 × 10 = 5 V v) Current from each
cell, I′ = I n I′ = = 0 5 4 0 125 . . A
KIRCHHOFF’S  RULES  Ohm’s  law  is  useful  only  for  simple  circuits.  For  more
complex circuits, Kirchhoff ’s rules can be used to find current and voltage. There
are two generalized rules:  i)  Kirchhoff  ’s  current  rule  ii)  Kirchhoff  ’s  voltage rule.
2.5.1 Kirchhoff’s first rule (Current rule or Junction rule) It states that the algebraic
sum of  the  currents  at  any junction of  a  circuit  is  zero.  It  is  a  statement  of  law of
conservation of electric charge. The charges that enter a given junction in a circuit
must leave that junction since charge cannot build up or disappear at a junction. By
convention,  current  entering the  junction is  taken as  positive  and current  leaving
the junction is taken as negative.

Kirchhoff ’s current rule
Applying this law to the junction A in Figure 2.23 I1 + I2 – I3 – I4 – I5 = 0 (or) I1 + I2
= I3 + I4 + I5 EXAMPLE 2.20 For the given circuit find the value of I.

Solution  Applying  Kirchhoff  ’s  rule  to  the  point  P  in  the  circuit,  The  arrows
pointing towards P are  positive  and away from P are  negative.  Therefore,  0.2A –
0.4A + 0.6A – 0.5A + 0.7A – I = 0 1.5A – 0.9A – I = 0 0.6A – I = 0 I = 0.6 A
Kirchhoff’s Second rule (Voltage rule or Loop rule) It states that in a closed circuit
the algebraic sum of the products of the current and resistance of each part of the



110 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

circuit  is  equal  to  the  total  emf included in  the  circuit.  This  rule  follows from the
law of conservation of energy for an isolated system (The energy supplied by the
emf  sources  is  equal  to  the  sum  of  the  energy  delivered  to  all  resistors).  The
product  of  current  and  resistance  is  taken  as  positive  when  the  direction  of  the
current is followed. Suppose if the direction of current is opposite to the direction
of the loop, then product of current and voltage across the resistor is negative. It is
shown in Figure 2.24 (a) and (b). The emf is considered positive when proceeding
from the negative to the positive terminal of the cell. It is shown in Figure 2.24 (c)
and (d).

Kirchhoff voltage rule

Kirchhoff voltage rule has to be applied only when all currents in the circuit reach a
steady  state  condition  (the  current  in  various  branches  are  constant).  EXAMPLE
2.21  The  following  figure  shows  a  complex  network  of  conductors  which  can  be
divided  into  two  closed  loops  like  EACE  and  ABCA.  Apply  Kirchhoff’s  voltage
rule (KVR),

Solution Thus applying Kirchhoff ’s second law to the closed loop EACE I1 R1 + I2
R2 + I3 R3 = ε and for the closed loop ABCA I4 R4 + I5 R5 -I2 R2 = 0
Solution
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We can denote the current that flows from 9V battery as I1 and it splits up into I2
and  (I1  –  I2  )  at  the  junction  E  according  Kirchhoff  ’s  current  rule  (KCR).  Now
consider the loop EFCBE and apply KVR, we get 1I2 + 3I1 + 2I1 = 9 5I1 + I2 = 9 (1)
Applying  KVR  to  the  loop  EADFE,  we  get  3  (I1  –  I2  )  –  1I2  =  6  3I1  –  4I2  =  6  (2)
Solving equation (1) and (2), we get I1 = 1.83 A and I2 = –0.13 A It implies that the
current  in  the  1  ohm  resistor  flows  from  F  to  E.  2.5.3  Wheatstone’s  bridge  An
important application of Kirchhoff ’s rules is the Wheatstone’s bridge. It is used to
compare  resistances  and  in  determining  the  unknown  resistance  in  electrical
network. The bridge consists of four resistances P, Q, R and S connected as shown
in  Figure  2.25.  A  galvanometer  G  is  connected  between  the  points  B  and  D.  The
battery is connected between the points A and C. The current

Wheatstone’s bridge

through  the  galvanometer  is  I  G  and  its  resistance  is  G.  Applying  Kirchhoff  ’s
current rule to junction B and D respectively. I1 – IG – I3 = 0 (2.45) I2 + IG – I4 = 0
(2.46) Applying Kirchhoff ’s voltage rule to loop ABDA, I1 P + IGG – I2 R = 0 (2.47)
Applying Kirchhoff  ’s  voltage  rule  to  loop ABCDA, I1  P  +  I3  Q –  I4  S  –  I2  R = 0
(2.48) When the points B and D are at the same potential,  the bridge is said to be
balanced.  As  there  is  no  potential  difference  between  B  and  D,  no  current  flows
through  galvanometer  (IG  =  0).  Substituting  IG  =  0  in  equation  (2.45),  (2.46)  and
(2.47), we get I1 = I3
I2 = I4 (2.50) I1 P = I2 R (2.51) Using equation (2.51) in equation (2.48) I3 Q = I4 S
(2.52) Dividing equation (2.52) by equation (2.51), we get P Q R S = (2.53) This is the
condition for bridge balance. Only under this condition, galvanometer shows null
deflection. Suppose we know the values of two adjacent resistances, the other two
resistances  can  be  compared.  If  three  of  the  resistances  are  known,  the  value  of
unknown resistance (fourth one) can be determined.
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EXAMPLE 2.23 In a Wheatstone’s bridge P = 100 Ω, Q = 1000 Ω and R = 40 Ω. If the
galvanometer shows zero deflection, determine the value of S.
Solution

EXAMPLE 2.24 What is the value of x when the Wheatstone’s network is balanced?
P = 500 Ω, Q = 800 Ω, R = x + 400, S = 1000 Ω

Solution

Meter bridge The meter bridge is another form of Wheatstone’s bridge. It consists
of a uniform wire of manganin AB of one meter length. This wire is stretched along
a  metre  scale  on  a  wooden  board  between  two  copper  strips  C  and  D.  Between
these two copper strips another copper strip E is mounted to enclose two gaps G1
and G2 as shown in Figure 2.26. An unknown resistance P is connected in G1 and a
standard  resistance  Q  is  connected  in  G2  .  A  jockey  (conducting  wire-contact
maker)  is  connected  to  the  terminal  E  on  the  central  copper  strip  through  a
galvanometer  (G)  and a  high resistance  (HR).  The exact  position of  jockey on the
wire  can  be  read  on  the  scale.  A  Lechlanche  cell  and  a  key  (K)  are  connected
between the ends of the bridge wire.
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Meter bridge
The position of the jockey on the wire is adjusted so that the galvanometer shows
zero  deflection.  Let  the  position  of  jockey  at  the  wire  be  at  J.  The  resistances
corresponding to AJ and JB of the bridge wire form the resistances R and S of the
Wheatstone’s bridge. Then for the bridge balance

where r is the resistance per unit length of wire.

The  bridge  wire  is  soldered  at  the  ends  of  the  copper  strips.  Due  to  imperfect
contact,  some resistance  might  be  introduced at  the  contact.  These  are  called end
resistances. This error can be eliminated, if another set of readings is taken with P
and  Q  interchanged  and  the  average  value  of  P  is  found.  To  find  the  specific
resistance of the material of the wire in the coil P, the radius a and length l of the
wire  are  measured.  The specific  resistance or  resistivity  ρ  can be calculated using
the relation.

EXAMPLE 2.25 In a meter bridge experiment with a standard resistance of 15 Ω in
the  right  gap,  the  ratio  of  balancing  length  is  3:2.  Find  the  value  of  the  other
resistance. Solution Q = 15 Ω, l 1 :l2 = 3:2
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EXAMPLE  2.26  In  a  meter  bridge  experiment,  the  value  of  resistance  in  the
resistance box connected in the right gap is 10 Ω.  The balancing length is l  1 = 55
cm. Find the value of unknown resistance. Solution Q = 10 Ω

Potentiometer  Potentiometer  is  used  for  the  accurate  measurement  of  potential
differences,  current  and  resistances.  It  consists  of  ten  meter  long  uniform  wire  of
manganin  or  constantan  stretched  in  parallel  rows  each  of  1  meter  length,  on  a
wooden board. The two free ends A and B are brought to the same side and fixed
to copper strips with binding screws. A meter scale is fixed parallel to the wire. A
jockey  is  provided  for  making  contact.  The  principle  of  the  potentiometer  is
illustrated in Figure 2.27. A steady current is maintained across the wire CD by a
battery Bt.
The battery, key and the potentiometer wire connected in series form the primary
circuit. The positive terminal of a primary cell of emf ε is connected to the point C
and negative terminal is connected to the jockey through a galvanometer G and a
high resistance HR. This forms the secondary circuit.

Potentiometer
Let  the  contact  be  made  at  any  point  J  on  the  wire  by  jockey.  If  the  potential
difference  across  CJ  is  equal  to  the  emf  of  the  cell  ε,  then  no  current  will  flow
through  the  galvanometer  and  it  will  show  zero  deflection.  CJ  is  the  balancing
length  l.  The  potential  difference  across  CJ  is  equal  to  Irl  where  I  is  the  current
flowing through the wire and r is the resistance per unit length of the wire. Hence ε
=  Irl  (2.58)  Since  I  and  r  are  constants,  ε ∝ l.  The  emf  of  the  cell  is  directly
proportional  to  the balancing length.  2.5.6  Comparison of  emf of  two cells  with a
potentiometer To compare the emf of two cells, the circuit connections are made as
shown in Figure 2.28. Potentiometer wire CD is connected to a battery Bt and a key
K in
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series.  This  is  the  primary  circuit.  The  end  C  of  the  wire  is  connected  to  the
terminal M of a DPDT (Double Pole Double Throw) switch and the other terminal
N is connected to a jockey through a galvanometer G and a high resistance HR. The
cells whose emf ε1 and ε2 to be compared are connected to the terminals M1 ,N1
and M2 ,N2 of the DPDT switch. The positive terminals of Bt, ε1 and ε2 should be
connected to the same end C.

Comparison of emf of two cells

The  DPDT  switch  is  pressed  towards  M1  ,  N1  so  that  cell  ε1  is  included  in  the
secondary circuit and the balancing length l 1 is found by adjusting the jockey for
zero deflection. Then the second cell ε2 is included in the circuit and the balancing
length l 2 is determined. Let r be the resistance per unit length of the potentiometer
wire and I be the current flowing through the wire. we have ε1 = Irl1 (2.59) ε2 = Irl2
(2.60) By dividing equation (2.59) by (2.60)

By including a rheostat (Rh) in the primary circuit, the experiment can be repeated
several  times  by  changing  the  current  flowing  through  it.  2.5.7  Measurement  of
internal resistance of a cell by potentiometer To measure the internal resistance of a
cell,  the  circuit  connections  are  made  as  shown  in  Figure  2.29.  The  end  C  of  the
potentiometer wire is connected to the positive terminal of the battery Bt and the
negative terminal of the battery is connected to the end D through a key K1 . This
forms the primary circuit.

measurement of internal resistance
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The  positive  terminal  of  the  cell  of  emf  ε whose  internal  resistance  is  to  be
determined is also connected to the end C of the wire. The negative terminal of the
cell  ε is  connected  to  a  jockey  through  a  galvanometer  and  a  high  resistance.  A
resistance  box  R  and  key  K2  are  connected  across  the  cell  ε.  With  K2  open,  the
balancing point J  is obtained and the balancing length CJ = l  1 is measured. Since
the cell is in open circuit, its emf is ε ∝ l 1
A  suitable  resistance  (say,  10  Ω)  is  included  in  the  resistance  box  and  key  K2  is
closed. Let r be the internal resistance of the cell. The current passing through the
cell and the resistance R is given by

When this potential difference is balanced on the potentiometer wire, let l 2 be the
balancing length.

Substituting  the  values  of  the  R,  l  1  and  l  2,  the  internal  resistance  of  the  cell  is
determined.  The experiment  can be repeated for  different  values  of  R.  It  is  found
that the internal resistance of the cell is not constant but increases with increase of
external  resistance  connected  across  its  terminals.  2.6  HEATING  EFFECT  OF
ELECTRIC  CURRENT  When  current  flows  through  a  resistor,  some  of  the
electrical  energy  delivered  to  the  resistor  is  converted  into  heat  energy  and  it  is
dissipated. This heating effect of current is known as Joule’s heating effect. Just as
current  produces  thermal  energy,  thermal  energy  may  also  be  suitably  used  to
produce an electromotive force. This is known as thermoelectric effect. 2.6.1 Joule’s
law If a current I flows through a conductor kept across a potential difference V for
a time t, the work done or the electric potential energy spent is W = VIt (2.66) In the
absence of any other external effect,  this energy is spent in heating the conductor.
The  amount  of  heat(H)  produced  is  H  =  VIt  (2.67)  For  a  resistance  R,  H  =  I2  Rt
(2.68)  This  relation  was  experimentally  verified  by  Joule  and  is  known  as  Joule’s
law of  heating.  It  states  that  the  heat  developed in  an electrical  circuit  due to  the
flow of current varies directly as (i)  the square of the current (ii)  the resistance of
the circuit and (iii) the time of flow. EXAMPLE 2.27 Find the heat energy produced
in a resistance of 10 Ω when 5 A current flows through it for 5 minutes.
Solution
R = 10 Ω, I = 5 A, t = 5 minutes = 5 × 60 s
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H = I 2
Rt
 = 52
 × 10 × 5 × 60
 = 25 × 10 × 300
 = 25 × 3000
 = 75000 J (or) 75 kJ
Application of Joule’s heating effect 1. Electric heaters Electric iron, electric heater,
electric  toaster  shown in  Figure  2.30  are  some of  the  home appliances  that  utilize
the heating effect of current. In these appliances, the heating elements are made of
nichrome, an alloy of nickel and chromium. Nichrome has a high specific resistance
and can be heated to very high temperatures without oxidation.

EXAMPLE  2.28  An  electric  heater  of  resistance  10  Ω  connected  to  220  V  power
supply is immersed in the water of 1 kg. How long the electrical heater has to be
switched on to increase its temperature from 30°C to 60°C. (Specific heat capacity
of water is s = 4200 J kg–1 K–1)
Solution According to  Joule’s  heating law H = I  2  Rt  The current  passed through
the  electrical  heater  =  220  10  22  V  A  Ω  =  Heat  produced  in  one  second  by  the
electrical heater H = I2 R Heat produced in one second H = (22)2 × 10 = 4840 J  =
4.84 k J. In fact the power rating of this electrical heater is 4.84 k W. The amount of
heat energy to increase the temperature of 1kg water from 30°C to 60°C is
Q = ms ∆T (Refer XI physics vol 2, unit 8) Here m = 1 kg, s = 4200 J kg–1 K–1, ∆T =
30 K, so Q = 1 × 4200 × 30 = 126 kJ The time required to produce this heat energy t
Q I R = = × 2 ≈ 3 126 10 4840 26 03 .s
Q = ms ∆T (Refer XI physics vol 2, unit 8)
Here m = 1 kg,
 s = 4200 J kg–1 K–1,
∆T = 30 K,
so Q = 1 × 4200 × 30 = 126 kJ
The time required to produce this heat
energy t Q
I R = = × 2 ≈
3 126 10
4840
26 03 .s
2. Electric fuses Fuses as shown in Figure 2.31, are connected in series in a circuit to
protect  the  electric  devices  from  the  heat  developed  by  the  passage  of  excessive
current. It is a short length of a wire made of a low melting point material. It melts
and  breaks  the  circuit  if  current  exceeds  a  certain  value.  An  alloy  of  lead  -  tin  is
used for fuses when current rating is below 15 A and when current rating is above
15  A,  copper  fuse  wires  are  used.  The  only  disadvantage  with  the  above  fuses  is
that  once  fuse  wire  is  burnt  due  to  excessive  current,  they  need  to  be  replaced.
Nowadays in houses, circuit breakers
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Electric Fuse

. Electric furnace Furnaces as shown in Figure 2.33 are used to manufacture a large
number of technologically important materials such as steel, silicon carbide, quartz,
gallium  arsenide,  etc.  To  produce  temperatures  up  to  1500°C,  molybdenum-
nichrome  wire  wound  on  a  silica  tube  is  used.  Carbon  arc  furnaces  produce
temperatures up to 3000°C.

4.  Electrical  lamp  It  consists  of  a  tungsten  filament  (melting  point  33800  C)  kept
inside a glass bulb and heated to incandescence by current. In incandescent electric
lamps  only  about  5%  of  electrical  energy  is  converted  into  light  and  the  rest  is
wasted  as  heat.  Electric  discharge  lamps,  electric  welding  and  electric  arc  also
utilize the heating effect of current as shown in Figure 2.34

THERMOELECTRIC EFFECT Conversion of temperature differences into electrical
voltage  and  vice  versa  is  known  as  thermoelectric  effect.  A  thermoelectric  device
generates voltage when there is a temperature difference on each side. If a voltage
is applied, it generates a temperature difference.
2.7.1  Seebeck  effect  Seebeck  discovered  that  in  a  closed  circuit  consisting  of  two
dissimilar metals,  when the junctions are maintained at different temperatures an
emf  (potential  difference)  is  developed.  The  current  that  flows  due  to  the  emf
developed is called thermoelectric current. The two dissimilar metals connected to
form two junctions is known as thermocouple (Figure 2.35).

Seebeck effect (Thermocouple)

If the hot and cold junctions are interchanged, the direction of current also reverses.
Hence  the  effect  is  reversible.  The  magnitude  of  the  emf  developed  in  a
thermocouple  depends on (i)  the  nature  of  the  metals  forming the  couple  and (ii)
the temperature difference between the junctions. Applications of Seebeck effect 1.
Seebeck  effect  is  used  in  thermoelectric  generators  (Seebeck  generators).These
thermoelectric  generators  are  used  in  power  plants  to  convert  waste  heat  into
electricity.
2. This effect is utilized in automobiles as automotive thermoelectric generators for
increasing  fuel  efficiency.  3.  Seebeck  effect  is  used  in  thermocouples  and
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thermopiles  to  measure  the  temperature  difference  between the  two objects.  2.7.2
Peltier  effect  In  1834,  Peltier  discovered  that  when  an  electric  current  is  passed
through a circuit of a thermocouple, heat is evolved at one junction and absorbed
at the other junction. This is known as Peltier effect.

Peltier effect: Cu – Fe thermocouple

In  the  Cu-Fe  thermocouple  the  junctions  A  and  B  are  maintained  at  the  same
temperature.  Let  a  current  from a  battery  flow through the  thermocouple  (Figure
2.36 (a)). At the junction A, where the current flows from Cu to Fe, heat is absorbed
and the junction A becomes cold. At the junction B, where the current flows from
Fe  to  Cu  heat  is  liberated  and  it  becomes  hot.  When  the  direction  of  current  is
reversed, junction A
gets heated and junction B gets cooled as shown in the Figure 2.36(b). Hence Peltier
effect  is  reversible.  2.7.3  Thomson effect  Thomson showed that  if  two points  in  a
conductor are at different temperatures, the density of electrons at these points will
differ  and  as  a  result  the  potential  difference  is  created  between  these  points.
Thomson effect is also reversible.

7 (a) Positive Thomson effect (b) Negative Thomson effect
If current is passed through a copper bar AB which is heated at the middle point C,
the  point  C  will  be  at  higher  potential.  This  indicates  that  the  heat  is  absorbed
along AC and evolved along CB of the conductor as shown in Figure 2.37(a). Thus
heat is transferred due to the current flow in the direction of the current. It is called
positive  Thomson effect.  Similar  effect  is  observed in  metals  like  silver,  zinc,  and
cadmium. When the copper  bar  is  replaced by an iron bar,  heat  is  evolved along
CA and absorbed along BC. Thus heat is transferred due to the current flow in the
direction opposite to the direction of current. It is called negative Thomson effect as
shown  in  the  Figure  2.37(b).  Similar  effect  is  observed  in  metals  like  platinum,
nickel, cobalt, and mercury.



120 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187


