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PHYSICS
TEST – 6

11th physics Unit 2 Kinematics

Unit 3 Laws Of Motion

Unit 4 Work, Energy And Power

11TH VOL - I
UNIT 2 KINEMATICS

INTRODUCTION

Physics is basically an experimental science and rests on two pillars–Experiments and
mathematics.  Two  thousand  three  hundred  years  ago  the  Greek  librarian  Eratosthenes
measured the radius of the Earth. The size of the atom was measured much later, only in the
beginning of the 20th century. The central aspect in physics is motion. Motion is found at all
levels–from microscopic level (within the atom) to macroscopic and galactic level (planetary
system and beyond). In short the entire Universe is governed by various types of motion. The
study of various types of motion is expressed using the language of mathematics.

How  do  objects  move?  How  fast  or  slow  do  they  move?  For  example,  when  ten
athletes run in a race, all of them do not run in the same manner. Their performance cannot
be  qualitatively  recorded  by  usage  of  words  like  ‘fastest’,  ‘faster’,  ‘average’,  ‘slower’  or
‘slowest’.  It  has  to  be  quantified.  Quantifying  means  assigning  numbers  to  each  athlete’s
motion. Comparing these numbers one can analyse how fast or slow each athlete runs when
compared to others. In this unit, the basic mathematics needed for analyzing motion in terms
of its direction and magnitude is covered.

Kinematics is the branch of mechanics which deals with the motion of objects without
taking force into account. The Greek word “kinema” means “motion”.

CONCEPT OF REST AND MOTION
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The concept of rest and motion can be well understood by the following elucidation. A
person sitting in a moving bus is at rest with respect to a fellow passenger but is in motion
with respect to a person outside the bus. The concepts of rest and motion have meaning only
with  respect  to  some  reference  frame.  To  understand  rest  or  motion  we  need  a  convenient
fixed reference frame.

Frame of Reference:

If we imagine a coordinate system and the position of an object is described relative to
it, then such a coordinate system is called frame of reference. At any given instant of time, the
frame of  reference  with  respect  to  which the  position of  the  object  is  described in  terms of
position coordinates (x, y, z) (i.e., distances of the given position of an object along the x, y,
and z–axes.) is called “Cartesian coordinate system”.

It is to be noted that if the x, y and z axesare drawn in anticlockwise direction thenthe
coordinate  system  is  called  as  “right–handed  Cartesian  coordinate  system”.Though  other
coordinate systems do exist,in physics we conventionally follow theright–handed coordinate
system.

Illustrates the difference between left and right handed coordinate systems.

Point mass

To explain the motion of an object which has finite mass, the concept of “point mass”
is required and is very useful. Let the mass of any object be assumed to be concentrated at a
point. Then this idealized mass is called “point mass”. It has no internal structure like shape
and size. Mathematically a point mass has finite mass with zero dimension. Even though in
reality a point mass does not exist,  it  often simplifies our calculations. It  is  to be noted that
the  term  “point  mass”  is  a  relative  term.  It  has  meaning  only  with  respect  to  a  reference
frame and with respect to the kind of motion that we analyse.

Examples

v To  analyse  the  motion  of  Earth  with  respect  to  Sun,  Earth  can  be  treated  as  a  point
mass. This is because the distance between the Sun and Earth is very large compared
to the size of the Earth.

v If we throw an irregular object like a small stone in the air, to analyse its motion it is
simpler to consider the stone as a point mass as it moves in space. The size of the stone
is very much smaller than the distance through which it travels.

Types of motion

In our day‒to‒day life the following kinds of motion are observed:



3 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

Linear motion

An object is said to be in linear motion if it moves in a straight line.

Examples

1. An athlete running on a straight track
2. A particle falling vertically downwards to the Earth.

Circular motion

Circular  motion  is  defined  as  a  motion  described  by  an  object  traversing  a  circular
path.

Examples

1. The whirling motion of a stone attached to a string
2. The motion of a satellite around the Earth

Rotational motion

If any object moves in a rotational motion about an axis, the motion is called ‘rotation’.
During rotation every point in the object transverses a circular path about an axis, (except the
points located on the axis).

Examples

1. Rotation of a disc about an axis through its center
2. Spinning of the Earth about its own axis.

Vibratory motion

If an object or particle executes a to–and– fro motion about a fixed point, it is said to be
in vibratory motion. This is sometimes also called oscillatory motion.

Examples

1. Vibration of a string on a guitar
2. Movement of a swing

Other types of motion like elliptical motion and helical motion are also possible.

Motion in One, Two and Three Dimensions

Let the position of a particle in space be expressed in terms of rectangular coordinates
x, y and z. When these coordinates change with time, then the particle is said to be in motion.
However, it is not necessary that all the three coordinates should together change with time.
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Even if one or two coordinates changes with time, the particle is said to be in motion. Then
we have the following classification.

Motion in one dimension

One dimensional motion is the motion of a particle moving along a straight line.

This motion is sometimes known as rectilinear or linear motion.

In this motion, only one of the three rectangular coordinates specifying the position of
the object changes with time.

For example, if a car moves from position A to position B along x–direction, as shown
in Figure 2.8, then the variation in x–coordinate alone is noticed.

Examples

1. Motion of a train along a straight railway track.
2. An object falling freely under gravity close to Earth

Motion in two dimensions

If  a  particle  is  moving  along  a  curved  path  in  a  plane,  then  it  is  said  to  be  in  two
dimensional motion.

In  this  motion,  two  of  the  three  rectangular  coordinates  specifying  the  position  of
object change with time.

Examples

1. Motion of a coin on a carrom board.
2. An insect crawling over the floor of a room.

Motion in three dimensions

A particle moving in usual three dimensional space has three dimensional motion.

In  this  motion,  all  the  three  coordinates  specifying  the  position  of  an  object  change
with respect to time. When a particle moves in three dimensions, all the three coordinates x,
y and z will vary.

Examples

1. A bird flying in the sky.
2. Random motion of a gas molecule.
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3. Flying of a kite on a windy day.

ELEMENTARY CONCEPTS OF VECTOR ALGEBRA

In physics, some quantities possess only magnitude and some quantities possess both
magnitude  and  direction.  To  understand  these  physical  quantities,  it  is  very  important  to
know the properties of vectors and scalars.

Scalar

It  is  a  property  which  can  be  described  only  by  magnitude.  In  physics  a  number  of
quantities can be described by scalars.

Examples

Distance, mass, temperature, speed and energy

Vector

It is a quantity which is described by both magnitude and direction. Geometrically a
vector is a directed line segment which is shown in Figure 2.10. In physics certain quantities
can be described only by vectors.

Examples

Force,  velocity,  displacement,  position  vector,  acceleration,  linear  momentum  and
angular momentum.

Magnitude of a Vector

The  length  of  a  vector  is  called  magnitude  of  the  vector.  It  is  always  a  positive
quantity. Sometimes the magnitude of a vector is also called ‘norm’ of the vector. For a vector

A
ur

the magnitude or norm is denoted by A
ur

 or simply ‘A’.

Different types of Vectors
Equal vectors:

Two  vectors A
ur

 and B
ur

said  to  be  equal  when  they  have  equal  magnitude  and  same
direction and represent the same physical quantity

Collinear vectors: Collinear vectors are those which act along the same line. The angle
between them can be 0° or 180°.

Parallel Vectors:

If  two  vectors  A  and  B  act  in  the  same  direction  along  the  same  line  or  on  parallel
lines, then the angle between them is 00



6 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

Anti–parallel vectors:

Two vectors A
ur

and B
ur

 are said to be anti–parallel when they are in opposite directions
along the same line or on parallel lines. Then the angle between them is 1800

Unit vector:

A vector divided by its magnitude is a unit vector. The unit vector for A
ur

 is denoted by

Â  (read as A cap or A hat). It has a magnitude equal to unity or one.

Thus, we can say that the unit vector specifies only the direction of the vector quantity.

Orthogonal  unit  vectors:  Let î , ĵ and k̂ be  three  unit  vectors  which  specify  the

directions along positive x–axis, positive y–axis and positive z–axis respectively.These three
unit  vectors  are  directedperpendicular  to  each  other,  the  anglebetween  any  two  of  them  is

90°. î , ĵ and k̂ are  examples  of  orthogonal  vectors.Two  vectors  which  are  perpendicular

toeach other are called orthogonal vectors.

Addition of Vectors

Since vectors have both magnitude and direction they cannot be added by the method
of  ordinary  algebra.  Thus,  vectors  can  be  added  geometrically  or  analytically  using  certain
rules  called  ‘vector  algebra’.  In  order  to  find  the  sum  (resultant)  of  two  vectors,  which  are
inclined to each other, we use

1. Triangular law of addition method
2. Parallelogram law of vectors.

Triangular Law of addition method

Let us consider two vectors A
ur

 and B
ur

To  find  the  resultant  of  the  two  vectors  we  apply  the  triangular  law  of  addition  as
follows:

Represent  the  vectors A
ur

and B
ur

 by  the  two  adjacent  sides  of  a  triangle  taken  in  the
same order. Then the resultant is given by the third side of the triangle.
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To explain further, the head of the first vector A
ur

 is connected to the tail of the second

vector B
ur

. Let θ be the angle between A
ur

and B
ur

. Then R
ur

 is the resultant vector connecting the

tail of the first vector A
ur

 to the head of the second vector B
ur

. The magnitude of R
ur

 (resultant) is

given geometrically by the length of R
ur

 (OQ) and the  direction of  the  resultant  vector  is  the

angle between R
ur

 and A
ur

 . Thus we write

R
ur

= A
ur

+ B
ur

.

Magnitude of resultant vector

The magnitude and angle of the resultant vector are determined as follows.

From  consider  thetriangle  ABN,  which  is  obtained  byextending  the  side  OA  to  ON.
ABN is aright angled triangle.

which is the magnitude of the resultant of A
ur

 and B
ur

Direction of resultant vectors:

If θ is the angle between A
ur

and B
ur

, then

If R
ur

makes an angle α with A
ur

, then in ΔOBN,
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Two vectors

A
ur

and B
ur

  of magnitude 5 units and 7 units respectively make an angle 60° with each
other  as  shown  below.  Find  the  magnitude  of  the  resultant  vector  and  its  direction  with

respect to the vector A
ur

.

By following the law of triangular addition, the resultant vector is given by

R
ur

= A
ur

+ B
ur

The magnitude of the resultant vector R
ur

 is given by

The angle α  between R
ur

 and A
ur

 is given by

Subtraction of vectors

Since  vectors  have  both  magnitude  and  direction  two  vectors  cannot  be  subtracted
from each other by the method of ordinary algebra. Thus, this subtraction can be done either
geometrically or analytically. We shall now discuss subtraction of two vectors geometrically.

For two non-zero vectors A
ur

 and B
ur

 which are inclined to each other at an angle θ, the

difference A
ur

- B
ur

 is obtained as follows. First obtain - B
ur

. The angle between A
ur

 and - B
ur

 is 180–
θ.
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The difference A
ur

- B
ur

 is the same as the resultant of A
ur

 and - B
ur

We can A
ur

- B
ur

= A
ur

+(- B
ur

) write and using the equation.

Since, cos(180 −θ ) = −cosθwe, get

But sin(180° − θ) = sinθ hence we get

Thus the difference A
ur

- B
ur

 is a vector with magnitude and direction given by equations.

Two vectors

A
ur

and B
ur

 of magnitude 5 units and 7 units make an angle 60° with each other. Find the

magnitude of the difference vector A
ur

- B
ur

and its direction with respect to the vector A
ur

.

The angle that A
ur

- B
ur

 makes with the vector A
ur

 is given by

COMPONENTS OF A VECTOR

In  the  Cartesian  coordinate  system  any  vector A
ur

can  be  resolved  into  three
components along x, y and z directions.

Consider  a  3–dimensional  coordinate  system.  With  respect  to  this  a  vector  can  be
written in component form as
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.

Here  Ax  is  the  x–component  of A
ur

,  Ay  is  the  y–component  of A
ur

 and  Az is  the  z

component of A
ur

.

In a 2–dimensional Cartesian coordinate system.

If A
ur

 makes an angle θ  with x axis, and Ax and Ay are the components of A
ur

 along x–
axis and y–axis respectively.

where ‘A’ is the magnitude (length) of the vector A
ur

,
2 2

x y
A A A= +

What are the unit vectors along the negative x–direction, negative y–direction, and negative
z– direction?

The unit vectors along the negative directions can be shown as in the following figure.

1. The unit vector along the negative x direction î= −
2. The unit vector along the negative y direction ĵ= −
3. The unit vector along the negative z direction k̂= −

Vector addition using components

In the previous section we have learnt about addition and subtraction of two vectors
using  geometric  methods.  But  once  we  choose  a  coordinate  system,  the  addition  and
subtraction of vectors becomes much easier to perform.

The two vector A
ur

and B
ur

in a Cartesian coordinate system can be expressed as

Then the addition of two vectors is equivalent to adding their corresponding x, y and
z components.
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Similarly the subtraction of two vectors is equivalent to subtracting the corresponding
x, y and z components.

The above rules form an analytical way of adding and subtracting two vectors.

Two  vectors A
ur

and B
ur

are  given  in  the  component  form  as ˆˆ ˆ5 7 4A i j k= + −
ur

and

ˆˆ ˆ6 3 2B i j k= + +
ur

. Find A
ur

+ B
ur

, B
ur

+ A
ur

, A
ur

- B
ur

, B
ur

- A
ur

Note that the vectors A
ur

+ B
ur

and B
ur

+ A
ur

are same and the vectors A
ur

- B
ur

and B
ur

- A
ur

are opposite to
each other.

A  vector A
ur

multiplied  by  a  scalar  λ  results  in  another  vector,λ A
ur

.  If  λ is  a  positive

number then λ A
ur

is also in the direction of A
ur

. If λ is a negative number, λ A
ur

 is in the opposite

direction to the vector A
ur

.

The vector 3 A
ur

 is in the same direction as vector A
ur

.

A vector A
ur

is given as in the following Figure. Find 4 A
ur

and -4 A
ur

Solution

In  physics,  certain  vector  quantities  canbe  defined  as  a  scalar  times  another  vector
quantity.
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For example

Force. F ma=
ur r

Here mass ‘m’ is a scalar, and a
r

 is the acceleration. Since ‘m’ is always a
positive scalar, the direction of force is always in the direction of acceleration.

Linear momentum p mv=
ur r

.Here v
r

is the velocity. The direction of linear momentum is

also in the direction of velocity.

Force F qE=
ur ur

Here the electric charge ‘ q’  is a scalar, and E
ur

is the electric field. Since

charge can be positive or negative, the direction of force F
ur

 is  correspondingly either in the

direction of E
ur

or opposite to the direction of E
ur

.

Scalar Product of Two Vectors
Definition

The  scalar  product  (or  dot  product)  of  two  vectors  is  defined  as  the  product  of  the
magnitudes of both the vectors and the cosine of the angle between them.

Thus  if  there  are  two  vectors A
ur

and B
ur

 having  an  angle  θ  between  them,  then  their

scalar product is defined as A
ur

. B
ur

= AB cosθ. Here, A and B are magnitudes of A
ur

and B
ur

.

Properties

The  product  quantity A
ur

. B
ur

is  always  a  scalar.  It  is  positive  if  the  angle  between  the
vectors  is  acute  (i.e.,  <  90°)  and  negative  if  the  angle  between  them  is  obtuse  (i.e.  90°<θ<
180°).

The scalar product is commutative,

A
ur

. B
ur

= B
ur

. A
ur

The vectors obey distributive law i.e.

The angle between the vectors

The  scalar  product  of  two  vectors  will  be  maximum  when  cos  θ =  1,  i.e.  θ =  0°,  i.e.,
when the vectors are parallel;
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The  scalar  product  of  two  vectors  will  be  minimum,  when  cos  θ =  –1,  i.e.  θ =

180°( A
ur

. B
ur

)max=AB when the vectors are anti-parallel.

If  two  vectors A
ur

and B
ur

are  perpendicular  to  each  other  then  their  scalar  product

A
ur

. B
ur

= 0 , because cos 90°=0. Then the vectors A
ur

and B
ur

 are said to be mutually orthogonal.

The scalar product of a vector with itself is termed as self–dot product and is given by

( A
ur

)2= A
ur

. A
ur

=AA Cosθ =A2.Here angle θ = 0°

The magnitude or norm of the vector

In case of a unit vector n̂

n̂ . n̂ =1× 1×  cos0=1. For example î . î = ĵ . ĵ =
ˆ ˆ.k k =1

In the case of orthogonal unit vectors î , ĵ and k̂

In terms of components the scalar product of A
ur

and B
ur

can be written as

The magnitude of vector A
ur

is given by

Given two vectors ˆˆ ˆ2 4 5A i j k= + +
ur

 and ˆˆ ˆ3 6B i j k= + +
ur

Find the product .A B
uurur

and the

magnitudes of A
ur

and B
ur

. What is the angle between them?

Solution
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Magnitude 4 16 25 45A = + + = units

Magnitude 1 9 36 46B = + + = units

The angle between the two vectors is given by

Check whether the following vectors are orthogonal.

1. ˆ ˆ2 3A i j= +
ur

 and ˆ ˆ4 5B i j= −
ur

2. ˆ ˆ5 2C i j= +
ur

 and ˆ ˆ2 5D i j= −
ur

Solution

Hence A
ur

 and B
ur

are not orthogonal to each other

Hence, C
ur

 and D
ur

are orthogonal to each other.

It  is also possible to geometrically show that the vectors C
ur

 and D
ur

 are orthogonal to
each other. This is shown in the following Figure.

In  physics,  the  work  done  by  a  force F
ur

to  move  an  object  through  a  small

displacement d r
r

is defined as,

The  work  done  is  basically  a  scalar  product  between  the  force  vector  and  the
displacement  vector.  Apart  from  work  done,  there  are  other  physical  quantities  which  are
also defined through scalar products.
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The Vector Product of Two Vectors
Definition

The vector product or cross product of two vectors is defined as another vector having
a magnitude equal to the product of the magnitudes of two vectors and the sine of the angle
between them. The direction of the product vector is perpendicular to the plane containing
the two vectors, in accordance with the right hand screw rule or right hand thumb rule

Thus, if A
ur

 and B
ur

 are two vectors, then their vector product is written as A
ur

× B
ur

which

is a vector C
ur

defined by

The  direction n̂ of A
ur

× B
ur

 i.e.,C
ur

 is  perpendicular  to  the  plane  containing  the  vectors

A
ur

and B
ur

 and is in the sense of advancement of a right handed screw rotated A
ur

 (first vector)

to B
ur

 (second vector) through the smaller angle between them. Thus, if a right-handed screw

whose axis is perpendicular to the plane formed by ฀ A and B, is rotated from A
ur

to B
ur

through
the  smaller  angle  between  them,  then  the  direction  of  advancement  of  the  screw  gives  the

direction of A
ur

× B
ur

i.e.C
ur

Properties of vector (cross) product.

The  vector  product  of  any  two  vectors  is  always  another  vector  whose  direction  is
perpendicular to the plane containing these two vectors,  i.e.,  orthogonal to both the vectors

A
ur

and B
ur

even thoughthe vectors A
ur

 and B
ur

may or maynot be mutually orthogonal.

The  vector  product  of  two  vectors  is  not  commutative, A B B A× ≠ ×
ur ur ur ur

But,

A B B A × = − × 
ur ur ur ur

.Here it is worthwhile to note that sinA B B A AB θ× = × =
ur ur ur ur

in the case

of the product vectors A B×
ur ur

and B A×
ur ur

 the magnitudes are equal but directions are opposite
to each other.

The  vector  product  of  two  vectors  will  have  maximum  magnitude  when sinθ =1.

θ =90o. when the vectors A
ur

 and B
ur

 are orthogonal to each other.

( )
max

ˆA B ABn× =
ur ur

The  vector  product  of  two  non–zero  vectors  will  be  minimum  when sin 0θ = ,

0oθ = or 180o

( )
min

0A B× =
ur ur
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the  vector  product  of  two  non–zero  vectors  vanishes,  if  the  vectors  are  either  parallel  or
antiparallel.

The self–cross product, i.e., product of a vector with itself is the null vector

A
ur

× A
ur

=AA sinθ o n̂ = 0
r

In physics the null vector 0
r

is  simply denoted as zero.

The self–vector products of unit vectors are thus zero.

ˆ ˆˆ ˆ ˆ ˆ 0i i j j k k× = × = × =
r

In the case of orthogonal unit vectors, ˆˆ ˆ, ,i j k in accordance with the right hand screw

rule:

ˆ ˆˆ ˆ ˆ ˆ,i j k j k i× = × = and ˆ ˆ ˆk i j× =

Also, since the cross product is not commutative,

ˆ ˆˆ ˆ ˆ ˆ,j i k k j i× = − × = − and
ˆˆ ˆi k j× = −

In terms of components, the vector product of two vectors A
ur

 and B
ur

is

ˆˆ ˆ

x y z

x y z

i j k

A B A A A

B B B

× =
ur ur

( ) ( ) ( )ˆˆ ˆ
y z z y z x x z x y y x

i A B A B j A B A B k A B A B= − + − + −

Note that in the ˆthj  component the order of multiplicationis different than ˆthi  and ˆth
k

If  two  vectors A
ur

 and B
ur

form  adjacent  sides  in  a  parallelogram,  then  the  magnitude

of A B×
ur ur

 will give the area of the parallelogram as represented graphically

Triangle with A
ur

 and B
ur

as sides is
1

2
A B×
ur ur

.

A  number  of  quantities  used  in  Physics  are  defined  through  vector  products.
Particularly  physical  quantities  representing  rotational  effects  like  torque,  angular
momentum, are defined through vector products.
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Examples

1. Torque r Fτ = ×
r r ur

where F
ur

is Force and r
r

is position vector of a particle

2. Angular momentum L r p= ×
ur r ur

where p
ur

is the linear momentum

3. Linear Velocity v rω= ×
r ur r

where ω
ur

is angular velocity

Two vectors are given as ˆˆ ˆ2 3 5r i j k= + +
r

 and ˆˆ ˆ3 2 4F i j k= − +
ur

Find the resultant

vector r Fτ = ×
r r ur

Solution

( ) ( ) ( )( )

ˆˆ ˆ

2 3 5

3 2 4

ˆˆ ˆ12 10 15 8 4 9

ˆˆ ˆ22 7 13

i j k

r F

i j k

i j k

τ

τ

τ

= × =
−

= − − + − + − −

= + −

r r ur

r

r

Properties of the components of vectors

If two vectors A
ur

and B
ur

are equal, then their individual components are also equal.

Let A
ur

= B
ur

Then

ˆ ˆˆ ˆ ˆ ˆ

, ,

zx y x y z

x x y y z z

A i A j A k B i B j B k

A B A B A B

+ + = + +

= = =

EXAMPLE

Compare the components for the following vector equations

• F ma=
ur r

Here m is positive number

• 0P =
ur

Solution

F ma=
ur r
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ˆ ˆˆ ˆ ˆ ˆ
zx y x y z

F i F j F k m i m j m k+ + = + +

By comparing the components, we get

, ,
m x y y z z

F ma F ma F ma= = =

This implies that one vector equation is equivalent to three scalar equations.

0P =
ur

ˆ ˆˆ ˆ ˆ ˆ0 0 0
zx y x y zP i P j P k i j k+ + = + +

By comparing the components, we get

0, 0, 0
x y z

P P P= = =

EXAMPLE

Determine the value of the T from the given vector equation.

ˆ ˆ ˆ ˆ5 6 3j Tj j Tj− = =

Solution

By comparing the components both sides, we can write

5 − 6 = 3T +T
−1 = 4T

1

4
T = −

EXAMPLE

Compare the components of vector equation 2 3 41F F F F+ + =
uur ur ur ur

Solution

We  can  resolve  all  the  vectors  in  x,  y  and  z  components  with  respect  to  Cartesian
coordinate system.
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Once we resolve the components we can separately equate the x components on both
sides, y components on both sides, and z components on both the sides of the equation, we
then get

2 3 41

2 3 41

2 3 41

x x xx

y y yy

z z zz

F F F F

F F F F

F F F F

+ + =

+ + =

+ + =

uur ur ur ur

uuur ur ur ur

uur ur ur ur

POSITION VECTOR

It  is  a  vector  which  denotes  the  position  of  a  particle  at  any  instant  of  time,  with
respect to some reference frame or coordinate system.

The position vector r
r

of the particle at a point P is given by

ˆˆ ˆr xi yj zk= + +
r

where x, y and z are components of r
r

Determine the position vectors for the following particles which are located at points
P, Q, R, S.

Solution

The position vector for the point P is

ˆ3pr i=
r

The position vector for the point Q is

ˆ ˆ5 4Qr i j= +
r

The position vector for the point R is

ˆ2Rr i= −
r

The position vector for the point S is

ˆ ˆ3 6sr i j= −
r

Example:
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A person initially at rest starts to walk 2 m towards north, then 1 m towards east, then 5 m
towards south and then 3 m towards west.  What is the position vector of the person at the
end of the trip?

Solution

As  shown  in  the  Figure,  the  positive  x  axis  is  taken  as  east  direction,  positive  y
direction is taken as north.

After the trip, the person reaches the point P whose position vector given by

ˆ ˆ2 3r i j= −
r

DISTANCE AND DISPLACEMENT

Distance is the actual path length travelled by an object in the given interval of time
during the motion. It is a positive scalar quantity.

Displacement is the difference between the final and initial positions of the object in a
given  interval  of  time.  It  can  also  be  defined  as  the  shortest  distance  between  these  two
positions of the object and its direction is from the initial to final position of the object, during
the given interval of time. It is a vector quantity.

Example:

Assume your  school  is  located 2  km away from your  home.  In  the  morning you are
going  to  school  and  in  the  evening  you  come  back  home.  In  this  entire  trip  what  is  the
distance travelled and the displacement covered?

Solution

The displacement covered is zero. It is because your initial and final positions are the
same. But the distance travelled is 4 km.

EXAMPLE

An  athlete  covers  3  rounds  on  a  circular  track  of  radius  50  m.  Calculate  the  total
distance and displacement travelled by him.

Solution
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The total distance the athlete covered =3x circumference of track

Distance = 3 × 2π  ×50 m

= 300π  m (or)

Distance ≈ 300 x 3.14 ≈ 942 m

The displacement is zero, since the athlete reaches the same point A after three rounds
from where he started.

Displacement Vector in Cartesian Coordinate System

In terms of position vector, the displacement vector is given as follows. Let us consider

a particle moving from a point P1 having position vector 1 1 1 1
ˆˆ ˆr x i y j z k= + +

ur

to a point P2 where its position vector is 2 2 2 2
ˆˆ ˆr x i y j z k= + +

ur

The displacement vector is given by

2 1r r r∆ = −
r ur ur

2 1 2 1 2 1
ˆˆ ˆ( ) ( ) ( )x x i y y j z z k= − + − + −

EXAMPLE

Calculate the displacement vector for a particle moving from a point P to Q as shown
below. Calculate the magnitude of displacement.

Solution

The displacement vector 2 1r r r∆ = −
r ur ur

with

1 2

2 1

ˆ ˆ ˆ ˆ4 2

ˆ ˆ ˆ ˆ(4 2 ) ( )

ˆ ˆ(4 1) (2 1)

ˆ ˆ3

r i jand r i j

r r r i j i j

i j

r i j

= + = +

∆ = − = + − +

= − + −

∆ = +

r r

r r r

r

The magnitude of the displacement vector

2 23 1 10r unit∆ = + =
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DIFFERENTIAL CALCULUS
The Concept of a function

Any  physical  quantity  is  represented  by  a  “function”  in  mathematics.  Take  the
example  of  temperature  T.  We know that  the  temperature  of  the  surroundings  is  changing
throughout the day. It  increases till  noon and decreases in the evening. At any time “t” the
temperature  T has  a  unique value.  Mathematically  this  variation can be represented by the
notation ‘T (t)’ and it should be called “temperature as a function of time”. It implies that if
the value of ‘t’ is given, then the function “T (t)” will give the value of the temperature at that
time‘t’. Similarly, the position of a bus in motion along the x direction can be represented by
x(t) and this is called ‘x' as a function of time’. Here ‘x’ denotes the x coordinate.

Example

Consider  a  function  f(x)  =  x2.  Sometimes  it  is  also  represented  as  y  =  x2.  Here  y  is
called the dependent variable and x is called independent variable. It means as x changes, y
also  changes.  Once  a  physical  quantity  is  represented  by  a  function,  one  can  study  the
variation of  the  function over  time or  over  the  independent  variable  on which the quantity
depends. Calculus is the branch of mathematics used to analyse the change of any quantity.

If a function is represented by y = f(x), then dy/dx represents the derivative of y with
respect to x. Mathematically this represents the variation of y with respect to change in x, for
various continuous values of x.

Mathematically the derivative dy/dx is defined as follows

0

0

( ) ( )
lim

lim

x

x

dy y x x y x

dx x

y

x

∆ →

∆ →

+ ∆ −=
∆

∆=
∆

dy

dx
represents the limit that the quantity

y

x

∆
∆ attains, as Δx tends to zero.

EXAMPLE

Consider the function y =x2 . Calculatethe derivative
dy

dx
using the concept of limit.

Solution

Let us take two points given by

x1 = 2 and x2 = 3, then y1= 4 and y2 = 9
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Here Δx = 1 and Δy = 5

Then

9 4
5

3 2

y

x

∆ −= =
∆ −

If we take x1 = 2 and x2 = 2.5, then y1= 4 and y2 = (2.5)2 = 6.25

Here Δx =0.5=
1

2
and Δy = 2.25

Then

6.25 4
4.5

0.5

y

x

∆ −= =
∆

If we take x1= 2 and x2 = 2.25, then y1= 4 and y2 = 5.0625

Here Δx =0.25=
1

4
, Δy = 1.0625

5.0625 4 (5.0625 4)

10.25

4

y

x

∆ − −= =
∆

4(5.0625 4) 4.25= − =

If we take x1= 2 and x2= 2.1, then y1= 4 and y2= 4.41

Here Δx =0.1=
1

10
and

(4.41 4)
10(4.41 4) 4.1

1

10

y

x

∆ −= = − =
∆
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From the above table, the following inferences can be made.

As Δx tends to zero
y

x

∆
∆

, x approaches the limit given by the number 4.

At a point x = 2, the derivative
dy

dx
=4.

It should also be mentioned here that Δx→0 does not mean that Δx = 0.

This is because, if we substitute Δx = 0,
y

x

∆
∆ becomes indeterminate.

In general, we can obtain the derivative of the function y = x2, as follows:
2 2 2 2 2

2

0

( ) 2

2
2

lim 2 2
x

y x x x x x x x x

x x x

x x x
x x

x

dy
x x x

dx ∆ →

∆ + ∆ − + ∆ + ∆ −= =
∆ ∆ ∆

∆ + ∆ = + ∆
∆

= + ∆ =

The table below shows the derivatives of some common functions used in physics

In physics,  velocity, speed and acceleration are all  derivatives with respect to time‘t’.
This will be dealt with in the next section.

Example:

Find the derivative with respect to t, of the function x= A0 + A1t + A2 t2 where A0, A1

and A2 are constants.

Solution

Note that here the independent variable is ‘t’ and the dependent variable is ‘x’
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The requived derivative is dx/dt = 0+ A1+2A2t

The second derivative is d2x/d2t = 2A2

INTEGRAL CALCULUS

Integration is  basically  an area  finding process.  For  certain  geometric  shapes  we can
directly find the area. But for irregular shapes the process of integration is used. Consider for
example the areas of a rectangle and an irregularly shaped curve.

The area of the rectangle is simply given by A = length × breadth = (b–a) c

But to find the area of the irregular shaped curve given by f(x), we divide the area into
rectangular strips.

The area under the curve is approximately equal to sum of areas of each rectangular
strip.

This is given by 1 2 3( ) ( ) ( ) ( ) .A f a x f x x f x x f x x≈ ∆ + ∆ + ∆ + ∆

Where f (a) is the value of the functionf (x) at x = a, f (x1 ) is the value of f (x) forx = x1

and so on.

As we increase the number of strips, the area evaluated becomes more accurate. If the
area under the curve is divided into N strips, the area under the curve is given by

1

( )
N

n n

n

A f x x
=

= ∆∑
As the number of strips goes to infinity, N →∞, the sum becomes an integral,

( )

b

a

A f x dx= ∫
(Note: As N →∞, Δx→0)

The integration will give the total area under the curve f (x).

Examples

In physics the work done by a force F(x) on an object to move it from point a to point b
in one dimension is given by
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( )

b

a

W F x dx= ∫
(No scalar products is required here, since motion here is in one dimension)

1. The work done is the area under the force displacement graph

2. The impulse given by the force in an interval of time is calculated between the interval
from time t = 0 to time t = t1 as

1t

0

Impulse I= Fdt∫
The impulse is the area under the force function F (t) - t graph

Consider  a  particle  located  initially  at  point  P  having  position  vector 1r
ur

.  In  a  time

interval Δt the particle is moved to the point Q having position vector 2r
ur

 . The displacement

vector is 2 1.r r r∆ = −
r ur ur

The  average  velocity  is  defined  as  ratio  of  the  displacement  vector  to  the
corresponding time interval

avg

r
v

t

∆=
∆

r
r

It  is  a  vector  quantity.  The  direction  of  average  velocity  is  in  the  direction  of  the

displacement vector ( )r∆
r

.

Average speed

The average speed is defined as the ratio of total path length travelled by the particle
in a time interval.

Average speed = total path length / total time

EXAMPLE

Consider  an  object  travelling  in  a  semicircular  path  from  point  O  to  point  P  in  5
second, as is shown in the Figure. Calculate the average velocity and average speed.

Solution
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1

A v e r a g e  v e l o c i t y

H e r e 5

ˆ0 , 1 0

ˆ1 0 ˆ2
5 s e c

p o

a v g

o p

a v g

r r
v

t

t s

r r i

i
v i c m s −

−=
∆

∆ =

= =

= =

r r
r

r r

r

The average velocity is in the positive x direction.
The average speed = total path length / time taken (the path is semi-circular)

1 15
3.14

5

cm
cm s cm s

s

π π − −= = ≈

Note that the average speed is greater than the magnitude of the average velocity.
Instantaneous velocity or velocity

The instantaneous velocity at an instant t or simply ‘velocity’ at an instant t is defined
as limiting value of the average velocity as Δt →0, evaluated at time t.

In  other  words,  velocity  is  equal  to  rate  of  change of  position vector  with  respect  to
time. Velocity is a vector quantity.

0
lim

t

r d r
v

t dt∆ →

∆= =
∆

r r
r

In component form, this velocity is

ˆˆ ˆ( )

ˆˆ ˆ

Here component of velocity
x

d r d
v xi yj zk

dt dt

dx dy dz
i j k

dt dt dt

dx
v x

dt

= = + +

= + +

= = −

r
r

component of velocity

component of velocity

y

z

dy
v y

dt

dz
v z

dt

= = −

= = −

The magnitude of velocity v is called speed and is given by
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2 2 2

x y zv= v v v+ +
Speed is always a positive scalar. The unit of speed is also meter per second.

EXAMPLE

The position vector of a particle is given
2 ˆˆ ˆ2 3 5 .r ti t j k= + −

r

a. Calculate the velocity and speed of the particle at any instant t
b. Calculate the velocity and speed of the particle at time t = 2 s

Solution

ˆ ˆT h e  v e lo c i ty  v 2 6
d r

i t j
d t

= = +
r

r

2 2 1The  speed  v(t)  =  2 (6 )t ms−+

The velocity of the particle at t = 2 s

ˆ ˆ(2sec) 2 12v i j= +
r

The speed of the particle at t = 2 s

2 2

1

v ( 2 s ) = 2 1 2 4 1 4 4

1 4 8 1 2 . 1 6 m s −

+ = +

= ≈

Note  that  the  particle  has  velocity  components  along  x  and  y  direction.  Along  the  z
direction the position has constant value (−5) which is independent of time. Hence there is no
z-component for the velocity.

EXAMPLE

The velocity  of  three  particles  A,  B,  C are  given below.  Which particle  travels  at  the
greatest speed?

ˆˆ ˆ3 5 2

ˆˆ ˆ2 3

ˆˆ ˆ5 3 4

A

B

C

v i j k

v i j k

v i j k

= − +

= + +

= + +

uur

uur

uur

Solution

We know that speed is the magnitude of the velocity vector. Hence,
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2 2 2

1

Speed of A = (3) ( 5) (2)

9 25 4 38

Av

m s
−

= + − +

= + + =

uur

2 2 2

1

Speed of B = (1) (2) (3)

1 4 9 14

Bv

m s
−

= + +

= + + =

uur

2 2 2

1

Speed of C = (5) (3) (4)

25 9 16 50

Cv

m s
−

= + +

= + + =

uur

The particle C has the greatest speed.

50 38 14> >

EXAMPLE

Two  cars  are  travelling  with  respective  velocities
1

1 10v m s
−=

r

along  east

and
1

2 10v ms−=
r

along west. What are the speeds of the cars?

Solution

Both cars have the same magnitude of velocity. This implies that both cars travel at the
same speed even though they have velocities in different directions. Speed will not give the
direction of motion.

Momentum  The  linear  momentum  or  simply  momentum  of  a  particle  is  defined  as

product of mass with velocity. It is denoted as
` `p
r

. Momentum is also a vector quantity.

Solution

We use p = mv
For the mass of 10 g, m = 0.01 kg

10.01 10 0.1p kg m s
−= × =

For the mass of 1 kg
11 10 10p kg m s

−= × =

Thus even though both the masses have the same speed, the momentum of the heavier
mass is 100 times greater than that of the lighter mass.
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MOTION ALONG ONE DIMENSION
Average velocity

If a particle moves in one dimension, say for example along the x direction, then

2 1

2 1

x
The average velocity =

t

x x

t t

−∆ =
∆ −

The average velocity is also a vector quantity. But in one dimension we have only two
directions  (positive  and  negative  x  direction),  hence  we  use  positive  and  negative  signs  to
denote the direction.

The instantaneous velocity or velocity is defined as v
0

lim
t

x dx

t dt∆ →

∆= =
∆

Graphically the slope of the position-time graph will give the velocity of the particle.
At  the  same  time,  if  velocity  time  graph  is  given,  the  distance  and  displacement  are
determined by calculating the area under the curve. This is explained below.

We know that velocity is given by
dx

dt
=v

Therefore, we can write dx =vdt

By integrating both sides, we get

2 2

1 1

.

x t

x t

dx v dt=∫ ∫

As already seen, integration is equivalent to area under the given curve. So the term
2

1

t

t

v dt∫ represents the area under the curve vas a function of time.

Since the left hand side of the integration represents the displacement travelled by the
particle from time t1 to t2, the area under the velocity time graph will give the displacement
of the particle. If the area is negative, it means that displacement is negative, so the particle
has travelled in the negative direction.

EXAMPLE

A particle moves along the x-axis in such a way that its coordinates x varies with time
't' according to the equation x = 2 - 5t + 6t2. What is the initial velocity of the particle?

Solution

x t t
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2

-1

Velocity, v= (2 5 6 )

or v -5+12t

For initial velocity, t 0

Initial  velocity   -5ms

dx d
t t

dt dt
= − +

=
=

=
The negative sign implies that at t  = 0 the velocity of the particle is along negative x

direction.

Average speed

The  average  speed  is  defined  as  the  ratio  of  the  total  path  length  traveled  by  the
particle in a time interval, to the time interval

Average speed = total path length / total time period

Relative Velocity in One and Two Dimensional Motion

When two objects  A and B are  moving with different  velocities,  then the  velocity  of
one  object  A  with  respect  to  another  object  B  is  called  relative  velocity  of  object  A  with
respect to B.

Case 1

Consider two objects A and B moving with uniform velocities VA and VB,  as shown,

along straight tracks in the same direction ,A BV V
uur uur

with respect to ground.

The relative velocity of object A with respect to object B is AB A BV V V= −
uuur uur uur

The relative velocity of object B with respect to object A is BA B AV V V= −
uuur uur uur

Thus,  if  two  objects  are  moving  in  the  same  direction,  the  magnitude  of  relative
velocity of one object with respect to another is equal to the difference in magnitude of two
velocities.

EXAMPLE

Suppose two cars A and B are moving with uniform velocities with respect to ground
along parallel tracks and in the same direction. Let the velocities of A and B be 35 km h−1 due
east and 40 km h−1 due east respectively. What is the relative velocity of car B with respect to
A?

Solution
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The relative velocity of B with respect to A, BA B A
V V V= −
uuur uur uur

=5 km h-1due east

Similarly, the relative velocity of A with respect to B i.e., AB A B
V V V= −
uuur uur uur

=5 km h-1due west.

To a passenger in the car A, the car B will appear to be moving east with a velocity 5
km h−1. To a passenger in train B, the train A will appear to move westwards with a velocity
of 5 km h−1

Case 2

Consider  two  objects  A  and  B  moving  with  uniform  velocities  VA and  VB  along  the
same straight tracks but opposite in direction

A BV V
→ ←uur uur

The relative velocity of object A with respect to object B is

( )AB A A BBV V V V V= − − = +
ur ur uur ur ur

The relative velocity of object B with respect to object A is

( )BA A A BB
V V V V V= − − = − +
ur uur ur ur ur

Thus,  if  two  objects  are  moving  in  opposite  directions,  the  magnitude  of  relative
velocity  of  one  object  with  respect  to  other  is  equal  to  the  sum  of  magnitude  of  their
velocities.

Case 3

Consider the velocities AV
ur

 and BV
ur

at an angle θ between their directions.

The relative velocity of A with respect to B, AB A BV V V= −
uuur uur uur

Then, the magnitude and direction of AB
V
uuur

 is given by
2 2 2 cos

AB A B A B
V V V V V θ= + −

and
sin

tan
cos

B

A B

V

V V

θβ
θ

=
−  (Here β is angle between ABV

ur
 and BV

uur
)

1. When θ = 0°, the bodies move along parallel straight lines in the same direction,

We have ( )
AB A B

V V V= − in the direction of AV
ur

. Obviously ( )
BA B A

V V V= +  in the

direction of BV
uur

.

2. When θ = 180°, the bodies move along parallel straight lines in opposite directions,
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We  have ( )
AB A B

V V V= + in  the  direction  of AV
ur

.Similarly, ( )
BA B A

V V V= − in  the

direction of BV
uur

.

3. If the two bodies are moving at right angles to each other, then θ = 90°. The magnitude

of the relative velocity of A with respect to
2 2

AB A BB v v v= = + .

4. Consider  a  person moving horizontally  with velocity .MV
ur

Let  rain fall  vertically  with

velocity .RV
ur

 An umbrella  is  held to  avoid the rain.  Then the relative  velocity  of  the
rain with respect to the person is,

. .RM R MV V V= −
ur ur ur

which has magnitude

2 2

RM R MV V V= +

and direction
1tan M

R

V

V
θ −  

=  
 

In order to save himself from the rain, he should hold an umbrella at an angle θ with
the vertical.

EXAMPLE

Suppose two trains A and B are moving with uniform velocities along parallel tracks
but in opposite directions. Let the velocity of train A be 40 km h−1 due east and that of train
B be 40 km h−1 due west. Calculate the relative velocities of the trains

Solution

Relative velocity of A with respect to B, vAB = 80 km h−1 due east

Thus to a passenger in train B, the train A will appear to move east with a velocity of
80 km h−1.

The relative velocity of B with respect to A, VBA = 80 km h−1 due west

To a passenger in train A, the train B will appear to move westwards with a velocity of
80 km h−1.
EXAMPLE
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Consider  two trains  A and B moving along parallel  tracks  with  the  same velocity  in
the same direction. Let the velocity of each train be 50 km h−1 due east. Calculate the relative
velocities of the trains.

Solution

Relative velocity of B with respect to A, vBA = vB − vA

= 50 km h−1 + (−50) km h−1

= 0 km h−1

Similarly, relative velocity of A with respect to B i.e., vAB is also zero.
Thus each train will appear to be at rest with respect to the other.

EXAMPLE

How long will  a boy sitting near the window of a train travelling at 36 km h−1 see a
train  passing  by  in  the  opposite  direction  with  a  speed  of  18  km  h−1.  The  length  of  the
slowmoving train is 90 m.

Solution

The  relative  velocity  of  the  slow-moving  train  with  respect  to  the  boy  is  =  (36  +  18)

1 1 1 15
km h = 54 km h = = 54 15

18
m s m s− − − −× =

Since  the  boy  will  watch  the  full  length  of  the  other  train,  to  find  the  time  taken  to
watch the full train:

90 90
15 6

15
or t s

t
= = =

EXAMPLE

A  swimmer’s  speed  in  the  direction  of  flow  of  a  river  is  12  km  h−1.  Against  the
direction  of  flow  of  the  river  the  swimmer’s  speed  is  6  km  h−1.  Calculate  the  swimmer’s
speed in still water and the velocity of the river flow.

Solution

Let  vs  and  vr,  represent  the  velocities  of  the  swimmer  and  river  respectively  with
respect to ground.

vs + vr = 12 (1)
and vs − vr = 6 (2)
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Adding the both equations (1) and (2) 2vs = 12 + 6 = 18 km h−1 or vs = 9 km h−1.

From Equation (1),

9 + vr = 12 or
vr = 3 km h−1

When  the  river  flow  and  swimmer  move  in  the  same  direction,  the  net  velocity  of
swimmer is 12 km h−1.

Accelerated Motion

During  non-uniform  motion  of  an  object,  the  velocity  of  the  object  changes  from
instant  to  instant  i.e.,  the  velocity  of  the  object  is  no  more  constant  but  changes  with  time.
Such a motion is said to be an accelerated motion.

1. In  accelerated  motion,  if  the  change  in  velocity  of  an  object  per  unit  time  is  same
(constant) then the object is said to be moving with uniformly accelerated motion.

2. On the other hand, if the change in velocity per unit time is different at different times,
then the object is said to be moving with non-uniform accelerated motion.

Average acceleration

If  an object  changes  its  velocity  from 1v
r

2v
r

to  in  a  time interval  Δt  =  t1 −t2  ,  then the
average acceleration is defined as the ratio of change in velocity over the time interval Δt = t1

–t2.

2 1

2 1

avg

v v v
a

t t t

− ∆= =
− ∆

r r r
r

Average acceleration is a vector quantity in the same direction as the vector v∆ .

Instantaneous acceleration

Usually, the average acceleration will give the change in velocity only over the entire
time interval. It will not give value of the acceleration at any instant time t.

Instantaneous acceleration or acceleration of a particle at time ‘t’ is given by the ratio
of change in velocity over Δt, as Δt approaches zero.

Acceleration
0

lim
t

v dv
a

t dt∆ →

∆= =
∆

r r
r
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In other words, the acceleration of the particle at an instant t is equal to rate of change
of velocity.

Acceleration  is  a  vector  quantity.  Its  SI  unit  is  ms−2  and  its  dimensional  formula  is
M0L1T−2

Acceleration  is  positive  if  its  velocity  is  increasing,  and  is  negative  if  the  velocity  is
decreasing. The negative acceleration is called retardation or deceleration.

In terms of components, we can write

ˆˆ ˆyx z
x

dvdv dv dv
a i j k

dt dt dt dt
= + + =

r
r

Thus , ,
yx z

x y z

dvdv dv
a a a

dt dt dt
= = =  are  the  components  of  instantaneous

acceleration.

Since each component of velocity is the derivative of the corresponding coordinate, we
can express the components ax, ay, and az, as

2 2 2

2 2 2
, ,

x y z

d x d y d z
a a a

dt dt dt
= = =

Then the acceleration vector a
r

 itself is

2 2 2 2

2 2 2 2
ˆˆ ˆ

x

d x d y d z d r
a i j k

dt dt dt dt
= + + =

r
r

Thus acceleration is the second derivative of position vector with respect to time.

Graphically the acceleration is the slope in the velocity-time graph. At the same time if
the acceleration-time graph is given, then the velocity can be found from the area under the
acceleration-time graph.

From
a, we have dv adt; hence

dv

dt
= =

2

1

v

t

t

a dt= ∫
For an initial time t1 and final time t2

EXAMPLE

A velocity–time graph is given for a particle moving in x direction, as below
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1. Describe the motion qualitatively in the interval 0 to 55 s .
2. Find the distance and displacement travelled from 0 s to 40 s .
3. Find the acceleration at t = 5 s and at t 20 s

Solution

From O to A: (0 s to 10 s )

At  t  =  0  s  the  particle  has  zero  velocity.  At  t  >  0,  particle  has  positive  velocity  and

moves  in  the  positive  x  direction.  From  0  s  to  10  s  the  slope ( )
dv

dt
 is  positive,  implying  the

particle is accelerating. Thus the velocity increases during this time interval.

From A to B: (10 s to 15 s )

From 10 s to 15 s the velocity stays constant at 60 m s-1. The acceleration is 0 during
this period. But the particle continues to travel in the positive x-direction.

From B to C : (15 s to 30 s )

From the  15  s  to  30  s  the  slope  is  negative,  implying  the  velocity  is   decreasing.  But
the particle is moving in the positive x direction. At t = 30 s the velocity becomes zero, and
the particle comes to rest momentarily at t = 30 s .

From C to D: (30 s to 40 s )

From 30 s to 40 s the velocity is negative. It implies that the particle starts to move in
the negative x direction. The magnitude of velocity increases to a maximum 40 m s-1.

From D to E: (40 s to 55 s )

From 40 s to 55 s the velocity is still negative, but starts increasing from –40 m s-1At t =
55 s the velocity of the particle is zero and particle comes to rest.

The total  area  under  the  curve from 0  s  to  40  s  will  give  the  displacement.  Here  the
area from O to C represents motion along positive x–direction and the area under the graph
from C to D represents the particle's motion along negative x–direction.

The displacement travelled by the particle from 0 s to 10 s =
1

2
 ×10×60 = 300m

The displacement travelled from 10 s to 15 s = 60 × 5 = 300 m

The displacement travelled from 15 s to 30 s =
1

2
 ×15×60 = 450m
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The displacement travelled from 30 s to 40 s =
1

2
 ×10×(−40) = −200m.

Here  the  negative  sign  implies  that  the  particle  travels  200  m  in  the  negative  x
direction.

The total displacement from 0 s to 40 s is given by

300 m + 300 m + 450 m − 200 m = +850 m.

Thus the particle's net displacement is along the positive x-direction.

The total distance travelled by the particle from 0 s to 40 s = 300 + 300 + 450 + 200 =
1250 m.

The acceleration is given by the slope in the velocity-time graph. In the first 10 seconds
the  velocity  has  constant  slope  (constant  acceleration).  It  implies  that  the  acceleration  a  is
from v1 = 0 to v2 = 60 m s-1.

Hence a 2 1

2 1

v v

t t

−=
−

 gives

260 0
a 6

10 0
m s

−−= =
−

Next, the particle has constant negative slope from 15 s to 30 s . In this case v2=0 and

v1=60  m  s-1.  Thus  the  acceleration  at  t  =  20  s  is  given  by
20 60

4
30 15

a m s
−−= = −

− Here  the

negative sign implies that the particle has negative acceleration.

EXAMPLE2.32

If the position vector of the particle is given by
2 ˆˆ ˆ3 5 4r t i tj k= + +

r

Find the

a. The velocity of the particle at t = 3 s
b. Speed of the particle at t = 3 s
c. acceleration of the particle at time t = 3 s

Solution

a. The  velocity
ˆˆ ˆd r dx dy dz

v i j k
dt dt dt dt

= = + +
r

r

We  obtain, ˆ ˆ( ) 6 5v t ti j= +
r

The  velocity

has only two components  vx=6t, depending on time t and vy=5 which is independent
of time.
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The velocity at
ˆ ˆ3 (3) 18 5t s is v i j= = +

r

b. The speed at t = 3 s is
2 2 118 5 349 18.68v m s

−= + = ≈

c. The  acceleration a
r

 is,

2

2
ˆ6

d r
a i

dt
= =

r
r

The  acceleration  has  only  the  x-component.

Note that acceleration here is independent of t, which means a
r

 is constant. Even at t =

3  s  it  has  same  value ˆ6a i=
r

 .  The  velocity  is  non-uniform,  but  the  acceleration  is
uniform (constant) in this case.

EXAMPLE

An object is thrown vertically downward. What is the acceleration experienced by the
object?

Solution

We know that when the object falls towards the Earth, it experiences acceleration due
to  gravity  g  =  9.8  m s−2  downward.  We can  choose  the  coordinate  system as  shown in  the
figure.

The acceleration is along the negative y direction.

ˆ( )a g j gj= − = −
r

Equations of Uniformly Accelerated Motion by Calculus Method

Consider an object moving in a straight line with uniform or constant acceleration ‘a’.

Let u be the velocity of the object at time t = 0, and v be velocity of the body at a later
time t.

Velocity - time relation

a. The  acceleration  of  the  body  at  any   instant  is  given  by  the  first  derivative  of  the
velocity with respect to time,

dv
a or dv a dt

dt
= =

Integrating both sides with the condition that as time changes from 0 to t, the velocity
changes from u to v. For the constant acceleration,
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Displacement – time relation

b. The  velocity  of  the  body  is  given  by  the  first  derivative  of  the  displacement  with
respect to time.

Assume that initially at time t = 0, the particle started from the origin. At  later time t,
the particle displacement is s. Further assuming that acceleration is time independent,
we have

Velocity – displacement relation

c. The acceleration is given by the first derivative of velocity with respect to time.

Integrating the above equation, using the fact when the velocity changes from u2 to v2,
displacement changes from 0 to s, we get
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We can also derive the displacement s in terms of initial velocity u and final velocity v.
From the equation (2.7) we can write,

at = v – u

Substitute this in equation (2.8), we get

The equations (2.7), (2.8), (2.9) and (2.10) are called kinematic equations of motion, and
have a wide variety of practical applications.

Kinematic equations

It is to be noted that all these kinematic equations are valid only if the motion is in a
straight  line  with  constant  acceleration.  For  circular  motion  and  oscillatory  motion  these
equations are not applicable.

Equations of motion under gravity

A practical example of a straight line motion with constant acceleration is the motion
of  an  object  near  the  surface  of  the  Earth.  We  know  that  near  the  surface  of  the  Earth,  the
acceleration  due  to  gravity  ‘g’  is  constant.  All  straight  line  motions  under  this  acceleration
can be well understood using the kinematic equations given earlier

Case (1): A body falling from a height h

Consider an object of mass m falling from a height h. Assume there is no air resistance.
For  convenience,  let  us  choose  the  downward  direction  as  positive  y-axis  as  shown  in  the
Figure 2.37. The object experiences acceleration ‘g’ due to gravity which is constant near the
surface of the Earth. We can use kinematic equations to explain its motion. We have
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If the particle is thrown with initial velocity ‘u’ downward which is in negative y axis,
then velocity and position at of the particle any time t is given by

The square of the speed of the particle when it is at a distance y from the hill-top, is

Suppose the particle starts from rest.
Then u = 0

Then the velocity v, the position of the particle and v2 at any time t are given by (for a
point y from the hill-top)

The time (t = T) taken by the particle to reach the ground (for which y = h), is given by
using equation
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The  equation  (2.18)  implies  that  greater  the  height(h),  particle  takes  more  time(T)  to
reach the ground. For lesser height(h), it takes lesser time to reach the ground.

The  speed  of  the  particle  when  it  reaches  the  ground  (y  =  h)  can  be  found  using
equation (2.16), we get

The  above  equation  implies  that  the  body  falling  from  greater  height(h)  will  have
higher velocity when it reaches the ground.

The motion of a body falling towards the Earth from a small altitude (h << R), purely
under the force of gravity is called free fall. (Here R is radius of the Earth )

EXAMPLE

An iron ball and a feather are both falling from a height of 10 m.

a. What are the time taken by the iron ball and feather to reach the ground?
b. What are the velocities of iron ball  and feather when they reach the ground? (Ignore

air resistance and take g = 10 m s−2)

Solution

Since kinematic equations are independent of mass of the object, according to equation
(2.8)  the  time taken by both iron ball  and feather  to  reach the  ground are  the  same.  This  is
given by

Thus, both feather and iron ball reach ground at the same time.

By following equation (2.19) both iron ball and feather reach the Earth with the same
speed. It is given by
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EXAMPLE

Is it possible to measure the depth of a well using kinematic equations?

Consider  a  well  without  water,  of  some  depth  d.  Take  a  small  object  (for  example
lemon)  and  a  stopwatch.  When  you  drop  the  lemon,  start  the  stop  watch.  As  soon  as  the
lemon touches the bottom of the well,  stop the watch. Note the time taken by the lemon to
reach the bottom and denote the time as t.

Since the initial velocity of lemon u=0 and the acceleration due to gravity g is constant
over the well, we can usethe equations of motion for constant acceleration.

Since u=0, s=d,a=g (Since we choose the y axis downwards), Then

Substituting g=9.8 m s-2 we get the depth of the well.

To  estimate  the  error  in  our  calculation  we  can  use  another  method  to  measure  the
depth  of  the  well.  Take  a  long  rope  and  hang  the  rope  inside  the  well  till  it  touches  the
bottom. Measure the length of the rope which is the correct depth of the well (dcorrect). Then

What would be the reason for an error, if any?

Repeat the experiment for different masses and compare the result with dcorrect  every
time.
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Case (ii): A body thrown vertically upwards

Consider an object of mass m thrown vertically upwards with an initial velocity u. Let
us  neglect  the  air  friction.  In  this  case  we choose the  vertical  direction as  positive  y  axis  as
shown  in  the  Figure  2.38,  then  the  acceleration  a  =  −g  (neglect  air  friction)  and  g  points
towards the negative y axis. The kinematic equations for this motion are,

The velocity and position of the object at any time t are,

The velocity of the object at any position y (from the point where the object is thrown)
is

EXAMPLE

A train was moving at the rate of 54 km h−1 when brakes were applied. It came to rest
within a distance of 225 m. Calculate the retardation produced in the train.
Solution

The final velocity of the particle v = 0 The initial velocity of the particle

Retardation is always against the velocity of the particle.
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PROJECTILE MOTION
Introduction

When an object is thrown in the air with some initial velocity (NOT just upwards), and
then allowed to move under the action of gravity alone, the object is known as a projectile.
The path followed by the particle is called its trajectory.

Examples of projectile are

1. An object dropped from window of a moving train.
2. A bullet fired from a rifle.
3. A ball thrown in any direction.
4. A javelin or shot put thrown by an athlete.
5. A jet of water issuing from a hole near the bottom of a water tank.

It is found that a projectile moves under the combined effect of two velocities.

i. A uniform velocity in the horizontal direction, which will not change provided there is
no air resistance.

ii. A uniformly changing velocity (i.e., increasing or decreasing) in the vertical direction.

There are two types of projectile motion:

i. Projectile given an initial velocity in the horizontal direction (horizontal projection)

ii. Projectile given an initial velocity at an angle to the horizontal (angular projection)

To study the motion of a projectile, let us assume that,

i. Air resistance is neglected.

ii. The effect due to rotation of Earth and curvature of Earth is negligible.

iii. The acceleration due to gravity is constant in magnitude and direction at all points of
the motion of the projectile

Projectile in horizontal projection

Consider a projectile, say a ball, thrown horizontally with an initial velocity u
r

from the
top of a tower of height h

As  the  ball  moves,  it  covers  a  horizontal  distance  due  to  its  uniform  horizontal
velocity u, and a vertical downward distance because of constant acceleration due to gravity
g. Thus, under the combined effect the ball moves along the path OPA. The motion is in a 2-
dimensional  plane.  Let  the  ball  take  time  t  to  reach  the  ground  at  point  A,  Then  the
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horizontal distance travelled by the ball is x (t) = x, and the vertical distance travelled is y (t)
= y

We can apply the kinematic equations along the x direction and y direction separately.
Since  this  is  two-dimensional  motion,  the  velocity  will  have  both  horizontal  component  ux

and vertical component uy.

Motion along horizontal direction

The particle has zero acceleration along x direction. So, the initial velocity ux remains
constant throughout the motion.

The distance traveled by the projectile at a time t is given by the equation
21

2
xx u t at= + .

Since a = 0 along x direction, we have

xx u t=

Motion along downward direction

Here uy = 0 (initial velocity has no downward component), a = g (we choose the +ve y-
axis in downward direction), and distance y at time t

Substituting the value of t from equation

The equation of a parabola. Thus, the path followed by the projectile is a parabola.

Time of Flight:

The  time  taken  for  the  projectile  to  complete  its  trajectory  or  time  taken  by  the
projectile to hit the ground is called time of flight.
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Consider the example of a tower and projectile. Let h be the height of a tower. Let T be
the time taken by the projectile to hit  the ground, after being thrown horizontally from the
tower.

Thus, the time of flight for projectile motion depends on the height of the tower, but is
independent  of  the  horizontal  velocity  of  projection.  If  one  ball  falls  vertically  and  another
ball is projected horizontally with some velocity, both the balls will  reach the bottom at the
same time.

Horizontal range:

The  horizontal  distance  covered  by  the  projectile  from  the  foot  of  the  tower  to  the
point where the projectile hits the ground is called horizontal range. For horizontal motion,
we have

Here, sx = R (range), ux = u, a = 0 (no horizontal acceleration) T is time of flight. Then
horizontal range = uT.

Since  the  time  of  flight
2h

T
g

=  we  substitute  this  and  we  get  the  horizontal  range  of  the

particle as
2h

R u
g

= .

The  above  equation  implies  that  the  range  R  is  directly  proportional  to  the  initial
velocity u and inversely proportional to acceleration due to gravity g.

Resultant Velocity (Velocity of projectile at any time):

At any instant t,  the projectile has velocity components along both x-axis and y-axis.
The resultant of these two components gives the velocity of the projectile at that instant t,
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The velocity component at any t along horizontal (x-axis) is x x x
v u a t= +

Since, ux = u, ax = 0 , we get

vx= u

The component of velocity along vertical direction (y-axis) is y y yv u a t= +
Since, uy = 0, ay = g, we get

vy = gt

Hence the velocity of the particle at any instant is

The speed of the particle at any instant t is given by

Speed of the projectile when it hits the ground:

When the projectile hits the ground after initially thrown horizontally from the top of
tower of height h, the time of flight is

2h
t

g
=

The horizontal component velocity of the projectile remains the same i.e vx= u

The vertical component velocity of the projectile at time T is

The speed of the particle when it reaches the ground is
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Projectile under an angular projection

This  projectile  motion  takes  place  when  the  initial  velocity  is  not  horizontal,  but  at
some angle with the vertical,

(Oblique projectile)
Examples:

• Water ejected out of a hose pipe held obliquely.

• Cannon fired in a battle ground.

Consider an object thrown with initial velocity u
r

at an angle θ with the horizontal.

where ux= u cosθ is the horizontal component and uy=usinθ the vertical component of
velocity.

Since  the  acceleration  due  to  gravity  is  in  the  direction  opposite  to  the  direction  of
vertical component uy, this component will gradually reduce to zero at the maximum height
of  the  projectile.  At  this  maximum  height,  the  same  gravitational  force  will  push  the
projectile  to  move  downward  and  fall  to  the  ground.  There  is  no  acceleration  along  the  x
direction throughout the motion. So, the horizontal component of the velocity (ux = u cosθ)
remains the same till the object reaches the ground.

Hence after the time t, the velocity along horizontal motion vx = ux+ axt = ux = u cos θ

The horizontal distance travelled by projectile in time t is
21

2
x x x

S u t a t= +

Here, sx = x, ux = u cosθ, ax = 0

Next, for the vertical motion vy = uy+ ayt

Here uy= u sinθ, ay = - g (acceleration due to gravity acts opposite to the motion). Thus

The vertical distance travelled by the projectile in the same time t is 21

2
y y yS u t a t= +

Here, sy = y, uy = u sinθ, ax = −g. Then
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Substitute the value of t from equation

Thus the path followed by the projectile is an inverted parabola.

Maximum height (hmax)

The maximum vertical distance travelled by the projectile during its journey is called
maximum height. This is determined as follows:

For the vertical part of the motion,

Here, uy = u sinθ, a = −g, s = hmax, and at the maximum height vy = 0
Hence,

Time of flight (Tf)

The  total  time  taken  by  the  projectile  from  the  point  of  projection  till  it  hits  the
horizontal plane is called time of flight.

This time of flight is the time taken by the projectile to go from point O to B via point
A

We know that 21

2
y y yS u t a t= +

Here,  sy = y = 0  (net  displacement  in  y-direction is  zero),  uy =  u  sinθ,  ay = −g,  t  =  Tf

Then
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Horizontal range (R)

The  maximum  horizontal  distance  between  the  point  of  projection  and  the  point  on
the horizontal plane where the projectile hits the ground is called horizontal range (R). This is
found  easily  since  the  horizontal  component  of  initial  velocity  remains  the  same.  We  can
write

Range R = Horizontal component of velocity x time of flight cos fu Tθ= ×

The horizontal range directly depends on the initial speed (u) and the sine of angle of

projection (θ ). It inversely depends on acceleration due to gravity ‘g’

For  a  given  initial  speed  u,  the  maximum  possible  range  is  reached  when  sin2θ  is

maximum, sin2θ  = 1. This implies 2θ =π /2

This means that if the particle is projected at 45 degrees with respect to horizontal, it
attains maximum range, given by.

EXAMPLE

Suppose  an  object  is  thrown  with  initial  speed  10  m  s-1  at  an  angle π /4  with  the
horizontal,  what  is  the  range  covered?  Suppose  the  same  object  is  thrown  similarly  in  the
Moon,  will  there  be  any change in  the  range?  If  yes,  what  is  the  change?  (The acceleration

due to gravity in the Moon
1

6
moong g= )
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Solution

In projectile motion, the range of particle is given by,

If the same object is thrown in the Moon, the range will increase because in the Moon,
the acceleration due to gravity is smaller than g on Earth,

The range attained on the Moon is approximately six times that on Earth.

EXAMPLE

In the cricket game, a batsman strikes the ball such that it moves with the speed 30 m
s-1 at an angle 300 with the horizontal as shown in the figure. The boundary line of the cricket
ground is located at a distance of 75 m from the batsman? Will the ball go for a six? (Neglect
the air resistance and take acceleration due to gravity g = 10 m s−2).

Solution

The  motion  of  the  cricket  ball  in  air  is  essentially  a  projectile  motion.  As  we  have
already seen, the range (horizontal distance) of the projectile motion is given by
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The horizontal distance travelled by the cricket ball

This  distance  is  greater  than  the  distance  of  the  boundary  line.  Hence  the  ball  will
cross this line and go for a six.

Introduction to Degrees and Radians

In measuring angles, there are several possible units used, but the most common units
are degrees and radians. Radians are used in measuring area, volume, and circumference of
circles and surface area of spheres.

Radian describes the planar angle subtended by a circular arc at the center of a circle.
It is defined as the length of the arc divided by the radius of the arc. One radian is the angle
subtended at the center of a circle by an arc that is equal in length to the radius of the circle.

Degree  is  the  unit  of  measurement  which  is  used  to  determine  the  size  of  an  angle.
When an angle  goes  all  the  way around in  a  circle,  the  total  angle  covered is  equivalent  to
360°. Thus, a circle has 360°. In terms of radians, the full circle has 2π radian.

EXAMPLE

Calculate the angle θ  subtended by the two adjacent wooden spokes of a bullock cart
wheel is shown in the figure. Express the angle in both radian and degree.
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Solution

The  full  wheel  subtends  2฀ radians  at  the  center  of  the  wheel.  The  wheel  is  divided
into 12 parts (arcs).

So one part subtends an angle
2

12 6

π πθ = = radian at the center

Since, π rad =180°,
6

π
 radian is equal to 30 degree.

The angle subtended by two adjacentwooden spokes is 30 degree at the center.

Angular displacement

Consider a particle revolving around a point O in a circle of radius r (Figure 2.45). Let
the position of the particle at time t = 0 be A and after time t, its position is B.

Then,

The angle described by the particle about the axis of rotation (or center O) in a given
time is called angular displacement.
angular displacement = ∠AOB =θ
The unit of angular displacement is radian.

The angular displacement (θ) in radian is related to arc length S (AB) and radius r as

Angular velocity (ϖ )

The rate of change of angular displacement is called angular velocity.

If θ is the angular displacement in time t, then the angular velocityω is

The  unit  of  angular  velocity  is  radian  per  second  (rad  s−1).  The  direction  of  angular
velocity is along the axis of rotation following the right hand rule.

Angular acceleration (α)

The rate of change of angular velocity is called angular acceleration.
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The  angular  acceleration  is  also  a  vector  quantity  which  need  not  be  in  the  same
direction as angular velocity.

Tangential acceleration

Consider an object moving along a circle of radius r. In a time Δt, the object travels an
arc distance Δs as shown in Figure 2.47. The corresponding angle subtended is Δθ
The Δs can be written in terms of Δθ as,

In a time Δt, we have

In the limit Δt →0, the above equation becomes

Here
ds

dt
 linear speed (v) which is tangential to the circle and ω  is angular speed. So

equation (2.37) becomes

which gives the relation between linear speed and angular speed.

Equation (2.38) is true only for circular motion. In general the relation between linear
and angular velocity is given by

For  circular  motion  equation  (2.39)  reduces  to  equation  (2.38)  since ϖ and r
r

are
perpendicular to each other.
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Differentiating the equation (2.38) with respect to time, we get (since r is constant)

Here
dv

dt
is the tangential acceleration and is denoted as at

d

dt

ω
 is the angular

accelerationα . Then eqn. (2.39) becomes

The tangential acceleration at experienced by an object is circular motion

Circular Motion

When a point object is moving on a circular path with a constant speed, it covers equal
distances on the circumference of the circle in equal intervals of time. Then the object is said
to be in uniform circular motion.

In  uniform  circular  motion,  the  velocity  is  always  changing  but  speed  remains  the
same. Physically it  implies that magnitude of velocity vector remains constant and only the
direction changes continuously.

If the velocity changes in both speed and direction during the circular motion, we get
non uniform circular motion.

Centripetal acceleration

As  seen  already,  in  uniform  circular  motion  the  velocity  vector  turns  continuously
without changing its magnitude (speed),

Note  that  the  length  of  the  velocity  vector  (blue)  is  not  changed  during  the  motion,
implying  that  the  speed  remains  constant.  Even  though  the  velocity  is  tangential  at  every
point  in  the  circle,  the  acceleration  is  acting  towards  the  center  of  the  circle.  This  is  called
centripetal acceleration. It always points towards the center of the circle.

The centripetal acceleration is derived from a simple geometrical relationship between
position and velocity vectors

Let the directions of position and velocity vectors shift  through the same angleθ in a
small  interval  of  time ∆ t,  as  shown  in  Figure  2.52.  For  uniform  circular
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motion, 1 2r r r= =
ur ur

and 1 2v v v= =
r r

. If the particle moves from position vector 1r
r

 to 2r
r

 the

displacement is given by 2 1r r r∆ = −
r r r

 and the change in velocity from 1v
r

 to 2v
r

is  given  by 2 1v v v∆ = −
r r r

  The  magnitudes  of  the  displacement  Δr  and  of  Δv  satisfy  the
following relation

Here the negative sign implies that Δv pointsradially inward, towards the center of the
circle.

For  uniform  circular  motion  v  =ωr,  where  ω  is  the  angular  velocity  of  the  particle
about the center. Then the centripetal acceleration can be written as

Non uniform circular motion

If the speed of the object in circular motion is not constant, then we have non-uniform
circular motion. For example, when the bob attached to a string moves in vertical circle, the
speed  of  the  bob  is  not  the  same  at  all  time.  Whenever  the  speed  is  not  same  in  circular
motion, the particle will have both centripetal and tangential acceleration.

The  resultant  acceleration  is  obtained  by  vector  sum  of  centripetal  and  tangential
acceleration.

Since  centripetal  acceleration  is

2
v

r
 the  magnitude  of  this  resultant  acceleration  is  given  by

2
2

2

R t

v
a a

r

 
= +  

 

This resultant acceleration makes an angleθ with the radius vector

This angle is given by tanθ =
2

ta

v

r

 
 
 
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EXAMPLE

A particle moves in a circle of radius 10 m. Its linear speed is given by v =3t where t is
in second and v is in m s−1.

1. Find the centripetal and tangential acceleration at t = 2 s.
2. Calculate the angle between the resultant acceleration and the radius vector.

Solution

The linear speed at t = 2 s

The centripetal acceleration at t = 2 s is

The tangential acceleration is
23

t

dv
a m s

dt

−= =

The angle between the radius vector with resultant acceleration is given by

Kinematic Equations of circular motion

If  an object is  in circular motion with constant angular acceleration α,  we can derive
kinematic equations for this motion, analogous to those for linear motion.

Let  us  consider  a  particle  executing circular  motion with initial  angular  velocity 0ω .

After  a  time  interval  t  it  attains  a  final  angular  velocity ω .  During  this  time,  it  covers  an

angular  displacementθ .  Because  of  the  change  in  angular  velocity  there  is  an  angular
acceleration α  .

The  kinematic  equations  for  circular  motion  are  easily  written  by  following  the
kinematic equations for linear motion in section 2.4.3
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The linear displacement (s) is replaced by the angular displacement(θ ).

The velocity (v) is replaced by angular velocity (ω ).

The acceleration (a) is replaced by angular acceleration (α ).

The initial velocity (u) is replaced by the initial angular velocity ( 0ω ).

By  following  this  convention,  kinematic  equations  for  circular  motion  are  as  in  the
table given below.

EXAMPLE

A particle is in circular motion with an acceleration α =0.2rad s −2.

1. What is the angular displacement made by the particle after 5 s?
2. What is the angular velocity at t = 5 s?. Assume the initial angular velocity is zero.

Solution

Since the initial angular velocity is zero (ω0 = 0).

The angular displacement made by the particle is given by
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UNIT – 3 LAWS OF MOTION

INTRODUCTION

Each and every object in the universe interacts with every other object. The cool breeze
interacts  with  the  tree.  The  tree  interacts  with  the  Earth.  In  fact,  all  species  interact  with
nature. But, what is the difference between a human’s interaction with nature and that of an
animal’s.  Human’s  interaction  has  one  extra  quality.  We  not  only  interact  with  nature  but
also try to understand and explain natural phenomena scientifically.

In  the  history  of  mankind,  the  most  curiosity  driven  scientific  question  asked  was
about  motion  of  objects–‘How  things  move?’  and  ‘Why  things  move?’  Surprisingly,  these
simple questions have paved the way for development from early civilization to the modern
technological era of the 21st century.

Objects  move  because  something  pushes  or  pulls  them.  For  example,  if  a  book  is  at
rest, it will not move unless a force is applied on it. In other words, to move an object a force
must  be  applied  on  it.  About  2500  years  ago,  the  famous  philosopher,  Aristotle,  said  that
‘Force  causes  motion’.  This  statement  is  based on common sense.  But  any scientific  answer
cannot  be  based  on  common  sense.  It  must  be  endorsed  with  quantitative  experimental
proof.

In  the  15th  century,  Galileo  challenged  Aristotle’s  idea  by  doing  a  series  of
experiments. He said force is not required to maintain motion.

Galileo  demonstrated  his  own  idea  using  the  following  simple  experiment.  When  a
ball rolls from the top of an inclined plane to its bottom, after reaching the ground it moves
some  distance  and  continues  to  move  on  to  another  inclined  plane  of  same  angle  of
inclination as shown in the Figure 3.1(a).  By increasing the smoothness of both the inclined
planes, the ball reach almost the same height(h) from where it was released (L1) in the second
plane  (L2)  (Figure  3.1(b)).  The  motion  of  the  ball  is  then  observed  by  varying  the  angle  of
inclination  of  the  second  plane  keeping  the  same  smoothness.  If  the  angle  of  inclination  is
reduced, the ball travels longer distance in the second plane to reach the same height (Figure
3.1 (c)). When the angle of inclination is made zero, the ball moves forever in the horizontal
direction (Figure 3.1(d)). If the Aristotelian idea were true, the ball would not have moved in
the second plane even if  its smoothness is made maximum since no force acted on it  in the
horizontal direction. From this simple experiment,  Galileo proved that force is not required
to maintain motion. An object can be in motion even without a force acting on it.

In  essence,  Aristotle  coupled  the  motion  with  force  while  Galileo  decoupled  the
motion and force.

NEWTON’S LAWS
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Newton analysed the views of Galileo, and other scientist like Kepler and Copernicus
on motion and provided much deeper insights in the form of three laws.

Newton’s First Law

Every  object  continues  to  be  in  the  state  of  rest  or  of  uniform  motion  (constant
velocity) unless there is external force acting on it.

This  inability  of  objects  to  move  on  its  own  or  change  its  state  of  motion  is  called
inertia.  Inertia  means  resistance  to  change  its  state.  Depending  on  the  circumstances,  there
can be three types of inertia.

Inertia of rest:

When a stationary bus starts to move, the passengers experience a sudden backward
push. Due to inertia, the body (of a passenger) will try to continue in the state of rest, while
the  bus  moves  forward.  This  appears  as  a  backward  push  as  shown  in  Figure  3.2.  The
inability of an object to change its state of rest is called inertia of rest.

Inertia  of  motion:  When  the  bus  is  in  motion,  and  if  the  brake  is  applied  suddenly,
passengers move forward and hit against the front seat. In this case, the bus comes to a stop,
while the body (of a passenger) continues to move forward due to the property of inertia as
shown in Figure 3.3. The inability of an object to change its state of uniform speed (constant
speed) on its own is called inertia of motion.

Inertia of direction:

When  a  stone  attached  to  a  string  is  in  whirling  motion,  and  if  the  string  is  cut
suddenly, the stone will not continue to move in circular motion but moves tangential to the
circle  as  illustrated  in  Figure  3.4.  This  is  because  the  body  cannot  change  its  direction  of
motion  without  any  force  acting  on  it.  The  inability  of  an  object  to  change  its  direction  of
motion on its ownis called inertia of direction.

When  we  say  that  an  object  is  at  rest  or  in  motion  with  constant  velocity,  it  has  a
meaning only if it is specified with respect to some reference frames. In physics, any motion
has to be stated with respect to a reference frame. It is to be noted that Newton’s fi rst law is
valid only in certain special reference frames called inertial frames. In fact, Newton’s first law
defines an inertial frame.

Inertial Frames

If  an object is free from all  forces,  then it  moves with constant velocity or remains at
rest when seen from inertial frames. Thus, there exists some special set of frames in which if
an object experiences no force it moves with constant velocity or remains at rest. But how do
we  know  whether  an  object  is  experiencing  a  force  or  not?  All  the  objects  in  the  Earth
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experience Earth’s gravitational force. In the ideal case, if an object is in deep space (very far
away from any other object), then Newton’s first law will be certainly valid. Such deep space
can be treated as an inertial frame. But practically it is not possible to reach such deep space
and verify Newton’s first law.

For all practical purposes, we can treat Earth as an inertial frame because an object on
the  table  in  the  laboratory  appears  to  be  at  rest  always.  This  object  never  picks  up
acceleration in the horizontal direction since no force acts on it in the horizontal direction. So
the laboratory can be taken as an inertial frame for all physics experiments and calculations.
For making these conclusions, we analyse only the horizontal motion of the object as there is
no horizontal force that acts on it.  We should notanalyse the motion in vertical direction as
the  two forces  (gravitational  force  in  the  downward direction and normal  force  in  upward
direction)  that  act  on it  makes  the  net  force  is  zero  in  vertical  direction.  Newton’s  first  law
deals with the motion of objects in the absence of any force and not the motion under zero
net force. Suppose a train is moving with constant velocity with respect to an inertial frame,
then an object at rest in the inertial frame (outside the train) appears to move with constant
velocity with respect to the train (viewed from within the train). So the train can be treated as
an inertial frame. All inertial frames are moving with constant velocity relative to each other.
If an object appears to be at rest in one inertial frame, it may appear to move with constant
velocity with respect to another inertial frame. For example, in Figure 3.5, the car is moving
with uniform velocity v with respect to a person standing (at rest) on the ground. As the car
is  moving  with  constant  velocity  with  respect  to  ground  to  the  person  is  at  rest  on  the
ground, both frames (with respect to the car and to the ground) are inertial frames.

Suppose an object  remains  at  rest  on a  smooth table  kept  inside  the  train,  and if  the
train  suddenly  accelerates  (which  we  may  not  sense),  the  object  appears  to  accelerate
backwards even without any force acting on it. It is a clear violation of Newton’s first law as
the object gets accelerated without being acted upon by a force. It implies that the train is not
an inertial  frame when it  is  accelerated.  For  example,  Figure  3.6  shows that  car  2  is  a  non-

inertial frame since it moves with acceleration a
r

with respect to the ground.

These  kinds  of  accelerated  frames  are  callednon-inertial  frames.  A  rotating  frame  is
alsoa non inertial frame since rotation requiresacceleration. In this sense, Earth is not reallyan
inertial frame since it has self-rotationand orbital motion. But these rotationaleffects of Earth
can be ignored for the motioninvolved in our day-to-day life. For example,when an object is
thrown,  or  the  timeperiod of  a  simple  pendulum is  measuredin the  physics  laboratory,  the
Earth’s  selfrotationhas  very  negligible  effect  on  it.  Inthis  sense,  Earth  can  be  treated  as  an
inertialframe.  But  at  the  same  time,  to  analysethe  motion  of  satellites  and  wind
patternsaround the Earth, we cannot treat Earth asan inertial frame since its self-rotation hasa
strong influence on wind patterns andsatellite motion.

Newton’s Second Law

This law states that

The force acting on an object is equal to the rate of change of its momentum
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In simple words, whenever the momentum of the body changes, there must be a force

acting on it. The momentum of the object is defined as p mv=
ur r

. In most cases, the mass of

the  object  remains  constant  during  the  motion.  In  such  cases,  the  above  equation  gets
modified into a simpler form

The above equation conveys the fact that if there is an acceleration a
r

 on the body, then
there must be a force acting on it. This implies that if there is a change in velocity, then there
must  be  a  force  acting  on  the  body.  The  force  and  acceleration  are  always  in  the  same
direction.  Newton’s  second  law  was  a  paradigm  shift  from  Aristotle’s  idea  of  motion.
According to Newton, the force need not cause the motion but only a change in motion. It is
to be noted that Newton’s second law is valid only in inertial frames. In non-inertial frames
Newton’s second law cannot be used in this form. It requires some modification.

In the SI system of units, the unit of force is measured in newtons and it is denoted by
symbol ‘N’.

One Newton is defined as the force which acts on 1 kg of mass to give an acceleration
1 m s−2 in the direction of the force.

Aristotle vs. Newton’s approach on sliding object

Newton’s second law gives the correct explanation for the experiment on the inclined
plane that was discussed in section 3.1. In normal cases, where friction is not negligible, once
the object reaches the bottom of the inclined plane (Figure 3.1), it travels some distance and
stops. Note that it stops because there is a frictional force acting in the direction opposite to
its velocity. It is this frictional force that reduces the velocity of the object to zero and brings it
to  rest.  As  per  Aristotle’s  idea,  as  soon as  the  body reaches  the  bottom of  the  plane,  it  can
travel  only  a  small  distance  and  stops  because  there  is  no  force  acting  on  the  object.
Essentially, he did not consider the frictional force acting on the object.

Newton’s Third Law

Consider Figure 3.8(a) whenever an object 1 exerts a force on the object 212( )F
ur

, then

object 2 must also exert equal and opposite force on the object 121( )F
ur

. These forces must lie

along the line joining the two objects.
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Newton’s  third  law  assures  that  the  forces  occur  as  equal  and  opposite  pairs.  An
isolated force or a single force cannot exist in nature. Newton’s third law states that for every
action there is an equal and opposite reaction. Here, action and reaction pair of forces do not
act on the same body but on two different bodies. Any one of the forces can be called as an
action force and the other the reaction force. Newton’s third law is valid in both inertial and
non-inertial frames.

These  action-reaction  forces  are  not  cause  and  effect  forces.  It  means  that  when  the
object 1 exerts force on the object 2, the object 2 exerts equal and opposite force on the body 1
at the same instant.

Discussion on Newton’s Laws

Newton’s  laws  are  vector  laws.  The  equation F ma=
ur r

is  a  vector  equation  and
essentially it is equal to three scalar equations. In Cartesian coordinates, this equation can be

written  as ˆ ˆˆ ˆ ˆ ˆ .
x y z x y z

F i F j F k ma i ma j ma k+ + = + + By  comparing  both  sides,  the  three  scalar

equations are

x x
F ma= The  acceleration  along  the  x  direction  depends  only  on  the  component  of

force acting along the x-direction.

The acceleration along the y direction depends only on the component of force acting
along the y-direction.

z z
F ma= The  acceleration  along  the  z  direction  depends  only  on  the  component  of

force acting along the z-direction.

From the above equations, we can infer that the force acting along y direction cannot
alter  the  acceleration  along  x  direction.  In  the  same  way,  Fz  cannot  affect  ay and  ax.  This
understanding is essential for solving problems.

The acceleration experienced by the body at time t depends on the force which acts on
the  body  at  that  instant  of  time.  It  does  not  depend  on  the  force  which  acted  on  the  body
before the time t. This can be expressed as

Acceleration  of  the  object  does  not  depend  on  the  previous  history  of  the  force.  For
example, when a spin bowler or a fast bowler throws the ball  to the batsman, once the ball
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leaves the hand of the bowler, it experiences only gravitational force and air frictional force.
The  acceleration  of  the  ball  is  independent  of  how  the  ball  was  bowled  (with  a  lower  or  a
higher speed).

In  general,  the  direction  of  a  force  may  be  different  from  the  direction  of  motion.
Though in some cases, the object may move in the same direction as the direction of the force,
it is not always true. A few examples are given below.

Case 1: Force and motion in the same direction

When an apple falls towards the Earth, the direction of motion (direction of velocity)
of the apple and that of force are in the same downward direction

Case 2: Force and motion not in the same direction

The  Moon  experiences  a  force  towards  the  Earth.  But  it  actually  moves  in  elliptical
orbit. In this case, the direction of the force is different from the direction of motion
Case 3: Force and motion in opposite direction

If  an  object  is  thrown  vertically  upward,  the  direction  of  motion  is  upward,  but
gravitational force is downward as

Case 4: Zero net force, but there is motion

When  a  raindrop  gets  detached  from  the  cloud  it  experiences  both  downward
gravitational force and upward air drag force. As it descends towards the Earth, the upward
air  drag  force  increases  and  after  a  certain  time,  the  upward  air  drag  force  cancels  the
downward gravity. From then on the raindrop moves at constant velocity till  it  touches the
surface  of  the  Earth.  Hence  the  raindrop  comes  with  zero  net  force,  therefore  with  zero
acceleration but with non-zero terminal velocity.

If multiple forces 1 2 3, , .... nF F F F
ur ur ur ur

 act on the same body, then the total force ( )netF
ur

 is

equivalent  to  the  vectorial  sum  of  the  individual  forces.  Their  net  force  provides  the
acceleration.

Newton’s second law for this case is

In this case the direction of acceleration is in the direction of net force.
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Newton’s second law can also be written in the following form. Since the acceleration

is the second derivative of position vector of the body

2

2

d r
a

dt

 
= 

 

r
r

the force on the body is

From  this  expression,  we  can  infer  that  Newton’s  second  law  is  basically  a  second
order ordinary differential equation and whenever the second derivative of position vector is
not zero, there must be a force acting on the body.

If no force acts on the body then Newton’s second law, 0
dv

m
dt

=
r

.

It implies that v
r

constant. It is essentially Newton’s first law. It implies that the second
law is consistent with the first law. However, it should not be thought of as the reduction of
second law to the first when no force acts on the object. Newton’s first and second laws are
independent  laws.  They can internally  be consistent  with each other  but  cannot  be derived
from each other.

Newton’s second law is cause and effect relation. Force is the cause and acceleration is
the effect. Conventionally, the effect should be written on the left and cause on the right hand
side  of  the  equation.  So  the  correct  way  of  writing  Newton’s  second  law  is

d p
ma F or F

dt
= =

ur
r ur ur

.

APPLICATION OF NEWTON’S LAWS
Free Body Diagram

Free body diagram is a simple tool to analyse the motion of the object using Newton’s
laws.

The following systematic steps are followed for developing the free body diagram:

1. Identify the forces acting on the object.
2. Represent the object as a point.
3. Draw the vectors representing the forces acting on the object.

When we draw the free body diagram for an object or a system, the forces exerted by
the object should not be included in the free body diagram.

EXAMPLE



68 | P a g e APPOLO STUDY CENTRE PH: 044-24339436, 42867555, 9840226187

A book of mass m is at rest on the table. (1) What are the forces acting on the book? (2)
What are the forces exerted by the book? (3) Draw the free body diagram for the book.

Solution

There are two forces acting on the book.

I. Gravitational force (mg) acting downwards on the book
II. Normal  contact  force  (N)  exerted  by  the  surface  of  the  table  on  the  book.  It  acts

upwards as shown in the figure.

According to Newton’s third law, there are two reaction forces exerted by the book.

I. The book exerts an equal and opposite force (mg) on the Earth which acts upwards.
II. The book exerts a force which is equal and opposite to normal force on the surface of

the table (N) acting downwards.

EXAMPLE

If two objects of masses 2.5 kg and 100 kg experience the same force 5 N, what is the
acceleration experienced by each of them?

Solution

From Newton’s second law (in magnitude form), F = ma

For the object of mass 2.5 kg, theacceleration is
25

2
2.5

F
a m s

m

−= = =

For the object of mass 100 kg, the acceleration is 25
0.05

100

F
a m s

m

−= = =

When an apple falls, it experiences Earth’s gravitational force. According to Newton’s
third law, the apple exerts equal and opposite force on the Earth. Even though both the apple
and  Earth  experience  the  same  force,  their  acceleration  is  different.  The  mass  of  Earth  is
enormous compared to that of an apple. So an apple experiences larger acceleration and the
Earth  experiences  almost  negligible  acceleration.  Due  to  the  negligible  acceleration,  Earth
appears to be stationary when an apple falls.

EXAMPLE

Which is the greatest force among the three force 1 2 3, ,F F F
ur ur ur

shown below

Solution
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Force  is  a  vector  and  magnitude  of  the  vector  is  represented  by  the  length  of  the

vector. Here 1F
ur

has greater length compared to other two. So 1F
ur

is largest of the three.

EXAMPLE

Apply Newton’s second law to a mango hanging from a tree. (Mass of the mango is
400 gm)

Solution

Note: Before applying Newton’s laws, the following steps have to be followed:

1. Choose a  suitable  inertial  coordinate  system to  analyse  the  problem.  For  most  of  the
cases we can take Earth as an inertial coordinate system.

2. Identify the system to which Newton’s laws need to be applied. The system can be a
single object or more than one object.

3. Draw the free body diagram.
4. Once  the  forces  acting  on  the  system  are  identified,  and  the  free  body  diagram  is

drawn,  apply  Newton’s  second  law.  In  the  left  hand  side  of  the  equation,  write  the
forces acting on the system in vector notation and equate it  to the right hand side of
equation which is the product of mass and acceleration. Here, acceleration should also
be in vector notation.

5. If  acceleration is  given,  the  force  can be  calculated.  If  the  force  is  given,  acceleration
can be calculated.

By following the above steps:

We fix the inertial coordinate system on the ground as shown in the figure.

The forces acting on the mango are

1. Gravitational  force  exerted  by  the  Earth  on  the  mango  acting  downward  along
negative y axis

2. Tension (in the cord attached to the mango) acts upward along positive y axis.

The free body diagram for the mango is shown in the figure

Here,  mg  is  the  magnitude  of  the  gravitational  force  and ( )ĵ− represents  the  unit

vector in negative y direction
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Here  T  is  the  magnitude  of  the  tension  force  and ĵ represents  the  unit  vector  in

positive y direction

From Newton’s second law netF ma=
ur r

Since  the  mango  is  at  rest  with  respect  to  us  (inertial  coordinate  system)  the

acceleration is zero ( )0a =
r

So 0netF ma= =
ur r

By comparing the components on both sides of the above equation, we get    T −mg =
0

So the tension force acting on the mango is given by T=mg

Mass of the mango m = 400g and g = 9.8 m s–2

Tension acting on the mango is T = 0.4 × 9.8 = 3.92 N

EXAMPLE

A person rides  a  bike with a  constant  velocity v
r

with respect  to  ground and another

biker  accelerates  with  acceleration a
r

 with  respect  to  ground.  Who  can  apply  Newton’s
second law with respect to a stationary observer on the ground?

Solution

Second  biker  cannot  apply  Newton’s  second  law,  because  he  is  moving  with

acceleration a
r

 with respect to Earth (he is not in inertial frame). But the first biker can apply
Newton’s second law because he is moving at constant velocity with respect to Earth (he is in
inertial frame).

EXAMPLE
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The  position  vector  of  a  particle  is  given  by 2 ˆˆ ˆ3 5 7r ti t j k= + +
r

.  Find  the  direction  in

which the particle experiences net force?

Solution

Acceleration of the particle

Here,  the  particle  has  acceleration  only  along  positive  y  direction.  According  to
Newton’s  second  law,  net  force  must  also  act  along  positive  y  direction.  In  addition,  the
particle  has  constant  velocity  in  positive  x  direction  and  no  velocity  in  z  direction.  Hence,
there are no net force along x or z direction.

EXAMPLE

Consider a bob attached to a string, hanging from a stand. It oscillates as shown in the
figure.

Solution

1. Identify the forces that act on the bob?
2. What is the acceleration experienced by the bob?

Two forces act on the bob.

1. Gravitational force (mg) acting downwards
2. Tension (T) exerted by the string on the bob, whose position determines the direction

of T as shown in figure.

The  bob  is  moving  in  a  circular  arc  as  shown  in  the  above  figure.  Hence  it  has
centripetal acceleration. At a point A and C, the bob comes to rest momentarily and then its
velocity  increases  when it  moves  towards  point  B.  Hence,  there  is  a  tangential  acceleration
along  the  arc.  The  gravitational  force  can  be  resolved  into  two  components  (mg  cosθ,  mg
sinθ) as shown below

EXAMPLE
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The velocity of a particle moving in a plane is given by the following diagram. Find
out the direction of force acting on the particle?

Solution

The velocity of the particleis ˆˆ ˆ
x y z

v v i v j v k= + +
r

As shown in the figure, the particle is

moving in the xy plane, there is no motion in the z direction. So velocity in the z direction is
zero (vz=0). The velocity of the particle has x component (vx) and y component (vy). From fi
gure,  as  time increases  from t  =  0  sec  to  t  =  3  sec,  the  length of  the  vector  in  y  direction is
changing  (increasing).  It  means  y  component  of  velocity  (vy)  is  increasing  with  respect  to
time. According to Newton’s second law, if velocity changes with respect to time then there
must be acceleration. In this case, the particle has acceleration in the y direction since the y
component  of  velocity  changes.  So  the  particle  experiences  force  in  the  y  direction.  The
length  of  the  vector  in  x  direction  does  not  change.  It  means  that  the  particle  has  constant
velocity in the x direction. So no force or zero net force acts in the x direction.

EXAMPLE

Apply Newton’s second law for an object at rest on Earth and analyse the result.

Solution

The object  is  at  rest  with respect  to  Earth (inertial  coordinate  system).  There  are  two
forces that act on the object.

1. Gravity acting downward (negative y-direction)
2. Normal force by the surface of the Earth acting upward (positive y-direction)

The free body diagram for this object is

Net force ˆ ˆ
netF mgj Nj= − +

ur

But there is no acceleration on the ball. So 0.a =
r

. By applying Newton’s second law

( )netF ma=
ur r

Since ˆ ˆ0, neta F mgj Nj= = − +
r ur
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By comparing the components on both sides of the equation, we get

-mg + N = 0
N =mg

We can conclude that if the object is at rest, the magnitude of normal force is exactly
equal to the magnitude of gravity.

EXAMPLE

A  particle  of  mass  2  kg  experiences  two  forces

1
ˆˆ ˆ5 8 7F i j k= + +

ur

and 2
ˆˆ ˆ3 4 3F i j k= − +

ur

What is the acceleration of the particle?

Solution

We  use  Newton’s  second  law, netF ma=
ur r

where 1 2netF F F= +
ur ur ur

.  From  the  above

equations the acceleration is
netF

a
m

=
ur

r

 where

EXAMPLE

Identify the forces acting on blocks A, B and C shown in the figure.

Solution
Forces on block A:

1. Downward gravitational force exerted by the Earth (mAg)
2. Upward normal force (NB) exerted by block B (NB)

The free body diagram for block A is as shown in the following picture.
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Forces on block B :

1. Downward gravitational force exerted by Earth (mBg)
2. Downward force exerted by block A (NA)
3. Upward normal force exerted by block C (NC)

Forces onblock C:

1. Downward gravitational force exerted by Earth (mCg)
2. Downward force exerted by block B (NB)
3. Upward force exerted by the table (Ntable)

EXAMPLE

Consider  a  horse  attached  to  the  cart  which  is  initially  at  rest.  If  the  horse  starts
walking forward, the cart also accelerates in the forward direction. If the horse pulls the cart
with force Fh in forward direction, then according to Newton’s third law, the cart also pulls
the  horse  by  equivalent  opposite  force  Fc=Fh  in  backward  direction.  Then  total  force  on
‘cart+horse’ is zero. Why is it then the ‘cart+horse’ accelerates and moves forward?

Solution

This  paradox  arises  due  to  wrongapplication  of  Newton’s  second  and  thirdlaws.
Before applying Newton’s laws, weshould decide ‘what is the system?’.Oncewe identify the
‘system’,  then  it  is  possible  toidentify  all  the  forces  acting  on  the  system.We  should  not
consider the force exertedby the system. If there is an unbalancedforce acting on the system,
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then it shouldhave acceleration in the direction of theresultant force. By following these steps
wewill analyse the horse and cart motion.

If  we  decide  on  the  cart+horse  as  a  ‘system’,  then  we  should  not  consider  the  force
exerted by the horse on the cart or the force exerted by cart on the horse.  Both are internal
forces  acting on each other.  According to  Newton’s  third law,  total  internal  force  acting on
the  system  is  zero  and  it  cannot  accelerate  the  system.  The  acceleration  of  the  system  is
caused by some external force. In this case, the force exerted by the road on the system is the
external force acting on the system. It is wrong to conclude that the total force acting on the
system (cart+horse) is zero without including all the forces acting on the system. The road is
pushing the horse
and  cart  forward  with  acceleration.  As  there  is  an  external  force  acting  on  the  system,
Newton’s second law has to be applied and not Newton’s third law.

The following figures illustrates this.

If we consider the horse as the ‘system’, then there are three forces acting on the horse.

1. Downward gravitational force (mgh)
2. Force exerted by the road (Fr)
3. Backward force exerted by the cart (Fc)

The  force  exerted  by  the  road  can  be  resolved  into  parallel  and  perpendicular
components.  The  perpendicular  component  balances  the  downward  gravitational  force.
There is parallel component along the forward direction. It is greater than the backward force
(Fc). So there is net force along the forward direction which causes the forward movement of
the horse.

If we take the cart as the system, then there are three forces acting on the cart.

1. Downward gravitational force (mcg )
2. Force exerted by the road (Fr)
3. Force exerted by the horse (Fh)

The  force  exerted  by  the  road ( )rF
ur

 can  be  resolved  into  parallel  and  perpendicular

components.  The  perpendicular  component  cancels  the  downward  gravity  (mcg).  Parallel

component acts backwards and the force exerted by the horse ( )hF
ur

acts forward. Force( )hF
ur

is

greater  than  the  parallel  component  acting  in  the  opposite  direction.  So  there  is  an  overall
unbalanced force in the forward direction which causes the cart to accelerate forward.

If we take the cart+horse as a system, then there are two forces acting on the system.
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1. Downward gravitational force (mh+mc)g
2. The force exerted by the road (Fr) on the system.

3. In this case the force exerted by the road (Fr) on the system (cart+horse) is resolved in
to  parallel  and  perpendicular  components.  The  perpendicular  component  is  the
normal force which cancels the downward gravitational force (mh+mc)g. The parallel
component of the force is not balanced, hence the system (cart+horse) accelerates and
moves forward due to this force.

The acceleration is given by

2

2

d y
a

dt
=

dv
a

dt
=

v =velocity of the particle in y direction

The momentum of the particle = mv = m (u-gt).

The force acting on the object is given by F =ma = −mg

The negative  sign implies  that  the  force  is  acting on the  negative  y  direction.  This  is
exactly the force that acts on the object in projectile motion.

Particle Moving in an Inclined Plane

When  an  object  of  mass  m  slides  on  a  frictionless  surface  inclined  at  an  angleθ  as
shown in the Figure 3.12, the forces acting on it decides the

1. acceleration of the object
2. speed of the object when it reaches the bottom

The force acting on the object is

1. Downward gravitational force (mg)
2. Normal force perpendicular to inclined surface (N)
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To draw the free body diagram, the block is assumed to be a point mass (Figure 3.13
(a)).  Since  the  motion  is  on  the  inclined  surface,  we  have  to  choose  the  coordinate  system
parallel to the inclined surface.

The  gravitational  force  mg  is  resolved  in  to  parallel  component  mg  sinθ  along  the

inclined plane and perpendicular component mg cosθ  perpendicular to the inclined surface.

Note that the angle made by the gravitational force (mg) with the perpendicular to the

surface is equal to the angle of inclination θ .

There is  no motion(acceleration)  along the y axis.  Applying Newton’s  second law in
the y direction

By comparing the components on both sides, N −mg cosθ = 0

N =mg cosθ

The magnitude of normal force (N) exerted by the surface is equivalent to mg cosθ .

The  object  slides  (with  an  acceleration)  along  the  x  direction.  Applying  Newton’s\
second law in the x direction

By comparing the components on both sides, we can equate

mg sinθ =ma

The acceleration of the sliding object is

a = g sinθ

Note that  the acceleration depends on the angle  of  inclination θ  .  If  the angle  θ  is  90
degree, the block will move vertically with acceleration a = g.

Newton’s  kinematic  equation is  used to  find the  speed of  the  object  when it  reaches
the bottom. The acceleration is constant throughout the motion.
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The acceleration a is equal to g sinθ.  The initial speed (u) is equal to zero as it  starts
from rest. Here s is the length of the inclined surface.

The speed (v) when it reaches the bottom is (using equation (3.3))

Two Bodies in Contact on a Horizontal Surface

Consider two blocks of masses m1 and m2 (m1> m2) kept in contact with each other
on a smooth, horizontal frictionless surface as shown in Figure 3.14.

By  the  application  of  a  horizontal  force  F,  both  the  blocks  are  set  into  motion  with
acceleration ‘a’ simultaneously in the direction of the force F.

To  find  the  acceleration a
r

,  Newton’s  second  law  has  to  be  applied  to  the  system
(combined mass m = m1 + m2)

If we choose the motion of the two masses along the positive x direction,

By comparing components on both sides of the above equation

The acceleration of the system is given by

The force  exerted by the  block m1 on m2  due  to  its  motion is  called  force  of  contact

( )21f
ur

.  According  to  Newton’s  third  law,  the  block  m2 will  exert  an  equivalent  opposite

reaction force ( )12f
ur

on block m1.
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By comparing the components on both sides of the above equation, we get

Substituting the value of acceleration from equation

Equation (3.7) shows that the magnitude of contact force depends on mass m2  which
provides the reaction force. Note that this force is acting along the negative x direction.

In vector notation, the reaction force on mass m1 is given by
2

12

1 2

Fm
f

m m
= −

+

ur

For mass m2 there is only one force acting on it in the x direction and it is denoted by

21
f
ur

. This force is exerted by mass m1. The free body diagram for mass m2

Applying Newton’s second law for mass m2

By comparing the components on both sides of the above equation

Substituting for acceleration from equation (3.5) in equation (3.8), we get
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In this case the magnitude of the contact force is

The direction of this force is along the positive x direction.

In vector notation, the force acting on mass m2exerted by mass m1is

Note 12 21
f f= −
ur ur

 which confirms Newton’s third law.

Motion of Connected Bodies

When  objects  are  connected  by  strings  and  a  force  F  is  applied  either  vertically  or
horizontally or along an inclined plane, it produces a tension T in the string, which affects the
acceleration to an extent. Let us discuss various cases for the same.

Case 1: Vertical motion

Consider  two  blocks  of  masses  m1 and  m2  (m1>  m2)  connected  by  a  light  and
inextensible string that passes over a pulley as shown in Figure

Let the tension in the string be T and acceleration a. When the system is released, both
the blocks start moving, m2 vertically upward and m1  downward with same acceleration a.
The gravitational force m1g on mass m1 is used in lifting the mass m2.

The upward direction is chosen as y direction.

Applying Newton’s second law for mass m2
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The left hand side of the above equation is the total force that acts on m2 and the right
hand side is the product of mass and acceleration of m2 in y direction.

By comparing the components on both sides, we get

Similarly, applying Newton’s second law for mass m1

As  mass  m1  moves  downward ˆ( )j−  its  acceleration  is  along ˆ( )j− By  comparing  the

components on both sides, we get

From equation (3.11), the acceleration of both the masses is

If both the masses are equal (m1=m2), from equation

a=0

This  shows that  if  the  masses  are  equal,  there  is  no acceleration and the  system as  a
whole will be at rest.

To find the tension acting on the string, substitute the acceleration from the equation
(3.12) into the equation (3.9).
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By taking m2g common in the RHS of equation (3.13)

Equation (3.12) gives only magnitude of acceleration.

For mass m1, the acceleration vector is given by
1 2

1 2

ˆm m
a j

m m

 −= − + 

r

For mass m2, the acceleration vector is given b
1 2

1 2

ˆm m
a j

m m

 −=  + 

r

Case 2: Horizontal motion

In this case, mass m2 is kept on a horizontal table and mass m1 is hanging through a
small pulley as shown in Figure 3.17. Assume that there is no friction on the surface.

As  both  the  blocks  are  connected  to  the  unstretchable  string,  if  m1  moves  with  an
acceleration a downward then m2 also moves with the same acceleration a horizontally.

The forces acting on mass m2 are

1. Downward gravitational force (m2g)
2. Upward normal force (N) exerted by the surface
3. Horizontal tension (T) exerted by the string
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The forces acting on mass m1 are

1. Downward gravitational force (m1g)
2. Tension (T) acting upwards

The free body diagrams for both the masses

Applying Newton’s second law for m1

By comparing the components on both sides of the above equation

Applying Newton’s second law for m2

By comparing the components on both sides of above equation,

There is no acceleration along y direction for m2.

By comparing the components on both sides of the above equation

By substituting equation (3.15) in equation (3.14), we can find the tension T
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Tension in the string can be obtained by substituting equation (3.17) in equation (3.15)

Comparing motion in both cases, it is clear that the tension in the string for horizontal
motion is half of the tension for vertical motion for same set of masses and strings.

This  result  has  an  important  application  in  industries.  The  ropes  used  in  conveyor
belts  (horizontal  motion)  work  for  longer  duration  than  those  of  cranes  and  lifts  (vertical
motion).

Concurrent Forces and Lami’s Theorem

A collection of  forces  is  said to  be  concurrent,  if  the  lines  of  forces  act  at  a  common
point. Figure 3.19 illustrates concurrent forces.

Concurrent forces need not be in the same plane. If  they are in the same plane, they
are concurrent as well as coplanar forces.

LAMI’S THEOREM

If  a  system  of  three  concurrent  and  coplanar  forces  is  in  equilibrium,  then  Lami’s
theorem states that the magnitude of each force of the system is proportional to sine of the
angle  between  the  other  two  forces.  The  constant  of  proportionality  is  same  for  all  three
forces.

Let  us  consider  three  coplanar  and  concurrent  forces 1 2 3,F F and F
ur ur ur

which  act  at  a

common  point  O  as  shown  in  Figure  3.20.  If  the  point  is  at  equilibrium,  then  according  to
Lami’s theorem
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Lami’s  theorem  is  useful  to  analyse  the  forces  acting  on  objects  which  are  in  static
equilibrium.

Application of Lami’s Theorem

EXAMPLE

A baby is playing in a swing which is hanging with the help of two identical chains is
at rest. Identify the forces acting on the baby. Apply Lami’s theorem and find out the tension
acting on the chain.

Solution

The baby and the chains are modeled as a particle hung by two strings as shown in the
figure. There are three forces acting on the baby.

1. Downward gravitational force along negative y direction (mg)
2. Tension (T) along the two strings

These three forces are coplanar as well as concurrent as shown in the following figure.
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From this, the tension on each string is .
2cos

mg
T

θ
=

LAW OF CONSERVATION OF TOTAL LINEAR MOMENTUM

In  nature,  conservation laws play  a  very  important  role.  The  dynamics  of  motion of
bodies can be analysed very effectively using conservation laws. There are three conservation
laws in mechanics. Conservation of total energy, conservation of total linear momentum, and
conservation of angular momentum. By combining Newton’s second and third laws, we can
derive the law of conservation of total linear momentum.

When two particles interact with each other,  they exert equal and opposite forces on

each other. The particle 1 exerts force 21F
ur

 on particle 2 and particle 2 exerts an exactly equal

and opposite force 12F
ur

 on particle 1, according to Newton’s third law.

In terms of momentum of particles, the force on each particle (Newton’s second law)
can be written as

Here 1
p
ur

is the momentum of particle 1 which changes due to the force 12F
ur

 exerted by

particle  2.  Further 2
p
ur

is  the  momentum  of  particle  2.  This  changes  due  to 21F
ur

exerted  by

particle 1.
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It implies that 1
p
ur

+ 2
p
ur

=constant vector (always).

1
p
ur

+ 2
p
ur

is the total linear momentum of the two particles ( )1 2 .totP p p= +
ur ur ur

It is also called

as total linear momentum of the system. Here, the two particles constitute the system. From
this result, the law of conservation of linear momentum can be stated as follows.

If there are no external forces acting on the system, then the total linear momentum of

the  system ( totP
ur

)is  always  a  constant  vector.  In  other  words,  the  total  linear  momentum of

the system is conserved in time. Here the word ‘conserve’ means that 1
p
ur

 and 2
p
ur

 can vary, in

such a way that 1
p
ur

+ 2
p
ur

is a constant vector.

The  forces 12F
ur

 and 21F
ur

are  called  the  internal  forces  of  the  system,  because  they  act
only  between  the  two  particles.  There  is  no  external  force  acting  on  the  two  particles  from
outside.  In  such  a  case  the  total  linear  momentum  of  the  system  is  a  constant  vector  or  is
conserved.

EXAMPLE

Identify the internal and external forces acting on the following systems.

1. Earth alone as a system
2. Earth and Sun as a system
3. Our body as a system while walking
4. Our body + Earth as a system

Solution

Earth alone as a system

Earth orbits the Sun due to gravitational attraction of the Sun. If we consider Earth as a
system, then Sun’s gravitational force is an external force. If we take the Moon into account, it
also exerts an external force on Earth.

(Earth + Sun) as a system

In this case,  there are two internal forces which form an action and reaction pair the
gravitational force exerted by the Sun on Earth and gravitational force exerted by the Earth
on the Sun.

Our body as a system
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While walking, we exert a force on the Earth and Earth exerts an equal and opposite
force on our body. If our body alone is considered as a system, then the force exerted by the
Earth on our body is external.

(Our body + Earth) as a system

In  this  case,  there  are  two  internal  forces  present  in  the  system.  One  is  the  force
exerted by our body on the Earth and the other is the equal and opposite force exerted by the
Earth on our body.

Meaning of law of conservation of momentum

The Law of conservation of linear momentum is a vector law. It implies that both the
magnitude  and  direction  of  total  linear  momentum  are  constant.  In  some  cases,  this  total
momentum can also be zero.

To analyse the motion of a particle, we can either use Newton’s second law or the law
of conservation of linear momentum. Newton’s second law requires us to specify the forces
involved  in  the  process.  This  is  difficult  to  specify  in  real  situations.  But  conservation  of
linear  momentum  does  not  require  any  force  involved  in  the  process.  It  is  covenient  and
hence important.

For example, when two particles collide, the forces exerted by these two particles on
each other  is  difficult  to  specify.  But  it  is  easier  to  apply conservation of  linear  momentum
during the collision process.

Examples

Consider  the  firing  of  a  gun.  Here  the  system  is  Gun+bullet.  Initially  the  gun  and

bullet  are  at  rest,  hence  the  total  linear  momentum  of  the  system  is  zero.  Let 1
p
ur

be  the

momentum of the bullet and 2
p
ur

 momentum of the gun before firing. Since initially both are at

rest,

Total momentum before fi ring the gun is zero, 1 2
0.p p+ =

ur ur

According to the law of conservation of linear momentum, total linear momemtum has to be
zero after the fi ring also.
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When the gun is fi red, a force is exerted by the gun on the bullet in forward direction.

Now  the  momentum  of  the  bullet  changes  from 1
p
ur

to 1
p
ur

.  To  conserve  the  total  linear

momentum of the system, the momentum of the gun must also change from 2
p
ur

to 2
p
ur

. Due to

the conservation of linear momentum, 1 2
' ' 0.p p+ =

ur ur
It implies

that 1 2
' ',p p= −

ur ur
the momentum of the gun is exactly equal, but in the opposite direction to the

momentum of the bullet.  This is the reason after firing, the gun suddenly moves backward

with  the  momentum ( )2p−
ur

.  It  is  called  ‘recoil  momemtum’.  This  is  an  example  of

conservation of total linear momentum.

Consider  two particles.  One is  at  rest  and the  other  moves  towards  the  first  particle
(which is at rest).  They collide and after collison  move in some arbitrary directions. In this
case,  before  collision,  the  total  linear  momentum of  the  system is  equal  to  the  initial  linear
momentum of the moving particle. According to conservation of momentum, the total linear
momentum  after  collision  also  has  to  be  in  the  forward  direction.  The  following  figure
explains this.

A  more  accurate  calculation  is  covered  in  section  4.4.  It  is  to  be  noted  that  the  total
momentum vector before and after collison points in the same direction. This simply means
that  the  total  linear  momentum  is  constant  before  and  after  the  collision.  At  the  time  of
collision,  each  particle  exerts  a  force  on  the  other.  As  the  two  particles  are  considered  as  a
system,  these  forces  are  only  internal,  and the  total  linear  momentum cannot  be  altered by
internal forces.

Impulse

If a very large force acts on an object for a very short duration, then the force is called
impulsive force or impulse.

If  a  force  (F)  acts  on  the  object  in  a  very  short  interval  of  time  (Δt),  from  Newton’s
second law in magnitude form

Integrating over time from an initial time ti to a final time tf , we get
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pi= initial momentum of the object at timeti

pf=final momentum of the object at timetf

f ip p p− = ∆ = change in momentum of the object during the time interval .f it t t− = ∆

The integral
f

i

t

t

F dt J=∫  is called the impulse and it is equal to change in momentum of

the object.

If the force is constant over the time interval, then

For a constant force, the impulse is denoted as J = FΔt and it is also equal to change in
momentum ('p) of the object over the time interval 't.

Impulse is a vector quantity and its unit is Ns.

The average force acted on the object over the short interval of time is defined by

From equation (3.25), the average force that act on the object is greater if 't is smaller.
Whenever  the  momentum  of  the  body  changes  very  quickly,  the  average  force  becomes
larger.

The  impulse  can  also  be  written  in  terms  of  the  average  force.  Since  'p  is  change  in
momentum of the object and is equal to impulse (J), we have

The graphical representation of constant force impulse and variable force impulse.

ilustration
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When a cricket player catches the ball, he pulls his hands gradually in the direction of
the ball’s motion. Why?

If he stops his hands soon after catching the ball, the ball comes to rest very quickly. It
means  that  the  momentum of  the  ball  is  brought  to  rest  very  quickly.  So  the  average  force
acting on the body will be very large. Due to this large average force, the hands will get hurt.
To avoid getting hurt, the player brings the ball to rest slowly.

When a car meets with an accident, its momentum reduces drastically in a very short
time.  This  is  very  dangerous  for  the  passengers  inside  the  car  since  they  will  experience  a
large  force.  To prevent  this  fatal  shock,  cars  are  designed with  air  bags  in  such a  way that
when the car meets with an accident, the momentum of the passengers will reduce slowly so
that the average force acting on them will be smaller.

The shock absorbers  in  two wheelers  play the  same role  as  airbags  in  the  car.  When
there is a bump on the road, a sudden force is transferred to the vehicle. The shock absorber
prolongs the period of transfer of force on to the body of the rider.  Vehicles without shock
absorbers will harm the body due to this reason.

Jumping on a concrete cemented floor is more dangerous than jumping on the sand.
Sand  brings  the  body  to  rest  slowly  than  the  concrete  floor,  so  that  the  average  force
experienced by the body will be lesser.

EXAMPLE

An object of mass 10 kg moving with a speed of 15 m s−1 hits the wall and comes to
rest within

1. 0.03 second
2. 10 second

Calculate the impulse and average force acting on the object in both the cases.

Solution

Initial momentum of the object pi =10 × 15 =150 k gm s−1

Final momentum of the object pf =0

Impulse J = Δp = 150N s.
Impulse J = Δp = 150N s
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We see that, impulse is the same in both cases, but the average force is different.

FRICTION

Introduction

If  a  very  gentle  force  in  the  horizontal  direction  is  given  to  an  object  at  rest  on  the
table, it does not move. It is because of the opposing force exerted by the surface on the object
which  resists  its  motion.  This  force  is  called  the  frictional  force  which  always  opposes  the
relative motion between an object and the surface where it  is  placed. If  the force applied is
increased, the object moves after a certain limit.

Relative motion: when a force parallel to the surface is applied on the object, the force
tries to move the object with respect to the surface. This ‘relative motion’ is opposed by the
surface  by  exerting  a  frictional  force  on  the  object  in  a  direction  opposite  to  applied  force.
Frictional force always acts on the object parallel to the surface on which the object is placed.
There are two kinds of friction namely 1) Static friction and 2) Kinetic friction.

Static Friction ( )sf

r

Static  friction  is  the  force  which opposes  the  initiation  of  motion of  an  object  on  the
surface.  When  the  object  is  at  rest  on  the  surface,  only  two  forces  act  on  it.  They  are  the
downward gravitational force and upward normal force. The resultant of these two forces on
the object is zero. As a result the object is at rest as shown in Figure 3.23

some external  force  Fext is  applied  on  the  object  parallel  to  the  surface  on  which  the
object is at rest, the surface exerts exactly an equal and opposite force on the object to resist
its motion and tries to keep the object at rest. It implies that external force and frictional force
are exactly equal and opposite. Therefore, no motion parallel to the surface takes place. But if
the  external  force  is  increased,  after  a  particular  limit,  the  surface  cannot  provide sufficient
opposing frictional force to balance the external force on the object. Then the object starts to
slide. This is the maximal static friction that can be exerted by the surface. Experimentally, it
is  found  that  the  magnitude  of  static  frictional  force  fs  satisfies  the  following  empirical
relation.
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where μs is the coefficient of static friction. It depends on the nature of the surfaces in
contact.  N is  normal  force  exerted by the  surface  on the  body and sometimes it  is  equal  to
mg. But it need not be equal to mg always.

Equation (3.27) implies that the force of static friction can take any value from zero to
μsN.

If the object is at rest and no external force is applied on the object, the static friction
acting on the object is zero ( fs=0).

If the object is at rest, and there is an external force applied parallel to the surface, then
the force of static friction acting on the object is exactly equal to the external force applied on

the object ( ).s extf F=  But still the static friction fs is less than μsN.

When  object  begins  to  slide,  the  static  friction  (  fs)  acting  on  the  object  attains
maximum,

The  static  and  kinetic  frictions  (which  we  discuss  later)  depend  on  the  normal  force
acting on the object. If the object is pressed hard on the surface then the normal force acting
on the object  will  increase.  As a  consequence it  is  more difficult  to  move the object.  This  is
shown in Figure 3.23 (a) and (b). The static friction does not depend upon the area of contact.

EXAMPLE

Consider  an object  of  mass  2  kg resting on the  floor.  The coefficient  of  static  friction
between the object and the floor is μs = 0.8. What force must be applied on the object to move
it?

Solution

Since the object is at rest, the gravitational force experienced by an object is balanced
by normal force exerted by floor.

N = mg

The maximum static frictional force max

s s s
f N mgµ µ= =

Therefore to move the object the external force should be greater than maximum static
friction.
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EXAMPLE

Consider an object of mass 50 kg at rest on the floor. A Force of 5 N is applied on the
object but it does not move. What is the frictional force that acts on the object?

Solution

When the object is at rest, the external force and the static frictional force are equal and
opposite

The magnitudes of these two forces are equal, fs =Fext

Therefore, the static frictional force acting on the object is

fs=5N .

The direction of this frictional force is opposite to the direction of Fext.

EXAMPLE

Two  bodies  of  masses  7  kg  and  5  kg  are  connected  by  a  light  string  passing  over  a
smooth pulley at the edge of the table as shown in the figure. The coefficient of static friction
between the surfaces (body and table) is 0.9. Will the mass m1 = 7 kg on the surface move? If
not what value of m2 should be used so that mass 7 kg begins to slide on the table?

Solution

As shown in the figure, there are four forces acting on the mass m1

1. Downward gravitational force along the negative y-axis (m1g)
2. Upward normal force along the positive y axis (N)
3. Tension force due to mass m2 along the positive x axis
4. Frictional force along the negative x axis

Since the mass m1 has no vertical motion, m1g = N

To  determine  whether  the  mass  m1  moves  on  the  surface,  calculate  the  maximum
static friction exerted by the table on the mass m1. If the tension on the mass m1 is equal to or
greater than this maximum static friction, the object will move.
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The  tension  acting  on  the  mass  m1  is  less  than  the  maximum  static  friction.  So  the
mass m1 will not move.

To move the mass m1, T> max

s
f  where T = m2g

If the mass m2 is greater than 6.3 kg then the mass m1 will begin to slide. Note that if
there is no friction on the surface, the mass m1 will move for m2 even for just 1 kg.

The values of coefficient of static friction for pairs of materials are presented in Table
3.1.  Note  that  the  ice  and  ice  pair  have  very  low  coefficient  of  static  friction.  This  means  a
block of ice can move easily over another block of ice.

Kinetic Friction

If  the  external  force  acting  on the  object  is  greater  than maximum static  friction,  the
objects begin to slide. When an object slides, the surface exerts a frictional force called kinetic

friction k
f
ur

(also  called  sliding  friction  or  dynamic  friction).  To  move  an  object  at  constant
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velocity we must apply a force which is equal in magnitude and opposite to the direction of
kinetic friction.

Experimentally it was found that the magnitude of kinetic friction satisfies the relation

where  μk is  the  coefficient  of  kinetic  friction  and  N  the  normal  force  exerted  by  the
surface on the object,

This implies that starting of a motion is more difficult than maintaining it. The salient
features of static and kinetic friction

The variation of both static and kinetic frictional forces with external applied force
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The Figure 3.25 shows that static friction increases linearly with external applied force
till  it  reaches the maximum. If  the object begins to move then the kinetic friction is slightly
lesser  than  the  maximum  static  friction.  Note  that  the  kinetic  friction  is  constant  and  it  is
independent of applied force.

To Move an Object - Push or pull? Which is easier?

When a  body is  pushed at  an arbitrary angle  θ 0
2

to
π 

  
the applied force  F  can be

resolved into  two components  as  F  sinθ parallel  to  the  surface  and F  cosθ perpendicular  to
the surface as shown in Figure 3.26. Th e total downward force acting on the body is mg +
Fcosθ.  It  implies  that  the  normal  force  acting  on  the  body  increases.  Since  there  is  no
acceleration along the vertical direction the normal force N is equal to

As a result the maximal static friction also increases and is equal to

Equation (3.30) shows that a greater force needs to be applied to push the object into
motion.

When  an  object  is  pulled  at  an  angle  θ,  the  applied  force  is  resolved  into  two
components as shown in Figure 3.27 The total downward force acting on the object is
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Equation (3.31)  shows that  the  normal  force  is  less  than Npush.  From equations (3.29)
and (3.31), it is easier to pull an object than to push to make it move.
Angle of Friction

The  angle  of  friction  is  defined  as  the  angle  between  the  normal  force  (N)  and  the

resultant force (R) of normal force and maximum friction force max

s
f

In Figure 3.28 the resultant force is

But from the frictional relation, the object begins to slide when
max

s s
f Nµ=

From equations (3.32) and (3.33) the coefficient of static friction is

Angle of Repose

Consider  an  inclined  plane  on  which  an  object  is  placed,  as  shown  in  Figure  3.30.  Let  the

angle which this plane makes with the horizontal be θ . For small angles of θ  , the object may

not slide down. As θ  is increased, for a particular value ofθ , the object begins to slide down.
This value is called angle of repose. Hence, the angle of repose is the angle of inclined plane
with the horizontal such that an object placed on it begins to slide.

Let us consider the various forces in action here. The gravitational force mg is resolved

into components parallel (mg sinθ ) and perpendicular (mg cosθ ) to the inclined plane.

The  component  of  force  parallel  to  the  inclined  plane  (mg  sinθ )  tries  to  move  the
object down.
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The component of force perpendicular to the inclined plane (mg cosθ ) is balanced by
the Normal force (N).

When the object just begins to move, the static friction attains its maximum value

This friction also satisfies the relation

Equating the right hand side of equations (3.35) and (3.36), we get

From the definition of angle of friction, we also know thatin which θ  is  the angle of
friction.

Thus the angle of repose is the same as angle of friction. But the difference is that the
angle of repose refers to inclined surfaces and the angle of friction is applicable to any type of
surface

EXAMPLE

A block of  mass  m slides  down the  plane inclined at  an angle  60°  with  an acceleration
2

g
.

Find the coefficient of kinetic friction?

Solution

Kinetic friction comes to play as the block is moving on the surface.

The  forces  acting  on  the  mass  are  the  normal  force  perpendicular  to  surface,
downward gravitational force and kinetic friction fk along the surface
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But a = g/2

There is no motion along the y-direction as normal force is exactly balanced by the mg

cosθ .

Application of Angle of Repose

Antlions  make  sand  traps  in  such  a  way  that  when  an  insect  enters  the  edge  of  the
trap,  it  starts  to  slide  towards  the  bottom  where  the  antilon  hide  itself.  The  angle  of
inclination of sand trap is made to be equal to angle of repose.

Children  are  fond  of  playing  on  sliding  board  (Figure  3.31).  Sliding  will  be  easier
when the angle  of  inclination of  the  board is  greater  than the  angle  of  repose.  At  the  same
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time  if  inclination  angle  is  much  larger  than  the  angle  of  repose,  the  slider  will  reach  the
bottom at greater speed and get hurt.

Rolling Friction

The  invention  of  the  wheel  plays  a  crucial  role  in  human  civilization.  One  of  the
important  applications  is  suitcases  with  rolling  on  coasters.  Rolling  wheels  makes  it  easier
than carrying luggage. When an object moves on a surface, essentially it is sliding on it. But
wheels move on the surface through rolling motion. In rolling motion when a wheel moves
on a surface, the point of contact with surface is always at rest. Since the point of contact is at
rest, there is no relative motion between the wheel and surface. Hence the frictional force is
very  less.  At  the  same  time  if  an  object  moves  without  a  wheel,  there  is  a  relative  motion
between the object and the surface. As a result frictional force is larger. This makes it difficult
to move the object. The Figure 3.32 shows the difference between rolling and kinetic friction.

Ideally  in  pure  rolling,  motion  of  the  point  of  contact  with  the  surface  should  be  at
rest, but in practice it is not so. Due to the elastic nature of the surface at the point of contact
there will be some deformation on the object at this point on the wheel or surface as shown in
Figure  3.33.  Due  to  this  deformation,  there  will  be  minimal  friction  between  wheel  and
surface.  It  is  called  ‘rolling  friction’.  In  fact,  ‘rolling  friction’  is  much  smaller  than  kinetic
friction.

Methods to Reduce Friction

Frictional  force  has  both  positive  and  negative  effects.  In  some  cases  it  is  absolutely
necessary.  Walking  is  possible  because  of  frictional  force.  Vehicles  (bicycle,  car)  can  move
because of the frictional force between the tyre and the road. In the braking system, kinetic
friction  plays  a  major  role.  As  we  have  already  seen,  the  frictional  force  comes  into  effect
whenever there is relative motion between two surfaces. In big machines used in industries,
relative  motion  between  different  parts  of  the  machine  produce  unwanted  heat  which
reduces its efficiency. To reduce this kinetic friction lubricants are used as shown in Figure
3.34.

Ball bearings provides another effective way to reduce the kinetic friction (Figure 3.35)
in machines. If ball bearings are fixed between two surfaces, during the relative motion only
the rolling friction comes to effect and not kinetic friction. As we have seen earlier, the rolling
friction  is  much  smaller  than  kinetic  friction;  hence  the  machines  are  protected  from  wear
and tear over the years.

During the time of Newton and Galileo, frictional force was considered as one of the
natural  forces  like  gravitational  force.  But  in  the  twentieth  century,  the  understanding  on
atoms, electron and protons has changed the perspective. The frictional force is actually the
electromagnetic  force  between  the  atoms  on  the  two  surfaces.  Even  well  polished  surfaces
have irregularities on the surface at the microscopic level as seen in the Figure 3.36.

EXAMPLE
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Consider  an  object  moving  on  a  horizontal  surface  with  a  constant  velocity.  Some
external  force  is  applied  on  the  object  to  keep  the  object  moving  with  a  constant  velocity.
What is the net force acting on the object?

Solution

If  an  object  moves  with  constant  velocity,  then  it  has  no  acceleration.  According  to
Newton’s second law there is no net force acting on the object. The external force is balanced
by the kinetic friction.

DYNAMICS OF CIRCULAR MOTION

In  the  previous  sections  we  have  studied  how  to  analyse  linear  motion  using
Newton’s laws. It is also important to know how to apply Newton’s laws to circular motion,
since circular motion is one of the very common types of motion that we come across in our
daily  life.  A  particle  can  be  in  linear  motion  with  or  without  any  external  force.  But  when
circular motion occurs there must necessarily be some force acting on the object. There is no
Newton’s first law for circular motion. In other words without a force, circular motion cannot
occur in nature. A force can change the velocity of a particle in three different ways.

1. The magnitude of the velocity can be changed without changing the direction of the
velocity. In this case the particle will move in the same direction but with acceleration.

Examples

Particle falling down vertically, bike moving in a straight road with acceleration

2. The  direction  of  motion  alone  can  be  changed  without  changing  the  magnitude
(speed). If this happens continuously then we call it ‘uniform circular motion

3. Both the direction and magnitude (speed) of velocity can be changed. If this happens
non circular  motion occurs.  For  example  oscillation of  a  swing or  simple  pendulum,
elliptical motion of planets around the Sun.

In this section we will deal with uniform circular motion and non-circular motion.

Centripetal force

If  a  particle  is  in  uniform  circular  motion,  there  must  be  centripetal  acceleration
towards the center of the circle. If there is acceleration then there must be some force acting
on it with respect to an inertial frame. This force is called centripetal force.
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As we have seen in chapter 2,  the centripetal acceleration of a particle in the circular

motion  is  given  by

2
v

a
r

= and  it  acts  towards  center  of  the  circle.  According  to  Newton’s

second law, the centripetal force is given by

The word Centripetal force means center seeking force. In vector notation

For uniform circular motion

The  direction  –rˆ  points  towards  the  center  of  the  circle  which  is  the  direction  of
centripetal force as shown in Figure 3.38.

It should be noted that ‘centripetal force’ is not other forces like gravitational force or
spring force. It can be said as ‘force towards center’. The origin of the centripetal force can be
gravitational  force,  tension  in  the  string,  frictional  force,  Coulomb  force  etc.  Any  of  these
forces can act as a centripetal force.

1. In the case of whirling motion of a stone tied to a string, the centripetal force on the
particle  is  provided  by  the  tensional  force  on  the  string.  In  circular  motion  in  an
amusement park, the centripetal force is provided by the tension in the iron ropes.

2. In  motion  of  satellites  around  the  Earth,  the  centripetal  force  is  given  by  Earth’s
gravitational force on the satellites. Newton’s second law for satellite motion is

Where r- distance of the planet from the center of the Earth.

3. When a car is moving on a circular track the centripetal force is given by the frictional
force between the road and the tyres Newton’s second law for this case is
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Even when the car moves on a curved track, the car experiences the centripetal force
which is provided by frictional force between the surface and the tyre of the car. This
is shown in the Figure 3.41.

4. When the planets orbit around the Sun, they experience centripetal force towards the
center  of  the  Sun.  Here  gravitational  force  of  the  Sun acts  as  centripetal  force  on the
planets as shown in Figure 3.42

Newton’s second law for this motion Gravitational force of Sun on the planet
2mv

r
=

EXAMPLE

If  a  stone  of  mass  0.25  kg  tied  to  a  string  executes  uniform  circular  motion  with  a
speed of 2 m s-1 of radius 3 m, what is the magnitude of tensional force acting on the stone?

Solution

EXAMPLE

The Moon orbits the Earth once in 27.3 days in an almost circular orbit. Calculate the
centripetal acceleration experienced by the Moon? (Radius of the Earth is 6.4 × 106 m)

Solution

The centripetal  acceleration is  given by
2v

a
r

= .  This  expression explicitly  depends on

Moon’s speed which is non trivial. We can work with the formula

am is centripetal acceleration of the Moon due to Earth’s gravity.
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ω is angular velocity.

Rm is  the  distance  between Earth  and the  Moon,  which is  60  times  the  radius  of  the
Earth

As  we  know  the  angular  velocity
2

T

πω =  and  T  =  27.3  days=  27.3  ×  24  ×  60  ×  60  second  =

2.358 × 106 sec

By substituting these values in the formula for acceleration

The centripetal acceleration of Moon towards the Earth is 0.00272 m s-2

Vehicle on a levelled circular road

When a vehicle travels in a curved path, there must be a centripetal force acting on it.
This centripetal force is provided by the frictional force between tyre and surface of the road.
Consider a vehicle of mass ‘m’ moving at a speed ‘v’ in the circular track of radius ‘r’. There
are three forces acting on the vehicle when it moves as shown in the Figure 3.43

1. Gravitational force (mg) acting downwards
2. Normal force (mg) acting upwards
3. Frictional force (Fs) acting horizontally inwards along the road

Suppose  the  road  is  horizontal  then  the  normal  force  and  gravitational  force  are
exactly equal and opposite. The centripetal force is provided by the force of static friction Fs
between the tyre and surface of the road which acts towards the center of the circular track,

As we have already seen in the previous section, the static friction can increase from
zero to a maximum value
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There are two conditions possible:

The static friction would be able to provide necessary centripetal force to bend the car
on the road. So the coefficient of static friction between the tyre and the surface of the road
determines what maximum speed the car can have for safe turn.

If the static friction is not able to provide enough centripetal force to turn, the vehicle
will start to skid.

EXAMPLE

Consider a circular leveled road of radius 10 m having coefficient of static friction 0.81.
Three cars (A, B and C) are travelling with speed 7 m s−1,  8 m s−1  and 10 ms−1  respectively.
Which car will skid when it moves in the circular level road? (g =10 m s−2)

Solution

From the safe turn condition the speed of the vehicle (v) must be less than or equal to

s
rgµ

For Car C,
s
rgµ is less than v

The speed of car A, B and C are 7 m s−1, 8 m s−1 and 10 m s−1 respectively. The cars A
and B will have safe turns. But the car C has speed 10 m s−1 while it turns which exceeds the
safe turning speed. Hence, the car C will skid.

Banking of Tracks

In a leveled circular road, skidding mainly depends on the coefficient of static friction
ms  The  coefficient  of  static  friction  depends  on  the  nature  of  the  surface  which  has  a
maximum limiting value. To avoid this problem, usually the outer edge of the road is slightly
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raised compared to inner edge as shown in the Figure 3.44. This is called banking of roads or
tracks. This introduces an inclination, and the angle is called banking angle.

Let the surface of the road make angleθ with horizontal surface. Then the normal force

makes  the  same  angleθ with  the  vertical.  When  the  car  takes  a  turn,  there  are  two  forces
acting on the car:

1. Gravitational force mg (downwards)
2. Normal force N (perpendicular to surface)

We can resolve the normal force into two components. N cosθ and N sinθ  as shown

in Figure 3.46. The component N cosθ balances the downward gravitational force ‘mg’ and

component  N  sinθ  will  provide  the  necessary  centripetal  acceleration.  By  using  Newton
second law

By dividing the equations we get tanθ=
2v

rg

The banking angleθ and radius of curvature of the road or track determines the safe
speed of the car at the turning. If the speed of car exceeds this safe speed, then it starts to skid
outward but frictional force comes into effect and provides an additional centripetal force to
prevent  the  outward skidding.  At  the  same time,  if  the  speed of  the  car  is  little  lesser  than
safe  speed,  it  starts  to  skid  inward  and  frictional  force  comes  into  effect,  which  reduces
centripetal  force  to  prevent  inward  skidding.  However  if  the  speed  of  the  vehicle  is
sufficiently  greater  than  the  correct  speed,  then  frictional  force  cannot  stop  the  car  from
skidding.

EXAMPLE

Consider  a  circular  road  of  radius  20  meter  banked  at  an  angle  of  15  degree.  With
what speed a car has to move on the turn so that it will have safe turn?

Solution
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Centrifugal Force

Circular  motion  can  be  analysed  from  two  different  frames  of  reference.  One  is  the
inertial frame (which is either at rest or in uniform motion) where Newton’s laws are obeyed.
The other is the rotating frame of reference which is a non-inertial frame of reference as it is
accelerating.  When  we  examine  the  circular  motion  from  these  frames  of  reference  the
situations  are  entirely  different.  To  use  Newton’s  first  and  second  laws  in  the  rotational
frame  of  reference,  we  need  to  include  a  pseudo  force  called  ‘centrifugal  force’.  This
‘centrifugal force’ appears to act on the object with respect to rotating frames. To understand
the concept of centrifugal force, we can take a specific case and discuss as done below.

Consider  the  case  of  a  whirling  motion  of  a  stone  tied  to  a  string.  Assume  that  the
stone  has  angular  velocity ω  in  the  inertial  frame  (at  rest).  If  the  motion  of  the  stone  is
observed  from  a  frame  which  is  also  rotating  along  with  the  stone  with  same  angular
velocityω then,  the  stone  appears  to  be  at  rest.  This  implies  that  in  addition  to  the  inward
centripetal  force  −mω2r  there  must  be  an  equal  and  opposite  force  that  acts  on  the  stone
outward with value +mω2r. So the total force acting on the stone in a rotating frame is equal
to  zero  (−mω2r  +mω2r  =  0).  This  outward  force  +mω2r  is  called  the  centrifugal  force.  The
word ‘centrifugal’ means ‘flee from center’. Note that the ‘centrifugal force’ appears to act on
the  particle,  only  when  we  analyse  the  motion  from  a  rotating  frame.  With  respect  to  an
inertial frame there is only centripetal force which is given by the tension in the string. For
this  reason  centrifugal  force  is  called  as  a  ‘pseudo  force’.  A  pseudo  force  has  no  origin.  It
arises due to the non inertial nature of the frame considered. When circular motion problems
are solved from a rotating frame of reference, while drawing free body diagram of a particle,
the centrifugal force should necessarily be included as shown in the Figure 3.45.

Effects of Centrifugal Force

Although  centrifugal  force  is  a  pseudo  force,  its  effects  are  real.  When  a  car  takes  a
turn in a curved road, person inside the car feels an outward force which pushes the person
away. This outward force is also called centrifugal force. If there is sufficient friction between
the  person  and  the  seat,  it  will  prevent  the  person  from  moving  outwards.  When  a  car
moving in a straight line suddenly takes a turn, the objects not fixed to the car try to continue
in linear motion due to their inertia of direction. While observing this motion from an inertial
frame, it appears as a straight line as shown in Figure 3.46. But, when it is observed from the
rotating frame it appears to move outwards.

A  person  standing  on  a  rotating  platform  feels  an  outward  centrifugal  force  and  is
likely  to  be  pushed  away  from  the  platform.  Many  a  time  the  frictional  force  between  the
platform and the person is not sufficient to overcome outward push. To avoid this,  usually
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the outer edge of the platform is little inclined upwards which exerts a normal force on the
person which prevents the person from falling as illustrated in Figures 3.47.

Centrifugal Force due to Rotation of the Earth

Even  though  Earth  is  treated  as  an  inertial  frame,  it  is  actually  not  so.  Earth  spins
about its own axis with an angular velocity ω. Any object on the surface of Earth (rotational
frame) experiences a centrifugal force. The centrifugal force appears to act exactly in opposite
direction from the axis of rotation. It is shown in the Figure 3.48.

The centrifugal force on a man standing on the surface of the Earth is Fc =mω2r

where r is perpendicular distance of the man from the axis of rotation. By using right
angle triangle as shown in the Figure 3.48, the distance r = Rcos θ

Here R = radius of the Earth

and θ = latitude of the Earth where the man is standing.

EXAMPLE

Calculate  the  centrifugal  force  experienced  by  a  man  of  60  kg  standing  at  Chennai?
(Given: Latitude of Chennai is 13°

Solution

The centrifugal force is given byFc= m ω2 R cosθ

The angular velocity (ω) of Earth
2

r

π= where T is time period of the Earth (24 hours)

The radius of the Earth R = 6400 Km = 6400 × 103 m

Latitude of Chennai = 13°
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A  60  kg  man  experiences  centrifugal  force  of  approximately  2  Newton.  But  due  to
Earth’s gravity a man of 60 kg experiences a force = mg = 60 × 9.8 = 588N. This force is very
much larger than the centrifugal force.

Centripetal Force Versus Centrifugal Force

Salient features of centripetal and centrifugal forces are compared in Table 3.4.


