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UNIT – 6 GRAVITATION

INTRODUCTION

We are amazed looking at the glittering sky; we wonder how the Sun rises in
the East and sets in the West, why there are comets or why stars twinkle. The sky
has been an object of curiosity for human beings from time immemorial. We have
always  wondered  about  the  motion  of  stars,  the  Moon,  and  the  planets.  From
Aristotle to Stephen Hawking, great minds have tried to understand the movement
of celestial objects in space and what causes their motion.

The ‘Theory of Gravitation’ was developed by Newton in the late 17th century
to explain the motion of celestial objects and terrestrial objects and answer most of
the  queries  raised.  In  spite  of  the  study  of  gravitation  and  its  effect  on  celestial
objects, spanning last three centuries, “gravitation” is still one of the active areas of
research  in  physics  today.  In  2017,  the  Nobel  Prize  in  Physics  was  given  for  the
detection of ‘Gravitational waves’ which was theoretically predicted by Albert
Einstein in the year 1915. Understanding planetary motion, the formation of stars
and galaxies, and recently massive objects like black holes and their life cycle have
remained the focus of study for the past few centuries in physics.
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In the second century, Claudius Ptolemy, a famous Greco-Roman
astronomer, developed a theory to explain the motion of celestial objects like the
Sun,  the  Moon,  Mars,  Jupiter  etc.  This  theory  was  called  the  geocentric  model.
According to the geocentric model, the Earth is at the center of the universe and all
celestial objects including the Sun, the Moon, and other planets orbit the Earth.
Ptolemy’s model closely matched with the observations of the sky with our naked
eye. But later, astronomers found that even though Ptolemy’s model successfully
explained the motion of the Sun and the Moon up to a certain level, the motion of
Mars and Jupiter could not be explained effectively.

Heliocentric Model of Nicholas Copernicus

In the 15th century, a Polish astronomer, Nicholas Copernicus (1473-1543)
proposed  a  new  model  called  the  ‘Heliocentric  model’  in  which  the  Sun  was
considered  to  be  at  the  center  of  the  solar  system  and  all  planets  including  the
Earth orbited the Sun in circular orbits. This model successfully explained the
motion of all celestial objects.

Around the same time, Galileo, a famous Italian physicist discovered that all
objects close to Earth were accelerated towards the Earth at the same rate.
Meanwhile, a noble man called Tycho Brahe (1546-1601) spent his entire lifetime in
recording the observations of the stellar and planetary positions with his naked
eye.  The  data  that  he  compiled  were  analyzed  later  by  his  assistant  Johannes
Kepler (1571–1630) and eventually the analysis led to the deduction of the laws of
the planetary motion. These laws are termed as ‘Kepler’s laws of planetary motion’.

Kepler’s Laws of Planetary Motion
Law of orbits:

Each planet moves around the Sun in an elliptical orbit with the Sun at one of
the foci.

The closest point of approach of the planet to the Sun ‘P’ is called perihelion
and the farthest point ‘A’ is called aphelion (Figure 6.1). The semi-major axis is ‘a’
and semi-minor axis is ‘b’. In fact, both Copernicus and Ptolemy considered
planetary orbits to be circular, but Kepler discovered that the actual orbits of the
planets are elliptical.

Law of area:

The  radial  vector  (line  joining  the  Sun  to  a  planet)  sweeps  equal  areas  in
equal intervals of time.



In  Figure  6.2,  the  white  shaded  portion  is  the  area  DA  swept  in  a  small
interval of time Dt, by a planet around the Sun. Since the Sun is not at the center of
the  ellipse,  the  planets  travel  faster  when  they  are  nearer  to  the  Sun  and  slower
when they are farther from it, to cover equal area in equal intervals of time. Kepler
discovered the law of area by carefully noting the variation in the speed of planets.

Law of period:

The square of the time period of revolution of a planet around the Sun in its
elliptical  orbit  is  directly  proportional  to  the  cube  of  the  semi-major  axis  of  the
ellipse. It can be written as:

where, T is the time period of revolution for a planet and a is the semi-major
axis.  Physically  this  law  implies  that  as  the  distance  of  the  planet  from  the  Sun
increases, the time period also increases but not at the same rate.

In  Table  6.1,  the  time  period  of  revolution  of  planets  around  the  Sun  along

with  their  semi-major  axes  are  given.  From  column  four,  we  can  realize  that
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nearly a constant endorsing Kepler’s third law.

Universal Law of Gravitation



Even  though  Kepler’s  laws  were  able  to  explain  the  planetary  motion,  they
failed  to  explain  the  forces  responsible  for  it.  It  was  Isaac  Newton  who  analyzed
Kepler’s laws, Galileo’s observations and deduced the law of gravitation.

Newton’s  law  of  gravitation  states  that  a  particle  of  mass  M1  attracts  any
other particle  of  mass M2  in the universe with an attractive force.  The strength of
this force of attraction was found to be directly proportional to the product of their
masses and is inversely proportional to the square of the distance between them. In
mathematical form, it can be written as:

where r̂ is the unit vector from M1 towards M2 as shown in Figure 6.3, and G
is the Gravitational constant that has the value of 6.626×10−11. Nm2kg−2, and r is the
distance between the two masses M1 and M2. In Figure 6.3, the vector F

ur
denotes the

gravitational  force experienced by M2 due to M1.  Here the negative sign indicates
that  the  gravitational  force  is  always  attractive  in  nature  and  the  direction  of  the
force is along the line joining the two masses.

In  cartesian  coordinates,  the  square  of  the  distance  is  expressed  as
r2=(x2+y2+z2) This is dealt in unit 2.

EXAMPLE

Consider two point  masses m1 and m2 which are separated by a distance of
10 meter as shown in the following figure. Calculate the force of attraction between
them and draw the directions of forces on each of them. Take m1= 1 kg and m2 = 2
kg

Solution

The force of attraction is given by



From the figure, r =10 m.

First, we can calculate the magnitude of the force

It is to be noted that this force is very small. This is the reason we do not feel
the gravitational force of attraction between each other. The small value of G plays
a very crucial role in deciding the strength of the force.

The force of attraction ( 21F
ur

)  experienced by the mass m2 due to m1 is  in the
negative ‘y’ direction ie., ˆr̂ j= - .According to Newton’s third law, the mass m2 also
exerts equal and opposite force on m1.  So the force of attraction ( 12F

ur
) experienced

by m1 due to m2 is in the direction of positive ‘y’ axis ie., ˆr̂ j= .

The direction of the force is shown in the figure,
Gravitational force of attraction between m1 and m2

12F
ur

=- 21F
ur

which confirms Newton’s third law.

Important features of gravitational force:
„„

As the distance between two masses increases, the strength of the force tends
to  decrease  because  of  inverse  dependence  on  r2.  Physically  it  implies  that  the
planet  Uranus  experiences  less  gravitational  force  from  the  Sun  than  the  Earth
since Uranus is at larger distance from the Sun compared to the Earth.

The  gravitational  forces  between  two  particles  always  constitute  an  action-
reaction pair. It implies that the gravitational force exerted by the Sun on the Earth
is  always  towards  the  Sun.  The reaction-force  is  exerted by the  Earth  on the  Sun.
The direction of this reaction force is towards Earth.



The torque experienced by the Earth due to the gravitational force of the Sun
is given by

· So 0d L
dt

t = =
ur

r
.  It  implies  that  angular  momentum L

ur
is  a  constant  vector.  The

angular  momentum  of  the  Earth  about  the  Sun  is  constant  throughout  the
motion.  It  is  true  for  all  the  planets.  In  fact,  this  constancy  of  angular
momentum leads to the Kepler’s second law.

· The expression 1 2
2 ˆGM MF r

r
= -

ur
 has one inherent assumption that both M1 and

M2  are treated as point masses.  When it  is  said that Earth orbits around the
Sun due to Sun’s gravitational force, we assumed Earth and Sun to be point
masses.  This  assumption  is  a  good  approximation  because  the  distance
between the  two bodies  is  very  much larger  than their  diameters.  For  some
irregular  and  extended  objects  separated  by  a  small  distance,  we  cannot
directly  use  the  equation  (6.3).  Instead,  we  have  to  invoke  separate
mathematical treatment which will be brought forth in higher classes.

· However, this assumption about point masses holds even for small distance
for one special case. To calculate force of attraction between a hollow sphere
of  mass M with uniform density and point  mass m kept outside the hollow
sphere, we can replace the hollow sphere of mass M as equivalent to a point
mass  M  located  at  the  center  of  the  hollow  sphere.  The  force  of  attraction
between the hollow sphere of mass M and point mass m can be calculated by
treating  thehollow  sphere  also  as  another  point  mass.  Essentially  the  entire
mass  of  the  hollow  sphere  appears  to  be  concentrated  at  the  center  of  the
hollow sphere.

· There is also another interesting result. Consider a hollow sphere of mass M.
If we place another object of mass ‘m’ inside this hollow sphere as in Figure
6.5(b),  the  force  experienced  by  this  mass  ‘m’  will  be  zero.  This  calculation
will be dealt with in higher classes.

· The triumph of the law of gravitation is that it concludes that the mango that
is  falling  down  and  the  Moon  orbiting  the  Earth  are  due  to  the  same
gravitational force.

Newton’s inverse square Law:



Newton considered the orbits of the planets as circular.  For circular orbit  of
radius r, the centripetal acceleration towards the center is

Here v is the velocity and r, the distance of the planet from the center of the
orbit

The velocity in terms of known quantities r and T, is

Here T is the time period of revolution of the planet. Substituting this value
of v in equation (6.4) we get,

Substituting the value of ‘a’ from (6.6) in Newton’s second law, F=ma, where
‘m’ is the mass of the planet.

From Kepler’s third law,

By substituting equation 6.9 in the force expression, we can arrive at the law
of gravitation.



Here negative sign implies that the force is attractive and it acts towards the
center.  In  equation  (6.10),  mass  of  the  planet  ‘m’  comes  explicitly.  But  Newton
strongly felt that according to his third law, if Earth is attracted by the Sun, then the
Sun must  also  be  attracted by the  Earth  with  the  same magnitude of  force.  So  he
felt that the Sun’s mass (M) should also occur explicitly in the expression for force
(6.10). From this insight, he equated the constant 4p 2k to GM which turned out to
be the law of gravitation

Again the negative sign in the above equation implies that the gravitational
force is attractive.

In the above discussion we assumed that the orbit of the planet to be circular
which  is  not  true  as  the  orbit  of  the  planet  around  the  Sun  is  elliptical.  But  this
circular orbit assumption is justifiable because planet’s orbit is very close to being
circular and there is only a very small deviation from the circular shape.

EXAMPLE

Moon  and  an  apple  are  accelerated  by  the  same  gravitational  force  due  to
Earth. Compare the acceleration of the two.

The gravitational force experienced by the apple due to Earth

Here  MA–  Mass  of  the  apple,  ME–  Mass  of  the  Earth  and  R  –  Radius  of  the
Earth.

Equating the above equation with Newton’s second law,

Simplifying the above equation we get,



Here  aA is  the  acceleration  of  apple  that  is  equal  to  ‘g’.  Similarly  the  force
experienced by Moon due to Earth is given by

Here Rm- distance of the Moon from the Earth, Mm – Mass of the Moon

The acceleration experienced by the Moon is given by

The ratio between the apple’s acceleration to Moon’s acceleration is given by

From  the  Hipparchrus  measurement,  the  distance  to  the  Moon  is  60  times
that of Earth radius. Rm = 60R.

The apple’s acceleration is 3600 times the acceleration of the Moon.

The  same  result  was  obtained  by  Newton  using  his  gravitational  formula.
The  apple’s  acceleration  is  measured  easily  and  it  is  9.8  m  s−2.  Moon  orbits  the
Earth  once  in  27.3  days  and  by  using  the  centripetal  acceleration  formula,  (Refer
unit 3).



which is exactly what he got through his law of gravitation.

Gravitational Constant

In  the  law of  gravitation,  the  value  of  gravitational  constant  G plays  a  very
important  role.  The  value  of  G  explains  why  the  gravitational  force  between  the
Earth and the Sun is so great while the same force between two small  objects (for
example between two human beings) is negligible.

The  force  experienced  by  a  mass  ‘m’  which  is  on  the  surface  of  the  Earth
(Figure 6.7) is given by

ME-mass of the Earth, m - mass of the object, RE- radius of the Earth.

Equating Newton’s second law, F =mg, to equation (6.11) we get,

Now  the  force  experienced  by  some  other  object  of  mass  M  at  a  distance  r
from the center of the Earth is given by,

Using the value of g in equation (6.12), the force F will be,

From this  it  is  clear  that  the  force  can be  calculated simply  by  knowing the
value of g. It is to be noted that in the above calculation G is not required.



In  the  year  1798,  Henry  Cavendish  experimentally  determined  the  value  of
gravitational constant ‘G’ by using a torsion balance. He calculated the value of ‘G’
to  be  equal  to  6.75  ×10−11Nm2kg−2 .  Using  modern  techniques  a  more  accurate
value  of  G  could  be  measured.  Th  e  currently  accepted  value  of  G  is  6.67259
×10−11Nm2kg−2 .

GRAVITATIONAL FIELD AND GRAVITATIONAL POTENTIAL
Gravitational field

Force  is  basically  due  to  the  interaction  between  two  particles.  Depending
upon the type of interaction we can have two kinds of forces: Contact forces and
Non-contact forces (Figure 6.8).

Contact  forces are the forces applied where one object  is  in physical  contact
with the other. The movement of the object is caused by the physical force exerted
through the contact between the object and the agent which exerts force.

Consider  the  case  of  Earth  orbiting  around  the  Sun.  Though  the  Sun  and
theEarth  are  not  physically  in  contact  with  each  other,  there  exists  an  interaction
between  them.  This  is  because  of  the  fact  that  the  Earth  experiences  the
gravitational force of the Sun. This gravitational force is a non-contact force.

It  sounds  mysterious  that  the  Sun  attracts  the  Earth  despite  being  very  far
from  it  and  without  touching  it.  For  contact  forces  like  push  or  pull,  we  can
calculate the strength of the force since we can feel or see. But how do we calculate
the  strength  of  non-contact  force  at  different  distances?  To  understand  and
calculate the strength of non-contact forces, the concept of ‘field’ is introduced.

The gravitational force on a particle of mass ‘m2’ due to a particle of mass ‘m1’
is

where r̂  is a unit vector that points from m1 to m2 along the line joining the
masses m1 and m2.

The gravitational field intensity 1E
ur

 (here after called as gravitational field) at
a  point  which  is  at  a  distance  r  from  m1 is  defined  as  the  gravitational  force

experienced by unit mass placed at that point. It given by the ratio
21

2

F
m

ur

(where m2 is

the mass of the object on which 21F
ur

acts)



Using 1E
ur

= 21

2

F
m

ur

in equation (6.14) we get,

1E
ur

 is a vector quantity that points towards the mass m1 and is independent
of mass m2, Here m2 is taken to be of unit magnitude . The unit is r̂  along the line
between m1 and the point in question. The field 1E

ur
is due to the mass m1. In general,

the gravitational field intensity due to a mass M at a distance r is given by

Now in the region of this gravitational field, a mass ‘m’ is placed at a point P
(Figure 6.9). Mass ‘m’ interacts with the field 1E

ur
and experiences an attractive force

due to M as shown in Figure 6.9. The gravitational force experienced by ‘m’ due to
‘M’ is given by

Now we can equate this with Newton’s second law F ma=
ur r

In other words, equation (6.18) implies that the gravitational field at a point is
equivalent to the acceleration experienced by a particle at that point. However, it
is  to  be  noted  that a

r
and E

ur
are  separate  physical  quantities  that  have  the  same

magnitude and direction. The gravitational field E
ur

is the property of the source and
acceleration a

r
is the effect experienced by the test mass (unit mass) which is placed

in  the  gravitational  field E
ur

.  The  noncontact  interaction  between  two  masses  can
now be explained using the concept of “Gravitational field”.

Points to be noted:



The strength of  the  gravitational  field  decreases  as  we move away from the
mass  M  as  depicted  in  the  Figure  6.10.  The  magnitude  of E

ur
decreases  as  the

distance r increases.

Figure  6.10  shows that  the  strength  of  the  gravitational  field  at  points  P,  Q,

and R is given by P Q RE E E< <
ur ur ur

. It can be understood by comparing the length of
the vectors at points P, Q, and R.

The  “field”  concept  was  introduced  as  a  mathematical  tool  to  calculate
gravitational  interaction.  Later  it  was  found  that  field  is  a  real  physical  quantity
and it carries energy and momentum in space. The concept of field is inevitable in
understanding the behavior of charges.

The unit of gravitational field is Newton per kilogram (N/kg) or m s-2.

Superposition principle for Gravitational field

Consider ‘n’ particles of masses 1 2 3, , ,......m m m
ur ur ur

distributed in space at positions -
1 2 3, , ,......r r r

r r r
etc, with respect to point P. The total gravitational field at a point P due

to  all  the  masses  is  given  by  the  vector  sum  of  the  gravitational  field  due  to  the
individual  masses  (Figure  6.11).  This  principle  is  known  as  superposition  of
gravitational fields.

Instead of discrete masses, if we have continuous distribution of a total mass
M,  then  the  gravitational  field  at  a  point  P  is  calculated  using  the  method  of
integration.

EXAMPLE

Two  particles  of  masses  m1 and  m2 are  placed  along  the  x  and  y  axes
respectively  at  a  distance  ‘a’  from the  origin.  Calculate  the  gravitational  field  at  a
point P shown in figure below.



Solution

Gravitational field due to m1 at a point P is given by

Gravitational field due to m2 at the point p is given by,

The  direction  of  the  total  gravitational  field  is  determined  by  the  relative
value of m1 and m2

When 1 2m m m= =

( ˆ ˆ ˆ ˆi j j i+ = + as vectors obeys commutation law).



totalE
ur

 points towards the origin of the co-ordinate system and the magnitude

of totalE
ur

is 2

Gm
a .

EXAMPLE

Qualitatively  indicate  the  gravitational  field  of  Sun  on  Mercury,  Earth,  and
Jupiter shown in figure.

Since  the  gravitational  field  decreases  as  distance  increases,  Jupiter
experiences a weak gravitational field due to the Sun. Since Mercury is the nearest
to the Sun, it experiences the strongest gravitational field.

Gravitational Potential Energy

The concept of potential energy and its physical meaning were dealt in unit 4.
The  gravitational  force  is  a  conservative  force  and  hence  we  can  define  a
gravitational potential energy associated with this conservative force field.

Two masses m1 and m2 are initially separated by a distance r′.  Assuming m1

to be fixed in its position, work must be done on m2 to move the distance from r′ to
r as shown in Figure 6.12(a).

To move the mass m2 through an infinitesimal displacement dr
r

from r to r dr+
r r r

(shown  in  the  Figure  6.12(b)),  work  has  to  be  done  externally.  This  infinitesimal
work is given by



The work is done against the gravitational force, therefore,

Substituting Equation (6.22) in 6.21, we get

Also we know,

Thus the total work done for displacing the particle from r’ to r is



This  work done W gives  the  gravitational  potential  energy difference  of  the
system  of  masses  m1 and  m2  when  the  separation  between  them  are  r  and  r′
respectively.

Case 1: If r<r’

Since gravitational force is attractive, m2 is attracted by m1.Then m2 can move
from  r  to  r′ without  any  external  work  (Figure  6.13).  Here  work  is  done  by  the
system spending its internal energy and hence the work done is said to be negative.

Case 2: If r>r’

Work has to be done against gravity to move the object from r to r′. Therefore
work is done on the body by external force and hence work done is positive.

It  is  to  be  noted  that  only  potential  energy  difference  has  physical
significance. Now gravitational potential energy can be discussed by choosing one
point as the reference point

Let us choose r’= ¥ . Then the second term in the equation (6.28) becomes zero.

Now we can define gravitational potential energy of a system of two masses
m1 and m2 separated by a distance r as the amount of work done to bring the mass
m2 from  infinity  to  a  distance  r  assuming  m1 to  be  fixed  in  its  position  and  is

written  as 1 2( ) .Gm mU r
r

= - It  is  to  be  noted that  the  gravitational  potential  energy

of the system consisting of two masses m1 and m2 separated by a distance r, is the
gravitational  potential  energy  difference  of  the  system  when  the  masses
areseparated by an infinite distance and by distance r. ( ) ( ) ( ).U r U r U= - ¥ Here we
choose ( )U ¥ =0  as  the  reference  point.  The  gravitational  potential  energy ( )U r is
always  negative  because  when  two  masses  come  together  slowly  from  infinity,
work is done by the system.



The  unit  of  gravitational  potential  energy ( )U r is  Joule  and  it  is  a  scalar
quantity. The gravitational potential energy depends upon the two masses and the
distance between them.

Gravitational potential energy near the surface of the Earth

It is already discussed in chapter 4 that when an object of mass m is raised to
a height h, the potential energy stored in the object is mgh (Figure 6.14). This can be
derived using the general expression for gravitational potential energy

Consider the Earth and mass system, with r, the distance between the mass m
and the Earth’s centre. Then the gravitational potential energy,

Here r = Re+h, where Re is the radius of the Earth. h is the height above the
Earth’s surface

If h << Re, equation (6.31) can be modified as

By using Binomial expansion and neglecting the higher order terms, we get

We know that, for a mass m on the Earth’s surface,



Substituting equation (6.34) in (6.33) we get,

It  is  clear  that  the  first  term  in  the  above  expression  is  independent  of  the
height h. For example, if the object is taken from height h1 to h2,then the potential
energy at h1 is

and the potential energy at h2 is

The potential energy difference between h1 and h2 is

The  term  mgRe in  equations  (6.36)  and  (6.37)  plays  no  role  in  the  result.
Hence in the equation (6.35) the first term can be omitted or taken to zero. Thus it
can be stated that The gravitational potential energy stored in the particle of mass
m  at  a  height  h  from  the  surface  of  the  Earth  is  U  =mgh.  On  the  surface  of  the
Earth, U = 0, since h is zero.

It is to be noted that mgh is the work done on the particle when we take the
mass m from the surface of the Earth to a height h.  This work done is  stored as a
gravitational  potential  energy  in  the  mass  m.  Even  though  mgh  is  gravitational
potential  energy  of  the  system  (Earth  and  mass  m),  we  can  take  mgh  as  the
gravitational  potential  energy  of  the  mass  m  since  Earth  is  stationary  when  the
mass moves to height h.
Gravitational potential V(r)

It  is  explained in  the  previous  sections  that  the  gravitational  field E
ur

depends
only on the source mass which creates the field. It is a vector quantity. We can also
define a scalar quantity called “gravitational potential” which depends only on the
source mass.



The  gravitational  potential  at  a  distance  r  due  to  a  mass  is  defined  as  the
amount of work required to bring unit mass from infinity to the distance r and it is
denoted  as  V(r).  In  other  words,  the  gravitational  potential  at  distance  r  is
equivalent to gravitational potential energy per unit mass at the same distance r. It
is a scalar quantity and its unit is J kg-1

We can determine gravitational potential from gravitational potential energy.
Consider two masses m1 and m2  separated by a distance r  which has gravitational
potential energy U (r)- (Figure 6.15). The gravitational potential due to mass m1 at a
point P which is  at  a  distance r  from m1 is  obtained by making m2  equal to unity
(m2 = 1kg). Thus the gravitational potential V r - due to mass m1 at a distance r is

Gravitational  field  and  gravitational  force  are  vector  quantities  whereas  the
gravitational potential and gravitational potential energy are scalar quantities. The
motion  of  particles  can  be  easily  analyzed  using  scalar  quantities  than  vector
quantities. Consider the example of a falling apple:

Figure 6.16 shows an apple which falls on Earth due to Earth’s gravitational
force.  This can be explained using the concept of  gravitational  potential  V (r)  -  as
follows.

The gravitational potential V (r) - at a point of height h from the surface of the
Earth is given by,

The gravitational potential V (r) - on the surface of Earth is given by,

Thus we see that



It is already discussed in the previous section that the gravitational potential
energy near the surface of the Earth at height h is mgh. The gravitational potential
at this point is simply V(h)= U(h)/m = gh. In fact, the gravitational potential on the
surface  of  the  Earth  is  zero  since  h  is  zero.  So  the  apple  falls  from  a  region  of  a
higher  gravitational  potential  to  a  region  of  lower  gravitational  potential.  In
general,  the  mass  will  move  from  a  region  of  higher  gravitational  potential  to  a
region of lower gravitational potential.

EXAMPLE

Water falls from the top of a hill to the ground. Why?

This  is  because  the  top of  the  hill  is  a  point  of  higher  gravitational  potential  than
the surface of the Earth i.e. Vhill Vground

The motion of particles can be analysed more easily using scalars like U(r) or
V(r) than vector quantities like F

ur
 or E

ur
.  Inmodern theories of physics, the concept

of potential plays a vital role.

EXAMPLE

Consider four masses m1, m2, m3, and m4 arranged on the circumference of a
circle as shown in figure below

Calculate
(a) The gravitational potential energy of the system of 4 masses shown in figure.
(b) The gravitational potential at the point O due to all the 4 masses

Solution

The gravitational potential energy U(r) can be calculated by finding the sum
of gravitational potential energy of each pair of particles.



If all the masses are equal, then m1= m2= m3= m4= M

The  gravitational  potential  V(r)  at  a  point  O  is  equal  to  the  sum  of  the
gravitational potentials due to individual mass.  Since potential  is  a scalar,  the net
potential at point O is the algebraic sum of potentials due to each mass.



ACCELERATION DUE TO GRAVITY OF THE EARTH

When  objects  fall  on  the  Earth,  the  acceleration  of  the  object  is  towards  the
Earth. From Newton’s second law, an object is accelerated only under the action of
a force. In the case of Earth, this force is the gravitational pull of Earth. This force
produces a constant acceleration near the Earth’s surface in all bodies, irrespective
of  their  masses.  The  gravitational  force  exerted  by  Earth  on  the  mass  m  near  the
surface of the Earth is given by

Now equating Gravitational force to Newton’s second law,

hence, acceleration is,

The acceleration experienced by the object  near the surface of the Earth due
to its gravity is called acceleration due to gravity. It is denoted by the symbol g. The
magnitude of acceleration due to gravity is

It  is  to  be  noted  that  the  acceleration  experienced  by  any  object  is
independent of its mass. The value of g depends only on the mass and radius of the
Earth.  Infact,  Galileo  arrived at  the  same conclusion 400  years  ago that  all  objects
fall  towards  the  Earth  with  the  same  acceleration  through  various  quantitative



experiments.  The  acceleration  due  to  gravity  g  is  found  to  be  9.8  m  s−2  on  the
surface of the Earth near the equator.

Variation of g with altitude, depth and latitude

Consider  an  object  of  mass  m  at  a  height  h  from  the  surface  of  the  Earth.
Acceleration experienced by the object due to Earth is

If h <<Re

We can use Binomial expansion. Taking the terms upto first order

We  find  that  g’<g  .  This  means  that  as  altitude  h  increases  the  acceleration
due to gravity g decreases

EXAMPLE

Calculate the value of g in the following two cases:
(a) If a mango of mass ½ kg falls from a tree from a height of 15 meters, what is the
acceleration due to gravity when it begins to fall?



Solution

Therefore g’=g

(b) Consider a satellite orbiting the Earth in a circular orbit of radius 1600 km above
the surface of the Earth. What is the acceleration experienced by the satellite due to
Earth’s gravitational force?

Solution

The  above  two  examples  show  that  the  acceleration  due  to  gravity  is  a
constant near the surface of the Earth.

Variation of g with depth:

Consider  a  particle  of  mass  m  which  is  in  a  deep  mine  on  the  Earth.
(Example: coal mines in Neyveli). Assume the depth of the mine as d. To calculate
g′ at a depth d, consider the following points.



The part of the Earth which is  above the radius (Re −d) do not contribute to
the acceleration. The result is proved earlier and is given as

Here M’ is the mass of the Earth of radius (Re −d)
Assuming the density of Earth ρ to be constant

where M is the mass of the Earth and V its volume, Thus,



Thus

Here  also  g  ′ <  g  .  As  depth  increases,  g′ decreases.  It  is  very  interesting  to
know that acceleration due to gravity is maximum on the surface of the Earth but
decreases when we go either upward or downward.

Variation of g with latitude:

Whenever we analyze the motion of objects in rotating frames [explained in
chapter  3]  we must  take  into  account  the  centrifugal  force.  Even though we treat
the Earth as an inertial frame, it is not exactly correct because the Earth spins about
its  own  axis.  So  when  an  object  is  on  the  surface  of  the  Earth,  it  experiences  a
centrifugal  force  that  depends  on  the  latitude  of  the  object  on  Earth.  If  the  Earth
were  not  spinning,  the  force  on  the  object  would  have  been  mg.  However,  the
object experiences an additional centrifugal force due to spinning of the Earth.

This centrifugal force is given by mω2R’.

where  λ  is  the  latitude.  The  component  of  centrifugal  acceleration
experienced by the object in the direction opposite to g is

Therefore,



From  the  expression  (6.52),  we  can  infer  that  at  equator,λ=0;  g’=g-w 2R.  The
acceleration due to gravity is minimum. At poles λ= 90; g’=g, it is maximum. At the
equator, g’is minimum.

EXAMPLE

Find out the value of g′ in your school laboratory?

Solution

Calculate  the  latitude  of  the  city  or  village  where  the  school  is  located.  The
information is  available  in  Google  search.  For  example,  the  latitude of  Chennai  is
approximately 13 degree.

Here ω2R = (2x3.14/86400)2 x (6400x103) = 3.4x10−2 m s−2.

It is to be noted that the value of λ should be in radian and not in degree. 13
degree is equivalent to 0.2268 rad.

ESCAPE SPEED AND ORBITAL SPEED

Hydrogen  and  helium  are  the  most  abundant  elements  in  the  universe  but
Earth’s  atmosphere  consists  mainly  of  nitrogen  and  oxygen.  The  following
discussion  brings  forth  the  reason  why  hydrogen  and  helium  are  not  found  in
abundance  on  the  Earth’s  atmosphere.  When  an  object  is  thrown  up  with  some
initial speed it will reach a certain height after which it will fall back to Earth. If the
same object  is  thrown again  with  a  higher  speed,  it  reaches  a  greater  height  than
the previous one and falls back to Earth. This leads to the question of what should
be  the  speed  of  an  object  thrown  vertically  up  such  that  it  escapes  the  Earth’s
gravity and would never come back.

Consider an object of mass M on the surface of the Earth. When it is thrown
up with an initial speed vi, the initial total energy of the object is



where,  ME is  the  mass  of  the  Earth  and  RE-  the  radius  of  the  Earth.  The  term
E

E

GMM
R

- is the potential energy of the mass M.

When the  object  reaches  a  height  far  away from Earth  and hence  treated as
approaching  infinity,  the  gravitational  potential  energy  becomes  zero [ ( ) 0]U ¥ =
and the kinetic energy becomes zero as well. Therefore the final total energy of the
object  becomes  zero.  This  is  for  minimum  energy  and  for  minimum  speed  to
escape. Otherwise Kinetic energy can be nonzero.

According to the law of energy conservation,

Substituting (6.53) in (6.54) we get,

Consider  the  escape  speed,  the  minimum  speed  required  by  an  object  to
escape Earth’s gravitational field, hence replace vi with ve . i.e,



Using 2
E

e

GMg
R

=

From equation (6.56)  the  escape  speed depends  on two factors:  acceleration
due to gravity and radius of the Earth. It is completely independent of the mass of
the object. By substituting the values of g (9.8 m s−2) and Re = 6400km , the escape
speed  of  the  Earth  is  ve =  11.2  kms-1 .  The  escape  speed  is  independent  of  the
direction in which the object is thrown. Irrespective of whether the object is thrown
vertically up, radially outwards or tangentially it requires the same initial speed to
escape Earth’s gravity. It is shown in Figure 6.19

Lighter  molecules  such  as  hydrogen  and  helium  have  enough  speed  to
escape from the Earth,  unlike the heavier ones such as nitrogen and oxygen. (The
average speed of hydrogen and helium atoms compaired with the escape speed of
the Earth,is presented in the kinetic theory of gases, unit 9).

Satellites, orbital speed and time period

We  are  living  in  a  modern  world  with  sophisticated  technological  gadgets
and are able to communicate to any place on Earth.  This advancement was made
possible  because  of  our  understanding  of  solar  system.  Communication  mainly
depends on the satellites that orbit the Earth (Figure 6.20). Satellites revolve around
the Earth just like the planets revolve around the Sun. Kepler’s laws are applicable
to manmade satellites also.

For a satellite of mass M to move in a circular orbit, centripetal force must be
acting on the satellite. This centripetal force is provided by the Earth’s gravitational
force.



As h increases, the speed of the satellite decreases.

Time period of the satellite:

The distance covered by the satellite during one rotation in its orbit is equal
to 2 ( )ER hp +  and time taken for it is the time period, T. Then

From equation (6.58)

Squaring both sides of the equation (6.60), we get

Equation (6.61) implies that a satellite orbiting the Earth has the same relation
between  time  and  distance  as  that  of  Kepler’s  law  of  planetary  motion.  For  a
satellite  orbiting  near  the  surface  of  the  Earth,  h  is  negligible  compared  to  the
radius of the Earth RE. Then,



By substituting the values of RE= 6.4 ×106m and g = 9.8 m s−2, the orbital time
period is obtained as T ≅ 85 minutes.

EXAMPLE

Moon is the natural satellite of Earth and it takes 27 days to go once around
its orbit. Calculate the distance of the Moon from the surface of the Earth assuming
the orbit of the Moon as circular.

Solution

We can use Kepler’s third law,



Here h is the distance of the Moon from the surface of the Earth. Here,

By substituting these values, the distance to the Moon from the surface of the
Earth is calculated to be 3.77 ×105 km.

Energy of an Orbiting Satellite

The  total  energy  of  a  satellite  orbiting  the  Earth  at  a  distance  h  from  the
surface of Earth is calculated as follows; The total energy of the satellite is the sum
of its kinetic energy and the gravitational potential energy. The potential energy of
the satellite is,

Here Ms - mass of the satellite, ME - mass of the Earth, RE - radius of the Earth.
The Kinetic energy of the satellite is



Here v is the orbital speed of the satellite and is equal to

Substituting the value of v in (6.64), the kinetic energy of the satellite becomes,

Therefore the total energy of the satellite is

The negative sign in the total energy implies that the satellite is bound to the
Earth and it cannot escape from the Earth.

As h approaches ¥  ,  the total energy tends to zero. Its physical meaning is
that the satellite is completely free from the influence of Earth’s gravity and is not
bound to Earth at large distances.

EXAMPLE

Calculate the energy of the (i) Moon orbiting the Earth and (ii) Earth orbiting
the Sun.

Solution

Assuming the orbit  of  the Moon to be circular,  the energy of Moon is given
by,



where  ME is  the  mass  of  Earth  6.02  ×1024 kg;  Mm is  the  mass  of  Moon  7.35
×1022 kg; and Rm is the distance between the Moon and the center of the Earth 3.84
×105km

The negative energy implies that the Moon is bound to the Earth.

Same  method  can  be  used  to  prove  that  the  energy  of  the  Earth  is  also
negative.

Geo-stationary and polar satellite

The satellites orbiting the Earth have different time periods corresponding to
different  orbital  radii.  Can  we  calculate  the  orbital  radius  of  a  satellite  if  its  time
period is 24 hours?

Kepler’s third law is used to find the radius of the orbit.

Substituting for the time period (24 hrs = 86400 seconds), mass, and radius of
the  Earth,  h  turns  out  to  be  36,000  km.  Such  satellites  are  called  “geo-stationary
satellites”, since they appear to be stationary when seen from Earth.



India uses the INSAT group of satellites that are basically geo-stationary
satellites for the purpose of telecommunication. Another type of satellite which is
placed at a distance of 500 to 800 km from the surface of the Earth orbits the Earth
from north to south direction. This type of satellite that orbits Earth from North
Pole to South Pole is called a polar satellite. The time period of a polar satellite is
nearly 100 minutes and the satellite completes many revolutions in a day. A Polar
satellite covers a small strip of area from pole to pole during one revolution. In the
next revolution it covers a different strip of area since the Earth would have moved
by a small angle. In this way polar satellites cover the entire surface area of the
Earth.

Weightlessness Weight of an object

Objects on Earth experience the gravitational force of Earth. The gravitational
force  acting  on  an  object  of  mass  m  is  mg.  This  force  always  acts  downwards
towards the center of the Earth. When we stand on the floor, there are two forces
acting on us. One is the gravitational force, acting downwards and the other is the
normal force exerted by the floor upwards on us to keep us at rest. The weight of
an object W

uur
 is defined as the downward force whose magnitude W is equal to that

of upward force that must be applied to the object to hold it at rest or at constant
velocity relative to the earth. The direction of weight is in the direction of
gravitational  force.  So  the  magnitude  of  weight  of  an  object  is  denoted  as,
W=N=mg.  Note  that  even  though  magnitude  of  weight  is  equal  to  mg,  it  is  not
same as gravitational force acting on the object.

Apparent weight in elevators

Everyone who used an elevator would have felt a jerk when the elevator
takes  off  or  stops.  Why  does  it  happen?  Understanding  the  concept  of  weight  is
crucial  for  explaining  this  effect.  Let  us  consider  a  man  inside  an  elevator  in  the
following scenarios.  When a  man is  standing in  the  elevator,  there  are  two forces
acting on him.

1. Gravitational force which acts downward. If we take the vertical direction as
positive y direction, the gravitational force acting on the man is ˆGF mgj= -

ur

2. The normal force exerted by floor on the man which acts vertically upward,

N Nj=
uur (

Case (i) When the elevator is at rest



The acceleration of the man is zero. Therefore the net force acting on the man
is zero. With respect to inertial frame (ground), applying Newton’s second law on
the man,

By comparing the components, we can write

Since  weight,  W  =N,  the  apparent  weight  of  the  man  is  equal  to  his  actual
weight.

Case  (ii)  When  the  elevator  is  moving  uniformly  in  the  upward  or  downward
direction

In uniform motion (constant velocity), the net force acting on the man is still
zero. Hence, in this case also the apparent weight of the man is equal to his actual
weight. It is shown in Figure 6.23(a)

Case (iii) When the elevator is accelerating upwards

If  an  elevator  is  moving  with  upward  acceleration ( )a a j=
r r

with  respect  to
inertial frame (ground), applying Newton’s second law on the man,

Writing the above equation in terms of unit vector in the vertical direction,

By comparing the components,

Therefore, apparent weight of the man is greater than his actual weight. It is
shown in Figure 6.23(b)



Case (iv) When the elevator is accelerating downwards

If  the elevator is  moving with downward acceleration ( )a a j= -
r r

by applying
Newton’s second law on the man, we can write

Writing the above equation in terms of unit vector in the vertical direction

By comparing the components,

Therefore,  apparent  weight  W  =  N  =  m(g-a)  of  the  man  is  lesser  than  his
actual weight. It is shown in Figure 6.23(c)

Weightlessness of freely falling bodies

Freely  falling  objects  experience  only  gravitational  force.  As  they fall  freely,
they  are  not  in  contact  with  any  surface  (by  neglecting  air  friction).  The  normal
force  acting  on  the  object  is  zero.  The  downward  acceleration  is  equal  to  the
acceleration due to the gravity of the Earth. i.e (a = g). From equation (6.69) we get.

This  is  called  the  state  of  weightlessness.  When  the  lift  falls  (when  the  lift
wire  cuts)  with  downward acceleration a  =  g,  the  person inside  the  elevator  is  in
the state of weightlessness or free fall. It is shown in Figure 6.23(d)

When the apple was falling from the tree it  was weightless.As soon as it  hit
Newton’s head, it gained weight! and Newton gained physics!

Weightlessness in satellites:

There  is  a  wrong  notion  that  the  astronauts  in  satellites  experience  no
gravitational  force  because  they  are  far  away  from  the  Earth.  Actually  the  Earth
satellites  that  orbit  very  close  to  Earth  experience  only  gravitational  force.  The
astronauts inside the satellite also experience the same gravitational force. Because
of this, they cannot exert any force on the floor of the satellite. Thus, the floor of the



satellite also cannot exert any normal force on the astronaut. Therefore, the
astronauts inside a satellite are in the state of weightlessness. Not only the
astronauts,  but  all  the  objects  in  the  satellite  will  be  in  the  state  of  weightlessness
which is similar to that of a free fall. It is shown in the Figure 6.24.

ELEMENTARY IDEAS OF ASTRONOMY

Astronomy is one of the oldest sciences in the history of mankind. In the
olden days, astronomy was an inseparable part of physical science. It contributed a
lot  to  the  development  of  physics  in  the  16th  century.  In  fact  Kepler’s  laws  and
Newton’s theory of gravitation were formulated and verified using astronomical
observations and data accumulated over the centuries by famous astronomers like
Hippachrus, Aristachrus, Ptolemy, Copernicus and Tycho Brahe. Without Tycho
Brahe’s astronomical observations, Kepler’s laws would not have emerged.
Without  Kepler’s  laws,  Newton’s  theory  of  gravitation  would  not  have  been
formulated.

It was mentioned in the beginning of this chapter that Ptolemy’s geocentric
model was replaced by Copernicus’ heliocentric model. It is important to analyze
and explain the shortcoming of the geocentric model over heliocentric model.

Heliocentric system over geocentric system

When the motion of the planets are observed in the night sky by naked eyes
over a period of a few months, it can be seen that the planets move eastwards and
reverse their motion for a while and return to eastward motion again. This is called
“retrograde motion” of planets.

Figure 6.25 shows the retrograde motion of the planet Mars. Careful
observation for a period of a year clearly shows that Mars initially moves
eastwards (February to June), then reverses its path and moves backwards (July,
August, September). It changes its direction of motion once again and continues its
forward motion (October onwards). In olden days, astronomers recorded the
retrograde motion of all  visible planets and tried to explain the motion. According
to Aristotle, the other planets and the Sun move around the Earth in the circular
orbits.  If  it  was  really  a  circular  orbit  it  was  not  known  how  the  planet  could
reverse its motion for a brief interval. To explain this retrograde motion, Ptolemy
introduced the concept of “epicycle” in his geocentric model. According to this
theory, while the planet orbited the Earth, it also underwent another circular
motion termed as “epicycle”. A combination of epicycle and circular motion
around the Earth gave rise to retrograde motion of the planets with respect to Earth
(Figure 6.26). Essentially Ptolemy retained the Earth centric idea of Aristotle and
added the epicycle motion to it.



But  Ptolemy’s  model  became  more  and  more  complex  as  every  planet  was
found  to  undergo  retrograde  motion.  In  the  15th  century,  the  Polish  astronomer
Copernicus  proposed  the  heliocentric  model  to  explain  this  problem  in  a  simpler
manner. According to this model, the Sun is at the center of the solar system and all
planets orbited the Sun. The retrograde motion of planets with respect to Earth is
because of  the  relative  motion of  the  planet  with respect  to  Earth.  The retrograde
motion from the heliocentric point of view is shown in Figure 6.27.

Figure  6.27  shows  that  the  Earth  orbits  around  the  Sun  faster  than  Mars.
Because  of  the  relative  motion  between  Mars  and  Earth,  Mars  appears  to  move
backwards from July to October. In the same way the retrograde motion of all other
planets was explained successfully by the Copernicus model. It was because of its
simplicity,  the  heliocentric  model  slowly  replaced  the  geocentric  model.
Historically, if any natural phenomenon has one or more explanations, the simplest
one  is  usually  accepted.  Though  this  was  not  the  only  reason  to  disqualify  the
geocentric  model,  a  detailed  discussion  on  correctness  of  the  Copernicus  model
over to Ptolemy’s model can be found in astronomy books

Kepler’s Third Law and The Astronomical Distance

When  Kepler  derived  his  three  laws,  he  strongly  relied  on  Tycho  Brahe’s
astronomical observation. In his third law, he formulated the relation between the
distance  of  a  planet  from  the  Sun  to  the  time  period  of  revolution  of  the  planet.
Astronomers cleverly used geometry and trigonometry to calculate the distance of
a planet from the Sun in terms of the distance between Earth and Sun. Here we can
see  how  the  distance  of  Mercury  and  Venus  from  the  Sun  were  measured.  The
Venus  and  Mercury,  being  inner  planets  with  respect  to  Earth,  the  maximum
angular distance they can subtend at a point on Earth with respect to the Sun is 46
degree for Venus and 22.5 degree for Mercury. It is shown in the Figure 6.28

Figure  6.29  shows  that  when  Venus  is  at  maximum  elongation  (i.e.,  46
degree) with respect to Earth, Venus makes 90 degree to Sun. This allows us to find
the distance between Venus and Sun. The distance between Earth and Sun is taken
as one Astronomical unit (1 AU).

The trigonometric relation satisfied by this right angled triangle is shown in
Figure 6.29.

where R = 1 AU.



Here sin46- 0.77. Hence Venus is at a distance of 0.77 AU from Sun. Similarly,
the distance between Mercury (θ is 22.5 degree) and Sun is calculated as 0.38 AU.
To  find  the  distance  of  exterior  planets  like  Mars  and  Jupiter,  a  slightly  different
method is used. The distances of planets from the Sun is given in the table below.

It is to be noted that to verify the Kepler’s law we need only high school level
geometry and trigonometry.

Measurement of radius of the Earth

Around  225  B.C  a  Greek  librarian  “Eratosthenes”  who  lived  at  Alexandria
measured the  radius  of  the  Earth  with  a  small  error  when compared with  results
using  modern  measurements.  The  technique  he  used  involves  lower  school
geometry  and  brilliant  insight.  He  observed  that  during  noon  time  of  summer
solstice the Sun’s rays cast no shadow in the city Syne which was located 500 miles
away from Alexandria. At the same day and same time he found that in Alexandria
the Sun’s rays made 7.2 degree with local vertical as shown in the Figure 6.30. He
realized that this difference of 7.2 degree was due to the curvature of the Earth.



If S is the length of the arc between the cities of Syne and Alexandria, and if R
is radius of Earth, then

1  mile  is  equal  to  1.609  km.  So,  he  measured  the  radius  of  the  Earth  to  be
equal to R = 6436 km, which is amazingly close to the correct value of 6378 km.

The  distance  of  the  Moon  from  Earth  was  measured  by  a  famous  Greek
astronomer Hipparchus in the 3rd century BC.

Interesting Astronomical Facts
Lunar eclipse and measurement of shadow of Earth

On January 31, 2018 there was a total lunar eclipse which was observed from
various  places  including  Tamil  Nadu.  It  is  possible  to  measure  the  radius  of
shadow  of  the  Earth  at  the  point  where  the  Moon  crosses.  Figure  6.31  illustrates
this.

When the Moon is inside the umbra shadow, it appears red in color. As soon
as the Moon exits from the umbra 1737shadow, it appears in crescent shape. Figure
6.32 is the photograph taken by digital camera during Moon’s exit from the umbra
shadow.

By finding the apparent radii of the Earth’s umbra shadow and the Moon, the
ratio of the these radii can be calculated. This is shown in Figures 6.33 and 6.34.

The apparent radius of Earth’s umbra shadow = Rs = 13.2 cm

The apparent radius of the Moon = Rm= 5.15 cm



The radius of the Earth’s umbra shadow is Rs=2.56´Rm

The radius of Moon Rm=1737 km

The error will reduce if the pictures taken using a high quality telescope are
used. It is to be noted that this calculation is done using very simple mathematics.

Early  astronomers  proved that  Earth  is  spherical  in  shape by looking at  the
shape of the shadow cast by Earth on the Moon during lunar eclipse

Why there are no lunar eclipse and solar eclipse every month?

If the orbits of the Moon and Earth lie on the same plane, during full Moon of
every month, we can observe lunar eclipse.  If  this is  so during new Moon we can
observe solar eclipse. But Moon’s orbit is tilted 5° with respect to Earth’s orbit. Due
to  this  5°  tilt,  only  during  certain  periods  of  the  year,  the  Sun,  Earth  and  Moon
align in  straight  line  leading to  either  lunar  eclipse  or  solar  eclipse  depending on
the alignment. This is shown in Figure 6.35

Why do we have seasons on Earth?

The common misconception is that ‘Earth revolves around the Sun, so when
the Earth is very far away, it is winter and when the Earth is nearer, it is summer’.
Actually, the seasons in the Earth arise due to the rotation of Earth around the Sun
with 23.5° tilt. This is shown in Figure 6.36



Due to this 23.5° tilt, when the northern part of Earth is farther to the Sun, the
southern  part  is  nearer  to  the  Sun.  So  when  it  is  summer  in  the  northern
hemisphere, the southern hemisphere experience winter.

Star’s apparent motion and spinning of the Earth

The Earth’s spinning motion can be proved by observing star’s position over
a night. Due to Earth’s spinning motion, the stars in sky appear to move in circular
motion about the pole star as shown in Figure 6.37

Recent developments of astronomy and gravitation

Till  the  19th  century  astronomy  mainly  depended  upon  either  observation
with  the  naked  eye  or  telescopic  observation.  After  the  discovery  of  the
electromagnetic spectrum at the end of the 19th  century, our understanding of the
universe  increased  enormously.  Because  of  this  development  in  the  late  19th

century  it  was  found  that  Newton’s  law  of  gravitation  could  not  explain  certain
phenomena  and  showed  some  discrepancies.  Albert  Einstein  formulated  his
‘General theory of relativity’ which was one of the most successful theories of 20th

century in the field of gravitation.

In  the  twentieth  century  both  astronomy  and  gravitation  merged  together
and  have  grown  in  manifold.  The  birth  and  death  of  stars  were  more  clearly
understood. Many Indian physicists made very important contributions to the field
of astrophysics and gravitation.

Subramanian  Chandrasekar  formulated  the  theory  of  black  holes  and
explained the  life  of  stars.  These  studies  brought  him the  Nobel  prize  in  the  year
1983.  Another  very  notable  Indian  astrophysicist  Meghnad  Saha  discovered  the
ionization  formula  which  was  useful  in  classifying  stars.  This  formula  is  now
known  as  “Saha  ionization  formula”.  In  the  field  of  gravitation  Amal  Kumar
Raychaudhuri solved an equation now known as “Raychaudhuri equation” which
was a very important contribution. Another notable Indian Astrophysicist Jayant V
Narlikar made pioneering contribution in the field of astrophysics and has written
interesting books on astronomy and astrophysics. IUCAA (Inter University Center
for Astronomy and Astrophysics) is one of the important Indian research institutes
where active research in astrophysics and gravitation are conducted. The institute
was  founded  by  Prof.  J.V.  Narlikar.  Students  are  encouraged  to  read  more  about
the recent developments in these fields.



11thvol II

UNIT 7: PROPERTIES OF MATTER

Microscopic understanding of various states of matter:

· In extreme environments, matter can exist in other states such as plasma, Bose-
Einstein condensates. Additional states, such as quark-gluon plasmas are also
believed to be possible. A major part of the atomic matter of the universe is hot
plasma in the form of rarefied interstellar medium and dense stars.

· If  a  body  regains  its  original  shape  and  size  after  the  removal  of  deforming
force, it is said to be elastic and the property is called elasticity. The force which
changes the size or shape of a body is called a deforming force.

Examples: Rubber, metals, steel ropes

· If  a  body  does  not  regain  its  original  shape  and  size  after  removal  of  the
deforming force, it is said to be a plastic body and the property is called
plasticity. Example: Glass

Stress:

When a body is subjected to such a deforming force, internal force is developed in
it,  called  as  restoring  force.  The  SI  unit  of  stress  is ܰ ݉ିଶor pascal (Pa) and its
dimension is [ܯ .ଵܶିଶ]. Stress is a tensorିܮ

,ݏݏ݁ݎݐݏ ߪ =
݁ܿݎ݋ܨ
ܽ݁ݎܣ

=
ܨ
ܣ

Types of stress:

1. Tangential or shearing stress
2. Longitudinal or perpendicular stress:

a) Compressive stress
b) Tensile stress

3. Volume stress: pressure exerted on a body which is immersed in a liquid.

Strain:

· Strain measures the degree of deformation and is a dimensionless quantity.

,࢔࢏ࢇ࢚࢙࢘ ࢿ =
ࢋࢍ࢔ࢇࢎࢉ ࢔࢏ ࢋࢠ࢏࢙
࢒ࢇ࢔࢏ࢍ࢏࢘࢕ ࢋࢠ࢏࢙

=
࢒∆
࢒



,࢔࢏ࢇ࢚࢙࢘ ࢒ࢇ࢔ࢊ࢛࢚࢏ࢍ࢔࢕࢒ ࢒ࢿ =
ࢊ࢕࢘ ࢋࢎ࢚ ࢌ࢕ ࢎ࢚ࢍ࢔ࢋ࢒ ࢔࢏ ࢋ࢙ࢇࢋ࢘ࢉ࢔࢏

ࢊ࢕࢘ ࢋࢎ࢚ ࢌ࢕ ࢎ࢚ࢍ࢔ࢋ࢒ ࢒ࢇ࢔࢏ࢍ࢏࢘࢕
=

࢒∆
࢒

Tensile strain: If the length is increased from its natural length
Compressive strain: If the length is decreased from its natural length

,࢔࢏ࢇ࢚࢙࢘ ࢍ࢔࢏࢘ࢇࢋࢎ࢙ ࢙ࢿ =
࢞
ࢎ

= ܖ܉ܜ ࣂ ≈ ࣂ = ࢘ࢇࢋࢎ࢙ ࢌ࢕ ࢋ࢒ࢍ࢔ࢇ

,࢔࢏ࢇ࢚࢙࢘ ࢋ࢓࢛࢒࢕࢜ ࢂࢿ =
ࢂ∆
ࢂ

Elastic limit:

· The maximum stress within which the body regains its original size and shape
after the removal of deforming force is called the elastic limit.

Hooke’s law states that the stress is proportional to the strain in the elastic limit.
ߪ ∝ ߝ

Stress- strain curve:

The  point  A  is  called  limit  of
proportionality  because  above this  point
Hooke’s  law  is  not  valid.  The slope of the
line  OA  gives  the  Young’s modulus  of
the wire.
The  point  B  is  known  as  yield point
(elastic limit).
If the wire is stretched beyond the point  B
(elastic limit), stress increases and the  wire
will not regain its original length after the removal of stretching force.
ü The  maximum  stress  (here  D)  beyond  which  the  wire  breaks  is  called breaking  stress or

tensile  strength. The  corresponding  point  D  is  known  as fracture  point.  The  region  BCDE
represents the plastic behaviour of the material of the wire.

Moduli of elasticity:

,࢙࢛࢒࢛ࢊ࢕࢓ ࢍ࢔࢛࢕࢟ ࢅ =
࢙࢙ࢋ࢚࢙࢘ ࢒ࢇ࢔ࢊ࢛࢚࢏ࢍ࢔࢕࢒
࢔࢏ࢇ࢚࢙࢘ ࢒ࢇ࢔ࢊ࢛࢚࢏ࢍ࢔࢕࢒

=
࢒࣌

࢒ࢿ

The SI unit of young modulus is ܰ ݉ିଶor pascal (Pa)

,࢙࢛࢒࢛ࢊ࢕࢓ ࢑࢒࢛࢈ ࡷ =
࢙࢙ࢋ࢚࢙࢘ ࢒ࢇ࢓࢘࢕࢔
࢔࢏ࢇ࢚࢙࢘ ࢋ࢓࢛࢒࢕࢜

= −
࢔࣌

ࢂࢿ
= −

ࡼ∆
ࢂ∆
ࢂ

The SI unit of bulk modulus is ܰ ݉ିଶor pascal (Pa).



ܡܜܑ܌ܑ܏ܑܚ ܛܝܔܝ܌ܗܕ ܚܗ ܚ܉܍ܐܛ ,ܛܝܔܝ܌ܗܕ િ܀ =
܏ܖܑܚ܉܍ܐܛ ܛܛ܍ܚܜܛ
܏ܖܑܚ܉܍ܐܛ ܖܑ܉ܚܜܛ

=
ોܛ

ઽܛ
=

ܜ۴

ۯ∆
ી

The SI unit of rigidity modulus is ܰ ݉ିଶor pascal (Pa).

Compressibility:

· The reciprocal of the bulk modulus is called compressibility. It is defined as the
fractional change in volume per unit increase in pressure.  Since, gases have
small value of bulk modulus than solids, their, values of compressibility is very
high

,࢚࢟࢏࢒࢏࢈࢏࢙࢙ࢋ࢘࢖࢓࢕ࢉ = ࡯
૚
ࡷ

= −
ࢂࢿ

࢔࣌
= −

ࢂ∆
ࢂ

ࡼ∆

In a cycle, the tyre should be less compressible for its easy rolling.  In fact the rear
tyre is less compressible than front tyre for a smooth ride.

Materials Young
modulus(Y)
 1010 N m2

Bulk
modulus(k)
 1010 N m2

Shear
modulus(ng)
 1010 N m2

steel 20.0 15.8 8.0
Aluminium 7.0 7.0 2.5
Copper 12.0 12.0 4.0
Iron 19.0 8.0 5.0
glass 7.0 3.6 3.0

Material Poisson’s ratio
Rubber 0.4999
Gold 0.42-0.44
Copper 0.33
Stainless steel 0.30-0.31
Steel 0.21-0.26
Cast iron 0.21-0.26
Concrete 0.1-0.2
Glass 0.18-0.3
Foam 0.10-0.50
Cork 0.0

Poisson’s ratio:

,࢕࢏࢚ࢇᇱ࢙࢘࢔࢕࢙࢙࢏࢕ࡼ ࣆ =
࢒ࢇ࢘ࢋ࢚ࢇ࢒ ࢔࢏ࢇ࢚࢙࢘

࢒ࢇ࢔ࢊ࢛࢚࢏ࢍ࢔࢕࢒ ࢔࢏ࢇ࢚࢙࢘
= −

ࢊ
ࡰ
࢒
ࡸ

= −
ࡸ
࢒

×
ࢊ
ࡰ



· Negative sign indicates the elongation along longitudinal and contraction along
lateral  dimension.  So,  Poisson’s  ratio  has  no  unit  and  no  dimension
(dimensionless number)

Elastic energy:
ࢉ࢏࢚࢙ࢇ࢒ࢋ ࢒ࢇ࢏࢚࢔ࢋ࢚࢕࢖ ,࢟ࢍ࢘ࢋ࢔ࢋ ࢃ =

૚
૛

࢒ࡲ

࢟ࢍ࢘ࢋ࢔ࢋ ,࢚࢟࢏࢙࢔ࢋࢊ ࢛ =
ࢉ࢏࢚࢙ࢇ࢒ࢋ ࢒ࢇ࢏࢚࢔ࢋ࢚࢕࢖ ࢟ࢍ࢘ࢋ࢔ࢋ

ࢋ࢓࢛࢒࢕࢜
=

૚
૛

࢒ࡲ
ࡸ࡭

=
૚
૛

ࡲ
࡭

࢒
ࡸ

=
૚
૛

࢙࢙ࢋ࢚࢙࢘) × (࢔࢏ࢇ࢚࢙࢘

Applications of elasticity:

· To reduce the bending of a beam for a given load, one should use the material
with a higher Young’s modulus of elasticity (Y). The Young’s modulus of steel is
greater than aluminium or copper. Iron comes next to steel. This is the reason
why  steel  is  mostly  preferred  in  the  design  of  heavy  duty  machines  and  iron
rods in the construction of buildings.Steel is more elastic than rubber. If an equal
stress  is  applied  to  both  steel  and  rubber,  the  steel  produces  less  strain.  The
object which has higher young’s modulus is more elastic.

Fluids:
,݁ݎݑݏݏ݁ݎܲ ܲ =

ܨ
ܣ

· Pressure is a scalar quantity. The SI unit of pressure is ܰ ݉ିଶor pascal (Pa) and
its dimension is [ܯ ଵܶିଶ]. One ‘atm’ is defined as the pressure exerted by theିܮ
atmosphere at sea level. i.e., 1 atm = 1.013 x 105Pa or ܰ ݉ିଶ

,ݕݐ݅ݏ݊݁݀ ߩ =
݉
ܸ

· The  dimensions  and  S.I  unit  are ቂܯ 3ቃ and−ܮ ݇݃ ݉ିଷ. It is a positive scalar
quantity.

݁ݒ݅ݐ݈ܽ݁ݎ ݕݐ݅ݏ݊݁݀ =
ݕݐ݅ݏ݊݁݀ ݂݋ ݁ܿ݊ܽݐݏܾݑݏ

ݕݐ݅ݏ݊݁݀ ݂݋ ݎ݁ݐܽݓ ℃4 ݐܽ

It is a dimensionless positive scalar quantity.
The density of mercury is 13.6 × 103kg m-3. Its relative density is equal to 13.6.

Pressure due to fluid column at rest:

ࡼ = ࢇࡼ + ࢎࢍ࣋

Where ܲܽ is the atmospheric pressure.



v The  liquid  pressure  is  the  same  at  all  points  at  the  same  depth.   This
statement can be demonstrated by an experiment called ‘hydrostatic
paradox’.

v The decrease of atmospheric pressure with altitude has an unwelcome
consequence in daily life. For example, it takes longer time to cook at higher
altitudes. Nose bleeding is another common experience at higher altitude
because of larger difference in atmospheric pressure and blood pressure.

v Take a metal container with an opening. Connect a vacuum pump to the opening. Evacuate the air from
inside the container.Due to the force of atmospheric pressure acting on its outer surface, the shape of the
container crumbles.

ü Take a glass tumbler. Fill it with water to the brim. Slide a cardboard on its rim
so  that  no  air  remains  in  between  the  cardboard  and  the  tumbler.  Invert  the
tumbler  gently.  The  water  does  not  fall  down.  This  is  due  to  the  fact  that  the
weight of water in the tumbler is balanced by the upward thrust caused due to
the atmospheric pressure acting on the lower surface of the cardboard that is
exposed to air.

Pascal’s law and its application:

· If  the  pressure  in  a  liquid  is  changed  at  a  particular  point,  the  change  is
transmitted to the entire liquid without being diminished in magnitude.

Application of Pascal’s law- hydraulic lift

ࡼ =
૚ࡲ

૚࡭
=

૛ࡲ

૛࡭

૛ࡲ =
૚ࡲ

૚࡭
× ૛࡭ =

૛࡭

૚࡭
× ૚ࡲ

· Therefore by changing the force on the smaller piston A, the force on the piston
B  has  been  increased  by  the  factor 2ܣ

1ܣ
and this factor is called the mechanical

advantage of the lift.

Buoyancy:

Archimedes principle:

· When a body is partially or wholly immersed in a fluid, it experiences an
upward thrust equal to the weight of the fluid displaced by it  and its  upthrust
acts through the centre of gravity of the liquid displaced.

Upthrust or buoyant force = weight of liquid displaced.



Law of floatation:

· The law of floatation states that a body will float in a liquid if the weight of the liquid
displaced by the immersed part of the body equals the weight of the body

· If  an  object  floats,  the  volume  of  fluid  displaced  is  equal  to  the  volume  of  the
object submerged and the percentage of the volume of the object submerged is
equal to the relative density of an object with respect to the density of the fluid
in which it floats.

· When the ballast tanks are filled with air, the overall density of the submarine
becomes lesser than the surrounding water, and it surfaces (positive buoyancy).
If the tanks are flooded with water replacing air, the overall density becomes
greater than the surrounding water and submarine begins to sink (negative
buoyancy).  To  keep  the  submarine  at  any  depth,  tanks  are  filled  with  air  and
water (neutral buoyancy).

Examples of floating bodies:

i) A person can swim in sea water more easily than in river water.
ii) Ice floats on water.
iii) The ship is made of steel but its interior is made hollow by giving it a concave
shape.

Viscosity:

· An ideal liquid is incompressible (i.e., bulk modulus is infinity) and in which no
shearing forces can be maintained (i.e., the coefficient of viscosity is zero).
Viscosity  is  defined  as  ‘the  property  of  a  fluid  to  oppose  the  relative  motion
between its layers’.

ܨ = ܣߟ−
ݒ݀
ݔ݀

· Whereߟ is called the coefficient of viscosity of the liquid and the negative sign
implies that the force is frictional and it opposes the relative motion. The kinetic
energy of the substance is dissipated as heat energy.  The dimensional formula
for coefficient of viscosity is ቂܯ 1ቃ−1ܶ−ܮ

Streamline flow (or) steady flow (or) laminar flow :

· When a liquid flows such that each particle of the liquid passing through a point
moves  along  the  same  path  with  the  same  velocity  as  its  predecessor  then  the



flow  of  liquid  is  said  to  be  a streamlined flow. This is possible below critical
velocity.

Turbulent flow:

· Velocity changes both in magnitude and direction from particle to particle and
hence, the path taken by the particles in turbulent flow becomes erratic and
whirlpool-like circles called eddy current or eddies when velocity of flow is
greater than the critical velocity .ݏݒ

Reynold’s number:

S.no Reynold’s
number

Flow

1 Rc< 1000 Streamline
2 1000<Rc<2000 Unsteady
3 Rc>2000 Turbulent

,ݎܾ݁݉ݑ݊ݏᇱ݈݀݋݊ݕܴ݁ ܴ஼(ݎ݋)ܭ =
ܦݒߩ

ߟ

· Law of similarity which states that when there are two geometrically similar
flows, both are essentially equal to each other, as long as they embrace the same
Reynold’s number.

Terminal velocity:

The forces acting on the sphere falling in a liquid are

v gravitational force of the sphere acting vertically downwards,
v upthrust U due to buoyancy and
v viscous drag acting upwards

· A stage is reached when the net downward force balances the upward force and
hence the resultant force on the sphere becomes zero. The maximum constant
velocity acquired by a body while falling freely through a viscous medium is
called the terminal velocity ்ݒ

݈ܽ݊݅݉ݎ݁ݐ ,ݕݐ݅ܿ݋݈݁ݒ ்ݒ =
2
9

×
ߩ)ଶݎ − ݃(ߪ

ߟ



1) If  σ is  greater  than  ρ,  then  the  term  (ρ -  σ)  becomes  negative  leading  to  a
negative terminal velocity. That is why air bubbles rise up through water or any
fluid.  This  is  also  the  reason  for  the  clouds  in  the  sky  to  move  in  the  upward
direction.

2) The  terminal  speed  of  a  sphere  is  directly  proportional  to  the  square  of  the
radius of the sphere. Hence, larger raindrops fall with greater speed as
compared to the smaller raindrops.

3) If  the  density  of  the  material  of  the  sphere  is  less  than  the  density  of  the
medium, then the sphere shall attain terminal velocity in the upward direction.
That is why gas bubbles rise up in soda water.

Stoke’s law:

࢙࢛࢕ࢉ࢙࢏࢜ ,ࢋࢉ࢘࢕ࢌ ࡲ = ૟࣊࢜࢘ࣁ

· Since the raindrops are smaller in size and their terminal velocities are small,
remain  suspended  in  air  in  the  form  of  clouds.  As  they  grow  up  in  size,  their
terminal velocities increase and they start falling in the form of rain.

This law explains the following:

a) Floatation of clouds
b) Larger raindrops hurt us more than the smaller ones
c) A man coming down with the help of a parachute acquires constant terminal
velocity.

Poiseuille’s equation:

· He derived an expression for the volume of the liquid flowing per second
through the capillary tube.  The conditions to be retained are,

v The flow of liquid through the tube is streamlined.

v The tube is horizontal so that gravity does not influence the flow

v The layer in contact with the wall of the tube is at rest

v The pressure is uniform over any cross section of the tube

݁݉ݑ݈݋ݒ ݂݋ ℎ݁ݐ ݀݅ݑݍ݈݅ ݃݊݅ݓ݋݈݂ ݎ݁݌ ,݀݊݋ܿ݁ݏ ݒ =
ସܲݎߨ
݈ߟ8

Applications of viscosity:



(1)  The  oil  used  as  a  lubricant  for  heavy  machinery  parts  should  have  a  high
viscous coefficient. To select a suitable lubricant, we should know its viscosity
and how it varies with temperature

(2) The highly viscous liquid is used to damp the motion of some instruments and
is used as brake oil in hydraulic brakes.
(3)  Blood  circulation  through  arteries  and  veins  depends  upon  the  viscosity  of
fluids.

(4) Millikan conducted the oil drop experiment to determine the charge of an
electron. He used the knowledge of viscosity to determine the charge.

Surface tension:

· The force between the like molecules which holds the liquid together is called
‘cohesive force’.  When  the  liquid  is  in  contact  with  a  solid,  the  molecules  of  the
solid and liquid will experience an attractive force which is called ‘adhesive force’.

· Laplace and Gauss developed the theory of surface and motion of a liquid under
various situations.

· These molecular forces are effective only when the distance between the
molecules is very small about 10-9m (i.e., 10 Å). The distance through which the
influence of these molecular forces can be felt in all directions constitute a range
and is called sphere of influence.

· When  any  molecule  is  brought  towards  the  surface  from  the  interior  of  the
liquid,  work  is  done  against  the  cohesive  force  among  the  molecules  of  the
surface.  This work is  stored as potential  energy in molecules.  So the molecules
on the  surface  will  have greater  potential  energy than that  of  molecules  in  the
interior  of  the  liquid.  But  for  a  system  to  be  under  stable  equilibrium,  its
potential energy (or surface energy) must be a minimum. Therefore, in order to
maintain stable equilibrium, a liquid always tends to have a minimum number
of  molecules.  In  other  words,  the  liquid  tends  to  occupy  a  minimum  surface
area. This behaviour of the liquid gives rise to surface tension.

Examples of surface tension:

1) Water bugs and water striders walk on the surface of water. The water
molecules  are  pulled  inwards  and  the  surface  of  water  acts  like  a  springy  or
stretched membrane.



2) The hairs of the painting brush cling together when taken out of water.  This is
because the water films formed on them tends to contract to a minimum area.

3) Needle floats on water due to surface tension.

Factors affecting surface tension of a liquid:

1) Presence of contamination

2) Presence of dissolved substances:
For example, a highly soluble substance like sodium chloride (NaCl) when
dissolved in water (H20) increases the surface tension of water. But the sparingly
soluble substance like phenol or soap solution when mixed in water decreases
the surface tension of water.

3) Electrification:
Surface tension decreases as the area of liquid surface increases.

4) Temperature:
Surface tension decreases with increase in temperature

࢚ࢀ = ૙(૚ࢀ − (࢚ࢻ

· Where, T0 is  the  surface  tension  at  temperature  0ºC  and α is the temperature
coefficient of surface tension. It is to be noted that at the critical temperature, the
surface tension is zero as the interface between liquid and vapour disappear.

· Van der Wall suggested the important relation between the surface tension and
the critical temperature as ݐܶ = ܶ0 ቀ1 − ݐ

ܿݐ
ቁ

݊

Where value of n differs for different liquids.

Surface energy and surface tension:

· The work done in increasing the surface area per unit area of the liquid against
the surface tension force is called the surface energy of the liquid.

݂݁ܿܽݎݑݏ ݕ݃ݎ݁݊݁ =
݇ݎ݋ݓ ݁݊݋݀ ݅݊ ݃݊݅ݏܽ݁ݎܿ݊݅ ݂݁ܿܽݎݑݏ ܽ݁ݎܽ

݁ݏܽ݁ݎܿ݊݅ ݅݊ ݂݁ܿܽݎݑݏ ܽ݁ݎܽ
=

ܹ
ܣ∆

It is expressed in ܬ ݉ିଶor ܰ ݉ିଵ.



Surface tension is the energy per unit area of the surface of a liquid
ܶ =

ܨ
݈

SI unit and dimensions of T are ܰ݉ିଵand .ଶିܶܯ

· Surface energy per unit area of surface is numerically equal to the surface
tension.

· It should be remembered that a liquid drop has only one free surface. Therefore,
the  surface  area  of  a  spherical  drop  of  radius  r  is  equal  to ,ଶݎߨ4  whereas,  a
bubble has two free surfaces and hence the surface area of a spherical bubble is
equal to 2 ×4ݎߨଶ.

Angle of contact:

· The angle between the tangent to the liquid surface at the point of contact and
the solid surface inside the liquid is known as the angle of contact between the solid
and the liquid. It is denoted by θ.

· It  is  the  factor  which  decides  whether  a  liquid  will  spread  on  the  surface  of  a
chosen solid or it will form droplets on it.

· Soaps and detergents are wetting agents. When they are added to an aqueous
solution,  they  will  try  to  minimize  the  angle  of  contact  and  in  turn  penetrate
well in the cloths and remove the dirt. On the other hand, water proofing paints
are coated on the outer side of the building so that it will enhance the angle of
contact between the water and the painted surface.

(i) If  Tsa>Tsl (water-plastic interface) then the angle of contact θ is
acute angle as cosθ is positive.

(ii)If Tsa<Tsl (water-leaf interface) then the angle of contact is obtuse
angle as cosθ is negative.

(iii) If  Tsa>Tla+  Tsl then there will be no equilibrium and liquid
will spread over the solid.

Excess of pressure inside a liquid drop, a soap bubble and an air bubble:
· As a consequence of surface tension, the liquid-air interfaces have energy and

for a given volume, the surface will have a minimum energy with least area.
Due to this reason, the liquid drop becomes spherical (for a smaller radius).



1) When  liquid  is  plane,  resultant  force  acting  on  the  molecule  is  zero.  Thus
pressure on both sides is equal.

2) For a convex surface, the resultant force is directed inwards towards the centre
of curvature, whereas the resultant force is directed outwards from the centre of
curvature for a concave surface. Thus, for a curved liquid surface in equilibrium,
the pressure on its concave side is greater than the pressure on its convex side.

Excess pressure inside an air bubble is ∆ܲ = ଶܲ − ଵܲ = ଶ்
ோ

Excess pressure inside a soap bubble is ∆ܲ = ସ்
ோ

Excess pressure inside liquid drop is ∆ܲ = ଶ்
ோ

, where T is the surface tension and R
is radius of the bubble.

· The  smaller  the  radius  of  a  liquid  drop,  the  greater  is  the  excess  of  pressure
inside the drop. It is due to this, the tiny fog droplets are rigid enough to behave
like solids.

· When an ice-skater skate over the surface of the ice,  some ice melts due to the
pressure  exerted  by  the  sharp  metal  edges  of  the  skates,  the  tiny  droplets  of
water act as rigid ball- bearings and help the skaters to run along smoothly.

Capillarity:

· The tube having a very small diameter is called a ‘capillary tube’. When a glass
capillary tube open at  both ends is  dipped vertically in water,  the water in the
tube will rise above the level of water in the vessel. In case of mercury, the liquid
is depressed in the tube below the level of mercury in the vessel

· The  rise  or  fall  of  a  liquid  in  a  narrow  tube  is  called  capillarity  or  capillary
action.  Depending on the  diameter  of  the  capillary  tube,  liquid rises  or  falls  to
different heights.



Contact
angle

Strength of Degree
of

wetting

Miniscus Rise or fall of
liquid in the

capillary tubeCohesive
force

Adhesive
force

θ=0 Weak Strong Perfect
Wetting

Plane Neither rises
nor is
depressed

θ<90 Weak Strong High Concav
e

Rise of liquid

θ>90 Strong Weak Low Convex Fall of liquid

Practical applications of capillarity

v Due to capillary action, oil rises in the cotton within an earthen lamp.
Likewise, sap rises from the roots of a plant to its leaves and branches.

v Absorption of ink by a blotting paper

v Capillary  action  is  also  essential  for  the  tear  fluid  from  the  eye  to  drain
constantly.

v Cotton dresses are preferred in summer because cotton dresses have fine
pores which act as capillaries for sweat.

Surface tension by capillary rise method:

܍܋܉܎ܚܝܛ ,ܖܗܑܛܖ܍ܜ ܂ =
ℎ݃ߩݎ

2 cos ߠ
Where h is the capillary rise, ,is angle of contact ߠ is ߩ  density  of  liquid  and  r  is
radius of tube.

Applications of surface tension:

• Mosquitoes lay their eggs on the surface of water. To reduce the surface tension
of  water,  oil  is  poured.  This  breaks  the  elastic  film  of  water  surface  and  eggs  are
killed by drowning.

•  Chemical  engineers  must  finely  adjust  the  surface  tension  of  the  liquid,  so  it
forms droplets of designed size and so it adheres to the surface without smearing.
This is used in desktop printing, to paint automobiles and decorative items.

•  Specks  of  dirt  get  removed  when  detergents  are  added  to  hot  water  while
washing clothes because surface tension is reduced.



• A fabric can be made waterproof, by adding suitable waterproof material (wax)
to the fabric. This increases the angle of contact

Bernoulli’s theorem:

ܞ܉ = ܜܖ܉ܜܛܖܗ܋

· where a is cross sectional area of pipe and v is velocity of fluid. The volume flux
or flow rate remains constant throughout the pipe. It is called the equation of
continuity and it is a statement of conservation of mass in the flow of fluids.

Bernoulli’s theorem and its applications:

· In  1738,  the  Swiss  scientist  Daniel  Bernoulli  He  proposed  a  theorem  for  the
streamline flow of a liquid based on the law of conservation of energy. The sum
of  pressure  energy,  kinetic  energy,  and  potential  energy  per  unit  mass  of  an
incompressible, non-viscous fluid in a streamlined flow remains a constant.

݌
ߩ + 1

2 2ݒ + ݃ℎ = ݐ݊ܽݐݏ݊݋ܿ

· Bernoulli’s relation is strictly valid for fluids with zero viscosity or non-viscous
liquids.

· When fluid flows through a horizontal pipe,

 h = 0. Thus, ݌
ߩ + 1

2 2ݒ = ݐ݊ܽݐݏ݊݋ܿ

ApplicationsofBernoulli’s theorem:

1) Blowing of roofs during wind storm:

· Roofs are designed with a slope. During cyclones, the roof is blown off without
damaging the other parts of the house. In accordance with the Bernoulli’s
principle, the high wind blowing over the roof creates a low-pressureܲ1. The
pressure under the roof ܲ2is greater. Therefore, this pressure difference (ܲ2–ܲ1)
creates an up thrust and the roof is blown off.

2) Aerofoil lift:

· The wings of an airplane (aerofoil) are so designed that its upper surface is more
curved than the lower surface and the front edge is broader than the real edge.



As  the  aircraft  moves,  the  air  moves  faster  above  the  aerofoil  than  at  the
bottom.According  to  Bernoulli’s  Principle,  the  pressure  of  air  below  is  greater
than above, which creates an upthrust called the dynamic lift to the aircraft.

3) Bunsen burner:

· In this, the gas comes out of the nozzle with high velocity, hence the pressure in
the  stem  decreases.  So  outside  air  reaches  into  the  burner  through  an  air  vent
and the mixture of air and gas gives a blue flame

4) Venturimeter:

· This  device  is  used  to  measure  the  rate  of  flow  (or  say  flow  speed)  of  the
incompressible fluid flowing through a pipe.

Pressure difference, ∆ܲ = ߩ ௩భ
మ

ଶ
(஺మି௔మ)

௔మ

Speed of flow at end of tube A, 1ݒ = ඨ 2(∆ܲ)ܽ2

(2ܽ−2ܣ)ߩ

Volume of liquid flowing out of second is

ܸ = ඨܣܽ
2(∆ܲ)

ଶܣ)ߩ − ܽଶ)
5) Other applications:

· This  Bernoulli’s  concept  is  mainly  used  in  the  design  of  carburetor  of
automobiles, filter pumps, atomizers, and sprayers. The carburetorhas a very fi
ne  channel  called  nozzle  through  which  the  air  is  allowed  to  flow  in  larger
speed. In this case,  the pressure is  lowered at the narrow neck and in turn,  the
required fuel  or  petrol  is  sucked into  the  chamber  so  as  to  provide  the  correct
mixture of air and fuel necessary for ignition process.

More to know
A single strand of spider silk can stop flying insects which are tens and
thousands  times  its  mass.  The  young’s  modulus  of  the  spider  web  is
approximately 4.5 × 10ଽ ܰ ݉ିଶ.



11th Standard - Volume (II)
UNIT 8: HEAT AND THERMODYNAMICS

Heat and temperature:

• Heat is  not a quantity.  When we use the word ‘heat’,  it  is  the energy in transit
but not energy stored in the body. Temperature is the degree of hotness or
coolness of a body.

Boyle’s law, Charles’ law and ideal gas law:

v ܲ ∝ ଵ
௏
 is known as Boyle’s law.

v ܸ ∝ ܶ is known as Charles’ law.
v ܸܲ = ߤ ஺ܰ݇ܶ = ܴܶߤ

• One mole of any substance is the amount of that substance which contains
Avogadro  number  (NA)  of  particles  (such  as  atoms  or  molecules).  The
Avogadro’s number NA is  defined as the number of carbon atoms contained in
exactly 12 g of 12ܥ .

NA = 6.023 × 1023mol−1

Heat capacity and Specific Heat Capacity

• ‘Heat capacity’ is the amount of heat energy required to raise the temperature of
the given body from T to T + ΔT.

Heat capacity ܵ = ∆ொ
∆்

• Specific heat capacity of a substance (s) is defined as the amount of heat energy
required to raise the temperature of 1kg of a substance by 1 Kelvin or 1°C

s =
1
m

൬
∆Q
∆T

൰

• Where s depends only on the nature of substance and not on amount of
substance

• ΔQ =Amount of heat energy   ΔT = Change in temperature m = Mass of the
substance. The SI unit for specific heat capacity is ݇݃ିଵ ଵ. Heat capacity andିܭ
specific heat capacity are always positive quantities. Water has the highest value



of specific heat capacity. So it is used as coolant in power stations and reactors.
When two objects of same mass are heated (or cooled) at equal rates, the object
with smaller specific heat capacity will have a faster temperature increase (or
drop).

• Molar specific heat capacity(C) is defined as heat energy required to increase the
temperature of one mole of substance by 1K or 1℃

C =
1
μ

൬
∆Q
∆T

൰

• is ߤ  the  number  of  moles  in  a  substance.  SI  unit  of  specific  heat  capacity  is
ܬ .ଵ. It is a positive quantityିܭଵି݈݋݉

Thermal expansion of solid, liquid and Gas:

v Thermal expansion is the tendency of matter to change in shape, area, and
volume due to a change in temperature.

v Railroad tracks and bridges have expansion joints to allow them to expand and
contract freely with temperature changes. Liquids, have less intermolecular
forces than solids and hence they expand more than solids. This is the principle
behind the mercury thermometers. In hot air balloons when gas particles get
heated, they expand and take up more space.

v The expansion in length is called linear expansion. Similarly the expansion in
area is termed as area expansion and  the  expansion  in  volume  is  termed  as
volume expansion.

v When the lid of a glass bottle is tight, keep the lid near the hot water which
makes  it  easier  to  open.  It  is  because  the  lid  has  higher  thermal  expansion
than glass.

v When  the  hot  boiled  egg  is  dropped  in  cold  water,  the  egg  shell  can  be
removed easily. It is because of the different thermal expansions of the shell
and egg.

area expansion ≈ 2 × linear expansion
volume expansion ≈ 3 × linear expansion

Anomalous expansion of water:



• The  volume  of  given  amount  of  water  decreases  as  it  is  cooled  but  up  to 4℃.
Below 4℃ volume increases so density decreases. Water has maximum density
at 4℃. this behaviour is called anomalous expansion of water.

• Since ice have lower density than water at 4℃ the ice will float at top of water.
As water freezes only at top, species in bottom of the lake will be safe.

Change of state:

• Latent  heat  capacity  of  substance  is  defined  as  the  amount  of  heat  energy
required to change the state of unit mass of the material.

• When heat is added or removed during a change of state, the temperature
remains constant.

• The triple point of substance is the temperature and pressure at which the three
phases (gas, liquid and solid) of that substance coexist in thermodynamic
equilibrium. The triple point of water is at 273.1 K at a partial vapour pressure
of 611.657 Pascal.

Calorimetry:

• A sample is  heated at high temperature (T1) and immersed into water at room
temperature (T2)  in  the  calorimeter.  After  some  time  both  reach  a  final
equilibrium temperature Tf.

܎܂ =
૚܂૚ܛ૚ܕ + ૛܂૛ܛ૛ܕ

૚ܛ૚ܕ + ૛ܛ૛ܕ

Here s1 and s2 specific heat capacity of hot sample and water respectively.

Heat transfer:

Conduction:

• The  quantity  of  heat  transferred  through  a  unit  length  of  a  material  in  a
direction normal to unit surface area due to a unit temperature difference under
steady state conditions is known as thermal conductivity of a material.

ۿ
ܜ = ܂∆ۯ۹

ۺ

Where K is the coefficient of thermal conductivity. SI unit of thermal
conductivity is ଵ orିܭଵ݉ିଵିݏܬ ܹ ݉ିଵିܭଵ



• Silver  and  aluminium  are  used  to  make  cooking  vessels  as  they  have  high
thermal conductivity.

• The state at which temperature attains constant value everywhere and there is
no further transfer of heat anywhere is called steady state.

Convection:

• Land has less specific heat capacity than water. This causes land breeze and sea
breeze.

• Water  in  cooking  pot  is  an  example  of  convection.  Water  at  bottom  heats,
become less dense and rises up. The water at top is cooler and denser, so falls to
the bottom. This back and forth movement is convectional current.

• The air molecules near heater becomes hot, less dense and rises up. The cooler
air at top is denser and comes down. This process is used in room heating.

Radiation:

• The visible radiation coming from the Sun is at  the temperature of 5700 K and
the  Earth  re  emits  the  radiation  in  the  infrared  range  into  space  which  is  at  a
temperature of around 300K.

Newton’s law of cooling:

• Newton’s law of cooling states that the rate of loss of heat of a body is directly
proportional to the difference in the temperature between that body and its
surroundings.

dQ
dt ∝ −(T − Ts)

• The  negative  sign  indicates  that  quantity  of  heat  lost  by  liquid  goes  on
decreasing with time. Where T= temperature of object temperature of =ݏܶ
surrounding

Laws of Heat transfer:

Prevost theory of heat exchange:



• Only at absolute zero temperature a body will stop emitting. Therefore Prevost
theory states that all bodies emit thermal radiation at all temperatures above
absolute zero irrespective of the nature of the surroundings. A body at high
temperature radiates more heat to the surroundings than it receives from it.

Stefan Boltzmann Law:

• Stefan Boltzmann law states that, the total amount of heat radiated per second
per unit area of a black body is directly proportional to the fourth power of its
absolute temperature.

ܧ = ସܶߪ

Stefan constant, ߪ = 5.67 × 10ି଼ ܹ݉ିଶ݇ିସ

If a body is not a perfect black body, then

ܧ = ସܶߪ݁

• ‘e’ is emissivity of surface. Emissivity is defined as ratio of energy radiated from
a  material’s  surface  to  that  radiated  from  a  perfect  black  body  at  same
temperature and wavelength.

Wien’s displacement law:

• Wien’s  law  states  that,  the  wavelength  of  maximum  intensity  of  emission  of  a
black body radiation is inversely proportional to the absolute temperature of the
black body.

ܕૃ = ܊
܂

Where Wien’s constant, ܾ = 2.898 × 10ିଷ ݉ ܭ

• It implies that if temperature of the body increases, maximal intensity
wavelength (݉ߣ)  shift  s  towards  lower  wavelength  (higher  frequency)  of
electromagnetic spectrum.

• The Sun is approximately taken as a black body. Since any object above 0 K will
emit radiation, Sun also emits radiation. Its surface temperature is about 5700K.

ܕૃ = ܊
܂ = ૛. ૡૢૡ × ૚૙−૜

૞ૠ૙૙ ≈ ૞૙ૡ ܕܖ



• The humans evolved under the Sun by receiving its radiations. The human eye
is  sensitive  only  in  the  visible  spectrum.   Suppose  if  humans had evolved in  a
planet near the star Sirius (9940K), then they would have had the ability to see
the Ultraviolet rays!

THERMODYNAMICS:

• A branch of physics which describes the laws governing the process of
conversion  of  work  into  heat  and  conversion  of  heat  into  work  is
thermodynamics.

• A thermodynamic system is a finite part of the universe. It is a collection of large
number of particles (atoms and molecules) specified by certain parameters
called pressure (P), Volume (V) and Temperature (T). The remaining part of the
universe is called surrounding.

Thermal equilibrium:

• Two systems are said to be in thermal equilibrium with each other if they are at
the same temperature, which will not change with time.

• A system is said to be in mechanical equilibrium if no unbalanced force acts on
the thermodynamic system or on the surrounding by thermodynamic system.

• There is no net chemical reaction between two thermodynamic systems in
contact with each other then it is said to be in chemical equilibrium.

If two systems are set to be in thermodynamic equilibrium, then the systems
are at thermal, mechanical and chemical equilibrium with each other. In a state of
thermodynamic equilibrium the macroscopic variables such as pressure, volume
and temperature will have fixed values and do not change with time.

Thermodynamic state variables:

• Heat and work are not state variables rather they are process variables.

• There are two types of thermodynamic variables: Extensive and Intensive

Extensive variable depends on the size or mass of the system.

Example: Volume, total mass, entropy, internal energy, heat capacity etc.
Intensive variables do not depend on the size or mass of the system.



Example: Temperature, pressure, specific heat capacity, density etc.

• The equation which connects the state variables in a specific manner is called
equation of state. A thermodynamic equilibrium is completely specified by these
state variables by the equation of state.

ZEROTH LAW OF THERMODYNAMICS:

• The  zeroth  law  of  thermodynamics  states  that  if  two  systems, A and B,  are  in
thermal equilibrium with a third system, C, then A and B are in thermal
equilibrium with each other.

Example: Temperature of the thermometer will be same as the human body.
This principle is used in finding the body temperature.

INTERNAL ENERGY (U):

• The  internal  energy  of  a  thermodynamic  system  is  the  sum  of  kinetic  and
potential energies of all the molecules of the system with respect to the centre of
mass of the system. The energy due to molecular motion including translational,
rotational and vibrational motion is called internal kinetic energy (EK) The
energy due to molecular interaction is called internal potential energy (EP).
Example: Bond energy.

ܷ = ௄ܧ + ௉ܧ

• Since ideal gas molecules are assumed to have no interaction with each other the
internal  energy consists  of  only  kinetic  energy part  (EK) which depends on the
temperature, number of particles and is independent of volume. However this is
not true for real gases like Van der Waals gases.

•  Internal energy is a state variable. It depends only on the initial and final states
of the thermodynamic system and not the way it is arrived at.

• Internal energy of a thermodynamic system is associated with only the kinetic
energy of the individual molecule due to its random motion and the potential
energy of molecules which depends on their chemical nature.The bulk kinetic
energy of the entire system or gravitational potential energy of the system
should not be mistaken as a part of internal energy.

Heat does not always increase the internal energy.



Joule’s Mechanical Equivalent of Heat:

• In the eighteenth century, Joule showed that mechanical energy can be on
converted into internal energy and vice versa. In fact, Joule was able to show
that the mechanical work has the same effect as giving heat. He found that to
raise 1 g of an object by 1°C, 4.186 J of energy is required.

1 ݈ܿܽ = 4.186 ܬ

First Law of Thermodynamics:

• This  law  states  that  ‘Change  in  internal  energy  (ΔU)  of  the  system  is  equal  to
heat supplied to the system (Q) minus the work done by the system (W) on the
surroundings’.

∆ܷ = ܳ − ܹ

System gains heat Q is positive Internal energy
increase

System loses heat Q is negative Internal energy
decreases

Work done on the system W is negative Internal energy
increase

Work done by the system W is positive Internal energy
decreases

• This law is applicable to solid, liquid and gases.

Quasi static process:

• A quasi-static process is an infinitely slow process in which the system changes
its variables (P,V,T) so slowly such that it remains in thermal, mechanical and
chemical equilibrium with its surroundings throughout.

Work Done in Volume changes:
ܹ = න ܸܲ݀

௏೑

௏೔

• If work is done on the system ܸ݅ > ܸ݂ and W is negative. The area under the PV
diagram will give the work done during expansion or compression.

SPECIFIC HEAT CAPACITY OF A GAS:
Specific heat capacity at constant pressure (࢙࢖):



v The amount of heat energy required to raise the temperature of one kg
of a substance by 1 K or 1°C by keeping the pressure constant is called
specific heat capacity of at constant pressure.

v In  this  process  a  part  of  the  heat  energy  is  used  for  doing  work
(expansion) and the remaining part is used to increase the internal
energy of the gas.

Specific heat capacity at constant volume (࢙࢜):

• The  amount  of  heat  energy  required  to  raise  the  temperature  of  one  kg  of  a
substance by 1 K or 1°C by keeping the volume constant. If the volume is kept
constant, then the supplied heat is used to increase only the internal energy. No
work is done by the gas.

࢖࢙ is always greater than ࢙࢜.

• The amount of heat required to raise the temperature of one mole of a substance
by 1K or 1°C at constant volume is called molar specific heat capacity at constant
volume (Cv). If pressure is kept constant, it is called molar specific heat capacity
at constant pressure (Cp).

௩ܥ =
1
ߤ

ܷ݀
݀ܶ

Meyer’s Relation:

௣ܥ − ௩ܥ = ܴ

THERMODYNAMIC PROCESS

Isothermal process (constant temperature):

∆ܷ = 0
ܳ = ܹ

So, the heat supplied to a gas is used to do only external work.

Examples:

(i)  When  water  is  heated,  at  the  boiling  point,  the  temperature  will  not
increase unless the water completely evaporates. Similarly, at the freezing point,



when the ice melts to water, the temperature of ice will not increase even when
heat is supplied to ice.

(ii) All biological processes occur at constant body temperature (37°C).

Adiabatic process:

• This is a process in which no heat flows into or out of the system (Q=0). But the
gas  can  expand  by  spending  its  internal  energy  or  gas  can  be  compressed
through some external work.

∆ܷ = ܹ

The adiabatic process can be achieved by the following methods

v Thermally insulating the system from surroundings.

v If  the  process  occurs  so  quickly  that  there  is  no  time to  exchange heat  with
surroundings even though there is no thermal insulation.

Example:  When the  warm air  rises  from the  surface  of  the  Earth,  it  adiabatically
expands. As a result the water vapour cools and condenses into water droplets
forming a cloud.

ܸܲఊ = ݐ݊ܽݐݏ݊݋ܿ

Here is adiabatic exponent and ߛ ߛ =
௣ܥ

௩ܥ
൘  which depends on nature of gas.

• The PV diagram for an adiabatic process is also called adiabat. The PV diagram
for isothermal and adiabatic processes look similar. But the adiabatic curve is
steeper than isothermal curve.

ܸܶఊିଵ = ݐ݊ܽݐݏ݊݋ܿ
ߛ−1ܲߛܶ = ݐ݊ܽݐݏ݊݋ܿ

Work done in adiabatic process,

ܹܽ݀݅ܽ = ܴߤ
ߛ − 1 ൣܶ݅ − ݂ܶ൧

v In adiabatic expansion, work done is positive and ܶ݅ > ݂ܶ and gas cools.

v In adiabatic compression, work done is negative and ܶ݅ < ݂ܶ and
temperature of gas increases.



Isobaric Process (constant pressure):

Examples for Isobaric process:

v When  the  gas  is  heated  and  pushes  the  piston  so  that  it  exerts  a  force
equivalent to atmospheric pressure plus the force due to gravity.

v When  the  food  is  cooked  in  an  open  vessel,  the  pressure  above  the  food  is
always at atmospheric pressure.

Work done in an isobaric process,

ܹ = ܲ∆ܸ = ܴߤ ௙ܶ ቆ1 − ௜ܶ

௙ܶ
ቇ

∆ܷ = ܳ − ܲ∆ܸ

Isochoric Process (constant volume):

∆ܸ = 0 ܽ݊݀ ܹ = 0. ,݋ܵ ∆ܷ = ܳ

Examples:

• When  food  is  being  cooked  in  closed  position,  after  a  certain  time  you  can
observe  the  lid  is  being  pushed  upwards  by  the  water  steam.  This  is  because
when the lid is closed, the volume is kept constant. As the heat continuously
supplied, the pressure increases and water steam tries to push the lid upwards

• In  automobiles  the  petrol  engine  undergoes  four  processes.  First  the  piston  is
adiabatically  compressed  to  some  volume  as  shown  in  the  Figure  (a).  In  the
second process (Figure (b)),  the volume of the air-fuel mixture is  kept constant
and heat is being added. As a result the temperature and pressure are increased.
This  is  an  isochoric  process.  For  a  third  stroke  (Figure  (c))  there  will  be  an
adiabatic expansion, and fourth stroke again isochoric process by keeping the
piston immoveable (Figure (d)).

Cyclic process:

• The thermodynamic system returns to its initial state after undergoing a series
of  changes.  The  change  in  the  internal  energy  is  zero.  From  the  first  law  of
thermodynamics, the net heat transferred to the system is equal to work done by
the gas.

ݐ݁݊ܳ = ܳ݅݊ − ݐݑ݋ܳ = ܹ



PV diagram for cyclic process:

• The total work done is green shaded area in the figure.  If the net work done is
positive,  then  work  done  by  the  system  is  greater  than  the  work  done  on  the
system. If the net work done is negative then the work done by the system is less
than the work done on the system.

• Further,  in  a  cyclic  process  the  net  work  done  is  positive  if  the  process  goes
clockwise and network done is negative if the process goes anti-clockwise.

Limitations of First Law of Thermodynamics:

• The  first  law  of  thermodynamics  explains  well  the  inter  convertibility  of  heat
and work. But it does not indicate the direction of change.
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v According to first law, it is possible for the energy to flow from hot object to
cold object or from cold object to hot object. But in nature the direction of heat
flow is always from higher temperature to lower temperature

v Heat produced against friction is not reconverted to the kinetic energy of the
car.

Reversible Process:

• A  thermodynamic  process  can  be  considered  reversible  only  if  it  possible  to
retrace  the  path  in  the  opposite  direction  in  such  a  way  that  the  system  and
surroundings pass through the same states as in the initial, direct process.

Example: A quasi–static isothermal expansion of gas, slow compression and
expansion of a spring. Conditions for reversible process:

1. The process should proceed at an extremely slow rate.

2. The system should remain in mechanical, thermal and chemical
equilibrium state at all the times with the surroundings, during the process.

 3. No dissipative forces such as friction, viscosity, electrical resistance should
be present.

Irreversible process:

• All natural processes are irreversible. Irreversible process cannot be plotted in
PV diagram.

• According  to  second  law  of  thermodynamics  “Heat  always  flows  from  hotter
object  to  colder  object  spontaneously”.  This  is  known  as  the  Clausius  form  of
second law of thermodynamics.

HEAT ENGINE:

v Heat engine is a device which takes heat as input and converts this heat in to
work by undergoing a cyclic process.

v A heat engine has three parts:

(a) Hot reservoir (or) Source: It is maintained at a high temperature ܪܶ

(b) Working substance



v It  is  a  substance  like  gas  or  water,  which  converts  the  heat  supplied  into
work.

v The working substance in steam engine is water which absorbs heat from the
burning of coal. The heat converts the water into steam.

v This steam is does work by rotating the wheels.(c) Cold reservoir (or) Sink: It
is maintained at lower temperature ܮܶ

Reservoir:

v It is defined as a thermodynamic system which has very large heat capacity.
By taking in heat from reservoir or giving heat to reservoir, the reservoir’s
temperature does not change.

v The heat engine works in a cyclic process. After a cyclic process it returns to
the same state. Since the heat engine returns to the same state after it ejects
heat, the change in the internal energy of the heat engine is zero.

,ݕ݂݂ܿ݊݁݅ܿ݅݁ ߟ =
ݐݑ݌ݐݑ݋
ݐݑ݌݊݅

=
ܹ
ܳு

=
ܳு − ܳ௅

ܳு
= 1 −

ܳ௅

ܳு

• Since QL < QH,  the  efficiency  (η)  always  less  than  1.  This  implies  that  heat
absorbed is not completely converted into work.

Kelvin-Planck statement:

It is impossible to construct a heat engine that operates in a cycle, whose sole
effect is to convert the heat completely into work. This implies that no heat engine
in the universe can have 100% efficiency.

Carnot’s ideal Heat Engine:

v A reversible heat engine operating in a cycle between two temperatures in a
particular way is called a Carnot Engine.

v The carnot engine has four parts.

i Source: It is at TH. Any amount of heat can be extracted, without changing
temperature.



ii Sink: It is maintained at TL. It can absorb any amount of heat.

iii Insulating stand: It is made of perfectly non-conducting material.

iv Working substance: It is an ideal gas enclosed in a cylinder with perfectly
non-conducting walls and perfectly conducting bottom. A non-conducting and
frictionless piston is fitted in it.

The working substance is subjected to four successive reversible processes
forming what is called Carnot’s cycle.

a) Quasi-static Isothermal Expansion
b) Quasi- static Adiabatic Expansion
c) Quasi-static Isothermal compression
d) Quasi-static Adiabatic Compression

• After one cycle the working substance returns to the initial temperature TH. This
implies that the change in internal energy of the working substance after one
cycle is zero.

Efficiency of Carnot Engine:

efϐiciency, η = 1 −
T୐

Tୌ

a) It can be 100% only when ܮܶ = 0 .which is impossible ܭ

b) Efficiency is independent of working substance.

c) When ܮܶ = ,ܪܶ ߟ = 0. No carnot engine can have source and sink at same
temperature.

d) Carnot theorem is stated as ‘Between two constant temperatures reservoirs,
only Carnot engine can have maximum efficiency. All real heat engines will
have efficiency less than the Carnot engine’

e) The  efficiency  depends  on  the  ratio  of  the  two  temperature  and  not  on  the
difference in the temperature. The engine which operates in lower
temperature has highest efficiency.

Entropy and second law of thermodynamics:



ܡܘܗܚܜܖ܍ =
ۿ
܂

v Change  in  entropy  of  Carnot  Engine  in  one  cycle  is  zero.  “For  all  the
processes that occur in nature (irreversible process), the entropy always
increases. For reversible process entropy will not change”.

v Entropy determines the direction in which natural process should occur.

v Entropy is also called ‘measure of disorder’. All natural process occur such that the disorder should
always increases.

v Example: a drop of ink diffusing in water.

Refrigerator:

• A refrigerator is a Carnot’s engine working in the reverse order.

• The working substance (gas) absorbs quantity of heat QL from cold body (sink)
at lower temperature TL.  A certain  amount  of  work W is  done on the  working
substance by the compressor and a quantity of heat QH is ejected to the hot body
(source) i.e., atmosphere at TH.

ۺࡽ + ܅ = ۶ۿ
As a result, cold reservoir gets further cooled down and surroundings are

heated more.

coefϐicient of performance, COP = β =
Q୐

W
=

Q୐

Qୌ − Q୐
=

T୐

Tୌ − T୐

1. The greater the COP, the better is the condition. A refrigerator has COP
around 5 to 6.

2. Lesser the difference in the temperatures of the cooling chamber and the
atmosphere, higher is the COP of a refrigerator.

3. In the refrigerator the heat is taken from cold object to hot object by doing
external work. It  is  not a violation of second law of thermodynamics,  because the
heat is ejected to surrounding air and total entropy of (refrigerator + surrounding)
is always increased.

Greenhouse effect:

• Top of the atmosphere is at -19°C and bottom of the atmosphere is at +14°C. The
increase in 33°C from top to bottom is due to Greenhouse gases and this effect is
called Greenhouse effect.



• The greenhouse gases are mainly CO2, water vapour, Ne, He, NO2,

• CH4, Xe, Kr, ozone and NH3. Except CO2 and water vapour, all others are present
only  in  very  small  amount  in  the  atmosphere.  The  radiation  from  the  Sun  is
mainly in the visible region of the spectrum. The earth absorbs these radiations
and reradiate in the infrared region. Carbon dioxide and water Vapour are good
absorbers of infrared radiation since they have more vibrational degree of
freedom compared to nitrogen and oxygen which keeps earth warmer.

• The amount of CO2 present in the atmosphere is increased from 20% to 40% due
to human activities since 1900s. The major emission of CO2 comes from burning
of  fossil  fuels  in  automobiles.  Due  to  this  increase  in  the  CO2 content in the
atmosphere, the average temperature of the earth increases by 1°C. This effect is
called  global  warming.  It  has  serious  influence  and  alarming  effect  on  ice
glaciers.  In  addition,  the  CO2 content is also increasing in ocean which is very
dangerous to species in the oceans.

• Another very important greenhouse gas is Chloro flouro carbon(CFC) which is
used  as  coolant  in  refrigerators.  In  the  human  made  greenhouse  gases  CO2 is
55%,  CFCs  are  24%.  Nitrogen  oxide  is  6%  and  methane  is  15%.  CFCs  also  has
made huge damage to ozone layer.

FAST FACTS

a) When the piston is  compressed so quickly that there is  no time to exchange
heat to the surrounding, the temperature of the gas increases rapidly. This
principle is used in the diesel engine. The air-gasoline mixture is compressed
so quickly (adiabatic compression) that the temperature increases
enormously, which is enough to produce a spark.

b) All reversible processes are quasi-static but all quasi- static processes need
not be reversible. For example when we push the piston very slowly, if there
is friction between cylinder wall and piston some amount of energy is lost to
surroundings, which cannot be retrieved back.

c) The efficiency of diesel engines has maximum up to 44% and the efficiency of
petrol  engines  are  maximum  up  to  30%.  Now  a  days  typical  bikes  give  a
mileage of 50 km per Liter of petrol. This implies only 30% of 1 Liter of petrol
is converted into mechanical work and the remaining 70% goes out as wasted
heat.



d) In  earthern  pot,  the  cooling  process  is  not  due  to  any  cyclic  process.  The
cooling  occurs  due  to  evaporation  of  water  molecules  which  oozes  out
through pores of the pot. Even though the heat flows from cold water to open
atmosphere, it is not a violation of second law of thermodynamics. The water
inside the pot is  an open thermodynamic system, so the entropy of water +
surrounding always increases.



KINETIC THEORY OF GASES

KINETIC THEORY

Introduction

Thermodynamics is basically a macroscopic science. We discussed macroscopic
parameters like pressure, temperature and volume of thermodynamical systems in
unit 8. In this unit we discuss the microscopic origin of pressure and temperature
by considering a thermodynamic system as collection of particles or molecules.
Kinetic theory relates pressure and temperature to molecular motion of sample of a
gas and it is a bridge between Newtonian mechanics and thermodynamics. The
present chapter introduces the kinetic nature of gas molecules.

Postulates of kinetic theory of gases

Kinetic theory is based on certain assumptions which makes the mathematical
treatment simple. None of these assumptions are strictly true yet the model based
on these assumptions can be applied to all gases.

All the molecules of a gas are identical, elastic spheres.
The molecules of different gases are different.
The number of molecules in a gas is very large and the average separation between
them is larger than size of the gas molecules.
The molecules of a gas are in a state of continuous random motion.
The molecules collide with one another and also with the walls of the container.
These collisions are perfectly elastic so that there is no loss of kinetic energy during
collisions.
Between two successive collisions, a molecule moves with uniform velocity.
The molecules do not exert any force of attraction or repulsion on each other except
during collision. The molecules do not possess any potential energy and the energy
is wholly kinetic.
The collisions are instantaneous. The time spent by a molecule in each collision is
very small compared to the time elapsed between two consecutive collisions.
These molecules obey Newton’s laws of motion even though they move randomly.

PRESSURE EXERTED BY A GAS

Consider a monoatomic gas of N molecules each having a mass m inside a cubical
container of side l

(a) Container of gas molecules



(b) Collision of a molecule with the wall

The molecules of the gas are in random motion. They collide with each other and
also with the walls of the container. As the collisions are elastic in nature, there is
no loss of kinetic energy, but a change in momentum occurs.

The  molecules  of  the  gas  exert  pressure  on  the  walls  of  the  container  due  to
collision on it. During each collision, the molecules impart certain momentum to
the wall. Due to transfer of momentum, the walls experience a continuous force.
The force experienced per unit area of the walls of the container determines the
pressure exerted by the gas. It is essential to determine the total momentum
transferred by the molecules in a short interval of time.
A molecule of mass m moving with a velocity ሬሬ⃗ࢂ having components (vx, vy, vz ) hits
the right side wall. Since we have assumed that the collision is elastic, the particle
rebounds with same speed and its x-component is reversed. (b). The components of
velocity of the molecule after collision are (—vx, vy, vz ).

The x-component of momentum of the molecule before collision = mvx

The x-component of momentum of the molecule after collision = −mvx

The  change  in  momentum  of  the  molecule  in  x  direction  =  Final  momentum  –
initial momentum = − mvx − mvx = − 2mvx

According to law of conservation of linear momentum, the change in momentum
of the wall = 2mvx

NOTE
In  x  direction,  the  total  momentum  of  the  system  before  collision  is  equal  to
momentum of the molecule (mvx)  since  the  momentum  of  the  wall  is  zero.
According to the law of conservation of momentum the total momentum of system
after the collision must be equal to total momentum of system before collision. The
momentum of the molecule (in x direction) after the collision is – mvx and the
momentum of the wall after the collision is 2mvx. So total momentum of the system
after the collision is (2mvx − mvx) = mvx which is same as the total momentum of
the system before collision.

The number of molecules hitting the right side wall in a small interval of time ∆t is
calculated as follows.



The molecules within the distance of vx ∆t  from  the  right  side  wall  and  moving
towards the right will hit the wall in the time interval ∆t.

The number of molecules that will hit the right side wall in a time interval ∆t is
equal to the product of volume (Avx ∆t) and number density of the molecules (n).
Here A is area of the wall and n is number of molecules per unit volume ࡺ

ࢂ

We have assumed that the number density is the same throughout the cube.

Number of molecules hitting the wall

Not all the n molecules will move to the right, therefore on an average only half of
the n molecules move to the right and the other half moves towards left side.

The number of molecules that hit the right side wall in a time interval ∆t
=

࢔
૛

࢚∆࢞࢜࡭

In the same interval of time ∆t, the total momentum transferred by the molecules
࢖∆ =

࢔
૛

࢞࢜࡭ ∆࢚ × ૛࢞࢜࢓ = ࢞࢜࡭
૛࢔࢓∆࢚

From Newton’s  second law,  the  change in  momentum in  a  small  interval  of  time
gives rise to force.

The force exerted by the molecules on the wall (in magnitude)

ࡲ =
࢖∆
∆࢚

= ࢞࢜࡭࢓࢔
૛

Pressure, P = force divided by the area of the wall

ࡼ =
ࡲ
࡭

= ࢞࢜࢓࢔
૛

Since all the molecules are moving completely in random manner, they do not have
same speed. So we can replace the term ࢜࢞

૛ by the average ࢜࢞
૛ in equation

ࡼ = ࢄ࢜࢔࢓
૛

Since the gas is assumed to move in random direction, it has no preferred direction
of  motion  (the  effect  of  gravity  on  the  molecules  is  neglected).  It  implies  that  the
molecule has same average speed in all the three direction. So,࢜ࢄ

૛ = ࢜࢟
૛ = ࢠ࢜

૛

The mean square speed is written as
࢜૛ = ࢜࢞

૛ + ࢜࢟
૛ + ࢠ࢜

૛ = ૜࢜࢞
૛



࢜࢞
૛ =

૚
૜

࢜૛

Using this in equation, we get

ࡼ =
૚
૜

૛࢜࢓࢔ ࢘࢕ ࡼ =
૚
૜

ࡺ
ࢂ

૛࢜࢓

࢙ࢇ ൤࢔ =
ࡺ
ࢂ

൨

The following inference can be made from the above equation. The pressure
exerted by the molecules depends on
Number density= ࡺ

ࢂ
 .  It implies that if the number density increases then pressure

will  increase.  For  example  when  we  pump  air  inside  the  cycle  tyre  or  car  tyre
essentially the number density increases and as a result the pressure increases.
Mass  of  the  molecule  Since  the  pressure  arises  due  to  momentum  transfer  to  the
wall,  larger  mass  will  have  larger  momentum  for  a  fixed  speed.  As  a  result  the
pressure will increase.
Mean square speed For a fixed mass if we increase the speed, the average speed
will also increase. As a result the pressure will increase.

For simplicity the cubical container is taken into consideration. The above result is
true  for  any  shape  of  the  container  as  the  area  A  does  not  appear  in  the  final
expression. Hence the pressure exerted by gas molecules on the wall is
independent of area of the wall (A).

Kinetic interpretation of temperature
To understand the microscopic origin of temperature in the same way,
Rewrite the equation

ࡼ =
૚
૜

ࡺ
ࢂ

૛࢜࢓

ࢂࡼ =
૚
૜

૛࢜࢓ࡺ

Comparing the equation with ideal gas quation PV=NkT

ࢀ࢑ࡺ =
૚
૜

૛࢜࢓ࡺ

ࢀ࢑ =
૚
૜

૛࢜࢓

Multiply the above equation by 3/2 on both sides.
૜
૛

ࢀ࢑ =
૚
૛

૛࢜࢓

R.H.S  of  the  equation  (9.9)  is  called  average  kinetic  energy  of  a  single  molecule
(KE).



The average kinetic energy per molecule

ࡱࡷ = ∈ =
૜
૛

ࢀ࢑
Equation  implies  that  the  temperature  of  a  gas  is  a  measure  of  the  average
translational kinetic energy per molecule of the gas.

Equation  is  a  very  important  result  from  kinetic  theory  of  gas.  We  can  infer  the
following from this equation.

The average kinetic energy of the molecule is directly proportional to absolute
temperature of the gas. The equation gives the connection between the macroscopic
world (temperature) to microscopic world (motion of molecules).
The average kinetic energy of each molecule depends only on temperature of the
gas not on mass of the molecule. In other words, if the temperature of an ideal gas
is measured using thermometer, the average kinetic energy of each molecule can be
calculated without seeing the molecule through naked eye.

By  multiplying  the  total  number  of  gas  molecules  with  average  kinetic  energy  of
each molecule, the internal energy of the gas is obtained.
Internal energy of ideal gas U= Nቀ૚

૛
૛ቁ࢜࢓

By using equation

ࢁ =
૜
૛

ࢀ࢑ࡺ
From  equation,  we  understand  that  the  internal  energy  of  an  ideal  gas  depends
only on absolute temperature and is independent of pressure and volume.

A football at 27°C has 0.5 mole of air molecules. Calculate the internal energy of air
in the ball.

Solution
The internal energy of ideal gas = ૜

૛
ࢀ࢑ࡺ

The number of air  molecules is  given in terms of number of moles so,  rewrite the
expression as follows ࢁ = ૜

૛
ࢀࡾࣆ

Since Nk = μR. Here μ is number of moles.
 Gas constant R = 8.31 ࡶ

࢑࢒࢕࢓
Temperature T = 273 + 27 =300k

ࢁ =
૜
૛

× ૙. ૞ × ૡ. ૜૚ × ૜૙૙ = ૚ૡ૟ૢ. ૠ૞ࡶ
This  is  approximately  equivalent  to  the  kinetic  energy of  a  man of  57  kg running
with a speed of 8 m s-1.



Relation between pressure and mean kinetic energy

From earlier section, the internal energy of the gas is given by

ࢁ =
૜
૛

ࢀ࢑ࡺ
He above equation can also be written as

ࢁ =
૜
૛

ࢂࡼ
Since PV = NkT

ࡼ =
૛
૜

ࢁ
ࢂ

=
૛
૜

࢛

From the equation, we can state that the pressure of the gas is equal to two thirds of
internal energy per unit volume or internal energy density ቀ࢛ = ࢁ

࢜
ቁ.

Writing pressure in terms of mean kinetic energy density using equation.

ࡼ =
૚
૜

૛࢜࢓࢔ =
૚
૜

૛࢜࢖

where ρ = nm = mass density (Note n is number density)

Multiply and divide R.H.S of equation by 2, we get

ࡼ =
૛
૜

ቀ
࢖
૛

࢜૛ቁ

ࡼ =
૛
૜

ࡱࡷ

From  the  equation,  pressure  is  equal  to  2/3  of  mean  kinetic  energy  per  unit
volume.

Some elementary deductions from kinetic theory of gases

Boyle’s law:
From equation, we know that ࢂࡼ = ૛

૜
ࢁ

But  the  internal  energy  of  an  ideal  gas  is  equal  to  N  times  the  average  kinetic
energy (∈) of each molecule.

= ࢁ ࡺ ∈
For a fixed temperature, the average translational kinetic energy ∈ will remain
constant. It implies that

= ࢂࡼ
૛
૜

ࡺ ∈ ࢙࢛ࢎࢀ = ࢂࡼ ࢚࢔ࢇ࢚࢙࢔࢕ࢉ
Therefore, pressure of a given gas is inversely proportional to its volume provided
the temperature remains constant. This is Boyle’s law.



Charles’ law:
From the equation, we get = ࢂࡼ ૛

૜
ࢁ

For a fixed pressure, the volume of the gas is proportional to internal energy of the
gas or average kinetic energy of the gas and the average kinetic energy is directly
proportional to absolute temperature. It implies that

ࢂ ࢻ ࢀ ࢘࢕
ࢀ
ࢂ

= ࢚࢔ࢇ࢚࢙࢔࢕ࢉ

This is Charles’ law.
Avogadro’s law:

This law states that at constant temperature and pressure, equal volumes of all
gases  contain  the  same number  of  molecules.  For  two different  gases  at  the  same
temperature and pressure, according to kinetic theory of gases,

ࡼ =
૚
૜

ࡺ
ࢂ

૚࢜૚࢓
૛ =

૚
૜

૛ࡺ

ࢂ
૛࢜૛࢓

૛

where ૚ࢂ
૛ and ૛ࢂ

૛are the mean square speed  for two gases and N1 and N2 are the
number of gas molecules in two different gases.
At the same temperature, average kinetic energy per molecule is the same for two
gases.

૚
૛

૚࢜૚࢓
૛ =

૚
૛

૛࢜૛࢓
૛

Dividing the equation (9.15) by (9.16) we get N1 = N2

This is Avogadro’s law. It is sometimes referred to as Avogadro’s hypothesis or
Avogadro’s Principle.

Root mean square speed (vrms)
Root  mean  square  speed  (vrms)  is  defined  as  the  square  root  of  the  mean  of  the

square of speeds of all molecules. It is denoted by vrms = ඥ࢜૛

Equation can be re-written as,
mean square speed ࢜૛ = ૜ࢀ࢑

࢓

Root mean square speed,

࢙࢓࢘࢜ = ඨ૜ࢀ࢑
࢓

= ૚. ૠ૜ඨࢀ࢑
࢓

From the equation we infer the following



(i) rms speed is directly proportional to square root of the temperature and
inversely  proportional  to  square  root  of  mass  of  the  molecule.  At  a  given
temperature the molecules of lighter mass move faster on an average than the
molecules with heavier masses.
Example: Lighter molecules like hydrogen and helium have high ‘vrms’ than
heavier molecules such as oxygen and nitrogen at the same temperature.
(ii) Increasing the temperature will increase the r.m.s speed of molecules
We  can  also  write  the  vrms  in  terms  of  gas  constant  R.  Equation  (9.18)  can  be
rewritten as follows

࢙࢓࢘࢜ = ට ૜ࡺ૚ࢀ࢑
࢓૚ࡺ

 where NA is avogadra number.

Since NAk = R and NAm = M (molar mass)

The root mean square speed or r.m.s speed

࢙࢓࢘࢜ = ඨ૜ࢀࡾ
ࡹ

The  equation  can  also  be  written  in  term  of  rms  speed ࢖ = ૚
૜

૛࢜࢓࢔
since ࢙࢓࢘

࢙࢓࢘࢜
૛ = ࢜૛

Impact of vrms in nature:

1. Moon has no atmosphere.

The escape speed of gases on the surface of Moon is much less than the root mean
square speeds of gases due to low gravity. Due to this all the gases escape from the
surface of the Moon.

2. No hydrogen in Earth’s atmosphere.

As the root mean square speed of hydrogen is much greater than that of nitrogen, it
easily escapes from the earth’s atmosphere.

In fact, the presence of nonreactive nitrogen instead of highly combustible
hydrogen deters many disastrous consequences.

A room contains oxygen and hydrogen molecules in the ratio 3:1. The temperature
of the room is 27°C. The molar mass of 02 is 32 g mol-1 and of H2 is 2 g mol-1. The
value of gas constant R is 8.32 J mol-1 K-1

Calculate



(a) rms speed of oxygen and hydrogen molecule
(b) Average kinetic energy per oxygen molecule and per hydrogen Molecule
(c) Ratio of average kinetic energy of oxygen molecules and hydrogen molecules

SOLUTION
(a) absolute temperature

ࢀ = ૛ૠ°࡯ = ૛ૠ + ૛ૠ૜ = ૜૙૙ࡷ

Gas constant R = 8.32 J mol-1k-1

For oxygen molecule molar mass = ࡹ ૜૛ࢍ = ૜૛ × ૚૙ି૜ࢍ࢑ ૚ି࢒࢕࢓

rms speed ࢙࢓࢘࢜ = ට૜ࢀࡾ
ࡹ

= ට૜×ૡ૙૜૛×૜૙૙
૜૛×૚૙ష૜

= ૝ૡ૜. ૠ૜࢓ ࢙ି૚ ≈ ૝ૡ૝࢓ ࢙ି૚

For hydrogen molecule:

Molar mass = ࡹ ૛ × ૚૙ି૜ࢍ࢑ ૚ି࢒࢕࢓

࢙࢓࢘ ࢊࢋࢋ࢖࢙ ࢙࢓࢘࢜ = ඨ૜ࢀࡾ
ࡹ

= ඨ૜ × ૡ. ૜૛ × ૜૙૙
૛ × ૚૙ି૜

= ૚ૢ૜૝࢓ ࢙ି૚ = ૚. ૢ૜࢓࢑ ࢙ି૚

Note that the rms speed is inversely proportional to M and the molar mass of
oxygen  is  16  times  higher  than  molar  mass  of  hydrogen.  It  implies  that  the  rms
speed  of  hydrogen  is  4  times  greater  than  rms  speed  of  oxygen  at  the  same
temperature.

૚ૢ૜૝
૝ૡ૝

= ૝

(b) The average kinetic energy per molecule is ૜
૛

. ࢀ࢑  It  depends only on absolute
temperature  of  the  gas  and is  independent  of  the  nature  of  molecules.  Since  both
the gas molecules are at the same temperature, they have the same average kinetic
energy per molecule. k is Boltzmaan constant.

૜
૛

ࢀ࢑ =
૜
૛

× ૚. ૜ૡ × ૚૙ି૛૜ × ૜૙૙ = ૟. ૛૚ × ૚૙ି૛૚ࡶ



 (c) Average kinetic energy of total oxygen molecules = ૜
૛

where ࢀ࢑࢕ࡺ No - number
of oxygen molecules in the room

Average kinetic energy of total hydrogen molecules = ૜
૛

where NH - number  ࢀ࢑࢕ࡺ
of hydrogen molecules in the room.

It  is  given  that  the  number  of  oxygen  molecules  is  3  times  more  than  number  of
hydrogen molecules in the room. So the ratio of average kinetic energy of oxygen
molecules with average kinetic energy of hydrogen molecules is 3:1.

Mean (or) average speed (࢜)

It is defined as the mean (or) average of all the speeds of molecules
If ࢜૚, ࢜૛, ࢜૜ … . are the individual speeds of molecules then ࡺ࢜

࢜ =
࢜૚ + ࢜૛ + ࢜૜ … . . ࢔࢜+

ࡺ
= ඨૡࢀࡾ

ࡹ࣊
= ඨૡࢀ࢑

࢓࣊

Here M- molar mass and m – mass of the molecule.

࢜ = ૚. ૟૙ඨࢀ࢑
࢓

Most probable speed (Vmp)

It is defined as the speed acquired by most of the molecules of the gas.

࢖࢓࢜ = ඨ૛ࢀࡾ
ࡹ

= ඨ૛ࢀ࢑
࢓

࢖࢓࢜ = ૚. ૝૚ඨࢀ࢑
࢓

The derivation of equations is beyond the scope of the book

Comparison of vrms , ࢜ and vmp

Among the speeds vrms is the largest and vmp is the least

࢙࢓࢘࢜ > ࢜ > ࢖࢓࢜



Ratio-wise,

:࢙࢓࢘࢜ ࢜: ࢖࢓࢜ = √૜: ඨ
ૡ ࣊ൗ : √૛ = ૚. ૠ૜૛ ∶ ૚. ૟ ∶ ૚. ૝૚૝

Ten particles are moving at the speed of 2, 3, 4, 5, 5, 5, 6, 6, 7 and 9 m s-1. Calculate
rms speed, average speed and most probable speed.

Solution
The average speed

࢜ =
૛ + ૜ + ૝ + ૞ + ૞ + ૟ + ૟ + ૠ + ૢ

૚૙
= ૞. ૛࢓ ࢙ି૚

To find the rms speed, first calculation the mean square speed ࢜૛

࢜૛ =
૛૛ + ૜૛ + ૝૛ + ૞૛ + ૞૛ + ૞૛ + ૟૛ + ૟૛ + ૠ૛ + ૢ૛

૚૙

૜૙. ૟࢓૛࢙ି૚

The rms speed

࢙࢓࢘࢜ = ට࢜૛ = √૜૙. ૟ = ૞. ૞૜ି࢙࢓૚

The most probable speed is ૞ି࢙࢓૚ because three of the particles have that speed.

Calculate the rms speed, average speed and the most probable speed of   mole of
hydrogen molecules at 300 K. Neglect the mass of electron.

Solution

The hydrogen atom has one proton and one electron. The mass of electron is
negligible compared to the mass of proton.

Mass of one proton = ૚. ૟ૠ × ૚૙ି૛ૠࢍ࢑

One hydrogen molecule = 2 hydrogen atoms = ૛ × ૚. ૟ૠ × ૚૙ି૛ૠࢍ࢑.
The average speed

࢜ = ඨૡࢀ࢑
࢓࣊

= ૚. ૟૙ඨࢀ࢑
࢓



= ૚. ૟૙ඨ
(૚. ૜ૡ × ૚૙ି૛૜) × (૜૙૙)

૛(૚. ૟ૠ × ૚૙ି૛ૠ) = ૚. ૠૡ × ૚૙૜ି࢙࢓૚

࢔࢔ࢇ࢓ࢠ࢚࢒࢕࡮) ࢚࢔ࢇ࢚࢙࢔࢕࡯ ࢑ = ૚. ૜ૡ × ૚૙ି૛૜ିࡷࡶ૚ )

The rms speed ࢙࢓࢘࢜ = ට૜ࢀ࢑
࢓

= ૚. ૠ૜ටࢀ࢑
࢓

= ૚. ૠ૜ඨ
(૚. ૜ૡ × ૚૙ି૛૜) × (૜૙૙)

૛(૚. ૟ૠ × ૚૙ି૛ૠ) = ૚. ૢ૜ × ૚૙૜ି࢙࢓૚

Most probable speed ࢙࢓࢘࢜ = ට૛ࢀ࢑
࢓

= ૚. ૝૚ටࢀ࢑
࢓

= ૚. ૝૚ඨ
(૚. ૜ૡ × ૚૙ି૛૜) × (૜૙૙)

૛(૚. ૟ૠ × ૚૙ି૛ૠ) = ૚. ૞ૠ × ૚૙૜ି࢙࢓૚

Note that ࢙࢓࢘࢜ > ࢜ > ࢙࢓࢘࢜

Maxwell-Boltzmann speed distribution function

In  a  classroom,  the  air  molecules  are  moving  in  random  directions.  The  speed  of
each molecule is not the same even though macroscopic parameters like
temperature and pressure are fixed. Each molecule collides with every other
molecule and they exchange their speed. In the previous section we calculated the
rms speed of each molecule and not the speed of each molecule which is rather
difficult. In this scenario we can find the number of gas molecules that move with
the speed of 5 m s−1 to 10 m s−1 or 10 m s−1to 15 m s−1 etc. In general our interest is
to find how many gas molecules have the range of speed from v to v + dv. This is
given by Maxwell’s speed distribution function.

࢜ࡺ = ૝࣊ࡺ ቀ
࢓

૛࣊ࢀ࢑
ቁ

૜
૛

࢜૛ିࢋ ૛࢜࢓

૛ࢀ࢑

The above expression is graphically shown as follows

It  is  clear  that,  for  a  given  temperature  the  number  of  molecules  having  lower

speed increases parabolically (v2) but decreases exponentially ࢋ
૛࢜࢓

૛ࢀ࢑ after reaching



most probable speed. The rms speed, average speed and most probable speed are
indicated. It can be seen that the rms speed is greatest among the three.

To know the number of molecule in the range of speed between 50m s-1 and 60m s-

1, we need to integrate ∫ ૝࣊ࡺ∗૟૙
૜૙ ቀ ࢓

૛࣊ࢀ࢑
ቁ

૚
૛ ࢜૛ࢋ

૛࢜࢓

૛ࢀ࢑ ࢜ࢊ = ૞૙)ࡺ ࢕࢚ ૟૙࢓ ࢙ି૚). In general
the  number  of  molecules  within  the  range  of  speed  v  and  v+dv  is  given  by

∫ ૝࣊ࢂ∗ࡺାࢂࡰ
ࢂ ቀ ࢓

૛࣊ࢀ࢑
ቁ

૜
૛ ࢜૛ࢋ

૛࢜࢓

૛ࢀ࢑ ࢜ࢊ = ࢜)ࡺ + .(࢜ࢊ

The  exact  integration  is  beyond  the  scope  of  the  book.  But  we  can  infer  the
behavior of gas molecules from the graph.

The area under the graph will give the total number of gas molecules in the system

The speed distribution graph for two different temperatures. As temperature
increases, the peak of the curve is shifted to right. It implies that the average speed
of  each  molecule  will  increase.  But  the  area  under  each  graph  is  same  since  it
represents the total number of gas molecules.

DEGREES OF FREEDOM

Definition

The minimum number of independent coordinates needed to specify the position
and  configuration  of  a  thermo-dynamical  system  in  space  is  called  the  degree  of
freedom of the system.

Example:
A  free  particle  moving  along  x-axis  needs  only  one  coordinate  to  specify  it
completely. So its degree of freedom is one.
Similarly a particle moving over a plane has two degrees of freedom.
A particle moving in space has three degrees of freedom.

Suppose  if  we  have  N  number  of  gas  molecules  in  the  container,  then  the  total
number of degrees of freedom is f = 3N.

But, if the system has q number of constraints (restrictions in motion) then the
degrees of freedom decreases and it is equal to f = 3N-q where N is the number of
particles.

Monoatomic molecule



A monoatomic molecule by virtue of its nature has only three translational degrees
of freedom.

Therefore f = 3

Example: Helium, Neon, Argon

Diatomic molecule

There are two cases.
1. At Normal temperature

A molecule of a diatomic gas consists of two atoms bound to each other by a force
of  attraction.  Physically  the  molecule  can  be  regarded  as  a  system  of  two  point
masses fixed at the ends of a massless elastic spring.
The center of mass lies in the center of the diatomic molecule. So, the motion of the
center of mass requires three translational degrees of freedom. In addition, the
diatomic molecule can rotateabout three mutually perpendicular axes. But the
moment  of  inertia  about  its  own axis  of  rotation is  negligible  (about  y  axis  in  the
figure 9.5). Therefore, it has only two rotational degrees of freedom (one rotation is
about Z axis and another rotation is about X axis). Therefore totally there are five
degrees of freedom.

f = 5
2. At High Temperature

At  a  very  high  temperature  such  as  5000  K,  the  diatomic  molecules  possess
additional two degrees of freedom due to vibrational motion[one due to kinetic
energy of vibration and the other is due to potential energy] (Figure 9.5c). So totally
there are seven degrees of freedom.

f = 7

Examples: Hydrogen, Nitrogen, Oxygen.

Triatomic molecules

There are two cases.
Linear triatomic molecule

In this type, two atoms lie on either side of the central atom.



Linear triatomic molecule has three translational degrees of freedom. It has two
rotational degrees of freedom because it is similar to diatomic molecule except
there is an additional atom at the center. At normal temperature, linear triatomic
molecule will have five degrees of freedom. At high temperature it has two
additional vibrational degrees of freedom. So a linear triatomic molecule has seven
degrees of freedom.

Non-linear triatomic molecule

In this case, the three atoms lie at the vertices of a triangle.
It has three translational degrees of freedom and three rotational degrees of
freedom about three mutually orthogonal axes. The total degrees of freedom,
f = 6

Example: Water, Sulphurdioxide.

LAW OF EQUIPARTITION OF ENERGY

That  the  average  kinetic  energy  of  a  molecule  moving  in  x  direction  is ૚
૛

࢞࢜࢓
૛ =

૚
૛

.ࢀ࢑

Similarly, then the motion is in y direction ૚
૛

࢟࢜࢓
૛ = ૚

૛
and ࢀ࢑  and  for  the  motion

along z direction, ૚
૛

ࢠ࢜࢓
૛ = ૚

૛
.ࢀ࢑

According to  kinetic  theory,  the  average  kinetic  energy of  system of  molecules  in
thermal equilibrium at temperature T is uniformly distributed to all degrees of
freedom (x or y or z directions of motion) so that each degree of freedom will  get
૚
૛

.of energy. This is called law of equipartition of energy ࢀ࢑

Average kinetic energy of a monatomic molecule ࢎ࢚࢏࢝) = ࢌ ૜) = ૜ × ૚
૛

ࢀ࢑ = ૜
૛

ࢀ࢑

Average kinetic energy of diatomic molecule at low temperature (࢝ࢎ࢚࢏ = ࢌ ૞) =
૞ × ૚

૛
ࢀ࢑ = ૞

૛
ࢀ࢑

Average kinetic energy of diatomic molecule at high temperature ࢎ࢚࢏࢝) ࢌ = ૠ) =
ૠ × ૚

૛
ࢀ࢑ = ૠ

૛
ࢀ࢑

Average kinetic energy of linear triatomic molecule ࢎ࢚࢏࢝) ࢌ = ૠ) = ૠ × ૚
૛

ࢀ࢑ = ૠ
૛

ࢀ࢑



Average kinetic energy of non linear triatomic molecule ࢎ࢚࢏࢝) ࢌ = ૟) = ૟ × ૚
૛

ࢀ࢑ =
૜ࢀ࢑

Application of law of equipartition energy in specific heat of a gas

Meyer’s relation CP − CV =  R  connects  the  two  specific  heats  for  one  mole  of  an
ideal gas.

Equipartition law of energy is used to calculate the value of CP − CV and the ratio
between them ࢟ = ࡼ࡯

ࢂ࡯
  Here γ is called adiabatic exponent.

i) Monatomic molecule

Average kinetic energy of a molecule

൤
૜
૛

൨ࢀ࢑

Total energy of a mole of gas

=
૜
૛

ࢀ࢑ × ࡭ࡺ =
૜
૛

ࢀࡾ

For one mole, the molar specific heat at constant volume

ࢂ࡯ =
ࢁࢊ
ࢀࢊ

=
ࢊ

ࢀࢊ
൤
૜
૛

൨ࢀࡾ

ࢂ࡯ = ൤
૜
૛

൨ࡾ

ࡼ࡯ = ࢜࡯ + ࡾ =
૜
૛

ࡾ + ࡾ =
૞
૛

ࡾ

The ratio of specific heats,

ࢽ =
ࡼ࡯

ࡼ࡯
=

૞
૛

ࡾ
૜
૛

ࡾ
=

૞
૜

= ૚. ૟ૠ

ii) Diatomic molecule
Average kinetic energy of a diatomic molecule at low temperature = ૞

૛
ࢀ࢑

Total energy of one mole of gas = ૞
૛

ࢀ࢑ × ࡭ࡺ = ૞
૛

ࢀࡾ

(Here, the total energy is purely kinetic)



For one mole Specific heat at constant volume

ࡼ࡯ =
ࢁࢊ
ࢀࢊ

= ൤
૞
૛

൨ࢀࡾ =
૞
૛

ࡾ

࢚࢛࡮ ࡼ࡯ = ࢂ࡯ + ࡾ =
૞
૛

ࡾ + ࡾ =
ૠ
૛

ࡾ

∴ ࢽ =
ࡼ࡯

ࢂ࡯
=

ૠ
૛

ࡾ
૞
૛

ࡾ
= ૠ

૞ൗ = ૚. ૝૙

Energy of a diatomic molecule at high temperature is equal to ૠ
૛

ࢀࡾ

ࢂ࡯ =
ࢁࢊ
ࢀࢊ

= ൤
ૠ
૛

൨ࢀࡾ =
ૠ
૛

ࡾ

∴ ࡼ࡯ = ࢂ࡯ + ࡾ = ૠ
૛ൗ ࡾ + ࡾ

ࡼ࡯ = ૢ
૛ൗ ࡾ

Note that the CV and CP are higher for diatomic molecules than the mono atomic
molecules. It implies that to increase the temperature of diatomic gas molecules by
1°C it require more heat energy than monoatomic molecules.

∴ ࢽ =
ࡼ࡯

ࢂ࡯
=

ૢ
૛ൗ ࡾ

ૠ
૛ൗ ࡾ

ૢ
ૠൗ = ૚. ૛ૡ

iii) Triatomic molecule

a) Linear molecule
Energy of the one mole = ૠ

૛
ࢀ࢑ × ࡭ࡺ = ૠ

૛
ࢀࡾ

ࡼ࡯ =
ࢁࢊ
ࢀࢊ

=
ࢊ

ࢀࢊ
൤
ૠ
૛

൨ࢀࡾ

ࢂ࡯ =
ૠ
૛

ࡾ

ࡼ࡯ = ࢂ࡯ + ࡾ =
ૠ
૛

ࡾ + ࡾ =
ࡾૢ
૛



∴ ࢽ =
ࡼ࡯

ࢂ࡯
=

ૢ
૛

ࡾ
ૠ
૛

ࡾ
=

ૢ
ૠ

= ૚. ૛ૡ

b) Non-linear molecule

Energy of a mole = ૟
૛

ࢀ࢑ × ࡭ࡺ = ૟
૛

ࢀࡾ = ૜ࢀࡾ

ࢂ࡯ =
ࢁࢊ
ࢀࢊ

= ૜ࡾ

ࡼ࡯ = ࢂ࡯ + ࡾ = ૜ࡾ + ࡾ = ૝ࡾ

∴ ࢽ =
ࡼ࡯

ࢂ࡯
=

૝ࡾ
૜ࡾ

=
૝
૜

= ૚. ૜૜

Note  that  according  to  kinetic  theory  model  of  gases  the  specific  heat  capacity  at
constant volume and constant pressure are independent of temperature. But in
reality it is not sure. The specific heat capacity varies with the temperature.

Find the adiabatic exponent γ for mixture of μ1 moles of monoatomic gas and μ2
moles of a diatomic gas at normal temperature (27°C).

Solution
The specific heat of one mole of a monoatomic gas ࢂ࡯ = ૜

૛
ࡾ

࢘࢕ࢌ ૚ߤ ࢋ࢒࢕࢓ ࢂ࡯
૜
૛

ࡾ૚ࣆ ࡼ࡯ =
૞
૛

ࡾ૚ࣆ

The specific heat of one mole of a diatomic gas

ࢂ࡯ =
૞
૛

ࡾ

࢘࢕ࢌ ࣆ ૛ ࢋ࢒࢕࢓ ࢂ࡯
૞
૛

૛ࣆ ࡾ ࡼ࡯ =
ૠ
૛

૛ࣆ ࡾ

The specific heat of the mixture at constant volume ࢂ࡯ = ૜
૛

ࡾ૚ࣆ + ૞
૛

ࡾ૛ࣆ

The specific heat of the mixture at constant pressureࡼ࡯ = ૞
૛

ࡾ૚ࣆ + ૠ
૛

ࡾ૛ࣆ

The adiabatic exponent = ࢽ ࡼ࡯

ࡼ࡯
= ૞ࣆ૚ାૠࣆ૛

૜ࣆ૚ା૞ࣆ૛



MEAN FREE PATH

Usually the average speed of gas molecules is several hundred meters per second
even at room temperature (27°C). Odour from an open perfume bottle takes some
time to  reach us  even if  we are  closer  to  the  room.  The time delay is  because  the
odour of the molecules cannot travel straight to us as it undergoes a lot of collisions
with the nearby air molecules and moves in a zigzag path. This average distance
travelled by the molecule between two successive collisions is called mean free
path (λ). We can calculate the mean free path based on kinetic theory.

Expression for mean free path

We know from postulates of kinetic theory that the molecules of a gas are in
random motion and they collide with each other. Between two successive
collisions, a molecule moves along a straight path with uniform velocity. This path
is called mean free path.

Consider a system of molecules each with diameter d. Let n be the number of
molecules per unit volume.
Assume that only one molecule is in motion and all others are at rest.

If a molecule moves with average speed v in atime t, the distance travelled is vt. In
this  time  t,  consider  the  molecule  to  move  in  an  imaginary  cylinder  of  volume
πd2vt. It collides with any molecule whose center is within this cylinder. Therefore,
the number of collisions is equal to the number of molecules in the volume of the
imaginary cylinder. It is equal to ૛ࢊ࣊ .࢔࢚࢜ The  total  path  length  divided  by  the
number of collisions in time t is the mean free path.

࢔ࢇࢋ࢓ ࢋࢋ࢘ࢌ ,ࢎ࢚ࢇ࢖ ࣅ =
ࢋࢉ࢔ࢇݐ࢙࢏ࢊ ࢊࢋ࢒࢒ࢋ࢜ࢇ࢚࢘

࢘ࢋ࢈࢓࢛࢔ ࢌ࢕ ࢙࢔࢕࢏࢙࢏࢒࢒࢕ࢉ

ࣅ =
࢚࢜

૛࢚࢜ࢊ࣊࢔
=

૚
૛ࢊ࣊࢔

Though  we  have  assumed  that  only  one  molecule  is  moving  at  a  time  and  other
molecules are at rest, in actual practice all the molecules are in random motion. So
the average relative speed of one molecule with respect to other molecules has to
be taken into account. After some detailed calculations (you will learn in higher
classes) the correct expression for mean free path

∴ ࣅ =
૚

√૛ࢊ࣊࢔૛



The equation implies that the mean free path is inversely proportional to number
density. When the number density increases the molecular collisions increases so it
decreases the distance travelled by the molecule before collisions.
Case1: Rearranging the equation using ‘m’ (mass of the molecule)

∴ ࣅ =
࢓

√૛࣊ࢊ૛࢔࢓

But mn=mass per unit volume = ࣋( density of the gas)

∴ ࣅ =
࢓

√૛࣊ࢊ૛࣋

Also we know that PV = NkT

࢖ =
ࡺ
ࢂ

ࢀ࢑ = ࢀ࢑࢔

∴ ࢔ =
࢖

ࢀ࢑
Substituting = ࢔ ࡼ

ࢀ࢑

ࣅ =
ࢀ࢑

√૛࣊ࢊ૛ࡼ

1. Mean free path increases with increasing temperature. As the temperature
increases, the average speed of each molecule will increase. It is the reason why the
smell of hot sizzling food reaches several meter away than smell of cold food.

2. Mean free path increases with decreasing pressure of the gas and diameter of the
gas molecules.

An  oxygen  molecule  is  travelling  in  air  at  300  K  and  1  atm,  and  the  diameter  of
oxygen molecule is ૚. ૛ × ૚૙ି૚૙࢓.  Calculate  the  mean  free  path  of  oxygen
molecule.

Solution

ࣅ =
૚

√૛࣊ࢊ࢔૛

We have to find the number density n By using ideal gas law

࢔ =
ࡺ
ࢂ

=
ࡼ

ࢀ࢑
=

1૙૚. ૜ × ૚૙૜

૚. ૜ૡ૚ × ૚૙ି૛૜ × ૜૙૙

= ૛. ૝૝ૢ × ૚૙૛૞ ૜࢓/࢙ࢋ࢛ࢉࢋ࢒࢕࢓



ࣅ =
૚

√૛ × ࣊ × ૛. ૝૝ૢ × ૚૙૛૞ × (૚. ૛ × ૚૙ି૚૙)૛

=
૚

૚૞. ૟૞ × ૚૙૞

ࣅ = ૙. ૟૜ × ૚૙ି૟࢓
BROWNIAN MOTION

In  1827,  Robert  Brown,  a  botanist  reported  that  grains  of  pollen  suspended  in  a
liquid  moves  randomly  from  one  place  to  other.  The  random  (Zig  -  Zag  path)
motion of pollen suspended in a liquid is called Brownian motion. In fact we can
observe the dust particle in water moving in random directions. This discovery
puzzled scientists for long time. There were a lot of explanations for pollen or dust
to move in random directions but none of these explanations were found adequate.
After a systematic study, Wiener and Gouy proposed that Brownian motion is due
to the bombardment of suspended particles by molecules of the surrounding fluid.
But  during  19th  century  people  did  not  accept  that  every  matter  is  made  up  of
small  atoms  or  molecules.  In  the  year  1905,  Einstein  gave  systematic  theory  of
Brownian motion based on kinetic theory and he deduced the average size of
molecules.

According  to  kinetic  theory,  any  particle  suspended  in  a  liquid  or  gas  is
continuously  bombarded  from  all  the  directions  so  that  the  mean  free  path  is
almost negligible. This leads to the motion of the particles in a random and zig–zag
manner  as  shown in  Figure  9.9.  But  when we put  our  hand in  water  it  causes  no
random  motion  because  the  mass  of  our  hand  is  so  large  that  the  momentum
transferred by the molecular collision is not enough to move our hand.

Factors affecting Brownian Motion

Brownian motion increases with increasing temperature.

1. Brownian motion decreases with bigger particle size, high
viscosity and density of the liquid (or) gas.



 UNIT - 10 OSCILLATIONS

INTRODUCTION

Have you seen the Thanjavur Dancing Doll (In Tamil, it is called ‘Thanjavur
thalayattibommai’)?. It is a world famous Indiancultural doll (Figure 10.1). What
does this doll do when disturbed? It will dance such that the head and body move
continuously in a to and fro motion, until the movement gradually stops. Similarly,
when we walk  on the  road,  our  hands and legs  will  move front  and back.  Again
similarly,  when  a  mother  swings  a  cradle  to  make  her  child  sleep,  the  cradle  is
made  to  move  in  to  and  fro  motion.  All  these  motions  are  diff  erent  from  the
motion  that  we  have  discussed  so  far.  Th  ese  motions  are  shown  in  Figure  10.2.
Generally,  they  are  known  as  oscillatory  motion  or  vibratory  motion.  A  similar
motion occurs even at atomic levels. When the temperature is raised, the atoms in a
solid vibrate about their rest position (mean position or equilibrium position). Th e
study of vibrational motion is very important in engineering applications, such as,
designing the structure of building, mechanical equipments, etc.

Periodic and nonperiodic motion

Motion in physics can be classified as repetitive (periodic motion) and non-
repetitive (non-periodic motion).

Periodic motion

Any motion which repeats itself in a fixed time interval is known as periodic
motion.

Examples : Hands in pendulum clock, swing of a cradle, the revolution of the Earth
around the Sun, waxing and waning of Moon, etc.

Non-Periodic motion

Any  motion  which  does  not  repeat  itself  after  a  regular  interval  of  time  is
known as non-periodic motion.

Example : Occurance of Earth quake, eruption of volcano, etc.

E X A M P L E



Classify the following motions as periodic and non-periodic motions?.

a. Motion of Halley’s comet.
b. Motion of clouds.
c. Moon revolving around the Earth

Solution

a. Periodic motion
b. Non-periodic motion
c. Periodic motion

E X A M P L E

Which of the following functions of time represent periodic and non-periodic
motion?.

a. sin ωt + cos ωt
b. ln ωt

Solution

a. Periodic
b. Non-periodic

Oscillatory motion

When  an  object  or  a  particle  moves  back  and  forth  repeatedly  for  some
duration of time its motion is said to be oscillatory (or vibratory). Examples; our
heart beat, swinging motion of the wings of an insect, grandfather’s clock
(pendulum clock), etc. Note that all oscillatory motion are periodic whereas all
periodic motions need not be oscillation in nature. see Figure 10.3

SIMPLE HARMONIC MOTION (SHM)

Simple harmonic motion is a special type of oscillatory motion in which the
acceleration or force on the particle is directly proportional to its displacement
from  a  fixed  point  and  is  always  directed  towards  that  fixed  point.  In  one
dimensional case, let x be the displacement of the particle and ax be the acceleration
of the particle, then



where b is a constant which measures acceleration per unit displacement and
dimensionally  it  is  equal  to  T−2.  By  multiplying  by  mass  of  the  particle  on  both
sides of equation (10.2) and from Newton’s second law, the force is

where k is a force constant which is defined as force per unit length. The negative
sign  indicates  that  displacement  and  force  (or  acceleration)  are  in  opposite
directions. This means that when the displacement of the particle is taken towards
right of equilibrium position (x takes positive value), the force (or acceleration) will
point towards equilibrium (towards left ) and similarly, when the displacement of
the  particle  is  taken towards  left  of  equilibrium position (x  takes  negative  value),
the force (or acceleration) will point towards equilibrium (towards right). This type
of force is known as restoring force because it always directs the particle executing
simple  harmonic  motion  to  restore  to  its  original  (equilibrium  or  mean)  position.
This force (restoring force) is central and attractive whose center of attraction is the
equilibrium position.

In order to represent in two or three dimensions,  we can write using vector
notation

where r
r

the displacement of the particle from the chosen origin. Note that the force
and displacement have a linear relationship. This means that the exponent of force
F
ur

and  the  exponent  of  displacement r
r

are  unity.  The  sketch  between  cause
(magnitude of force F

ur
) and effect (magnitude of displacement r

r
) is a straight line

passing  through  second  and  fourth  quadrant  as  shown  in.  By  measuring  slope 1
k

one can find the numerical value of force constant k.

The projection of uniform circular motion on a diameter of SHM

Consider  a  particle  of  mass  m  moving  with  uniform  speed  v  along  the
circumference of a circle whose radius is r in anti-clockwise direction (as shown in
Figure 10.6). Let us assume that the origin of the coordinate system coincides with
the  center  O  of  the  circle.  If  ω is  the  angular  velocity  of  the  particle  and  θ the



angular  displacement  of  the  particle  at  any  instant  of  time  t,  then  θ  =  ωt.  By
projecting  the  uniform  circular  motion  on  its  diameter  gives  a  simple  harmonic
motion.  This  means  that  we  can  associate  a  map  (or  a  relationship)  between
uniform  circular  (or  revolution)  motion  to  vibratory  motion.  Conversely,  any
vibratory motion or revolution can be mapped to uniform circular motion. In other
words, these two motions are similar in nature.

Let  us  first  project  the  position  of  a  particle  moving  on  a  circle,  on  to  its
vertical  diameter  or  on  to  a  line  parallel  to  vertical  diameter  as  shown  in  Figure
10.7. Similarly, we can do it for horizontal axis or a line parallel to horizontal axis.

As  a  specific  example,  consider  a  spring  mass  system  (or  oscillation  of
pendulum)  as  shown  in  Figure  10.8.  When  the  spring  moves  up  and  down  (or
pendulum moves to and fro), the motion of the mass or bob is mapped to points on
the circular motion.

Thus,  if  a  particle  undergoes  uniform circular  motion then the  projection of
the  particle  on  the  diameter  of  the  circle  (or  on  a  line  parallel  to  the  diameter  )
traces straight line motion which is simple harmonic in nature. The circle is known
as reference circle of the simple harmonic motion. The simple harmonic motion can
also  be  defined as  the  motion of  the  projection of  a  particle  on any diameter  of  a
circle of reference.

Displacement, velocity, acceleration and its graphical representation – SHM

The distance travelled by the vibrating particle at  any instant of time t  from
its mean position is known as displacement. Let P be the position of the particle on
a  circle  of  radius  A  at  some  instant  of  time  t  as  shown  in  Figure  10.9.  Then  its
displacement y at that instant of time t can be derived as follows In ΔOPN

The  displacement  y  takes  maximum  value  (which  is  equal  to  A)  when  sin
ωt=1.This  maximum displacement  from the  mean positionis  known as  amplitude
(A)  of  the  vibrating  particle.  For  simple  harmonic  motion,  the  amplitude  is
constant.  But,  in  general,  for  any  motion  other  than  simple  harmonic,  the
amplitude need not be constant, it may vary with time.

Velocity



The rate of change of displacement is velocity. Taking derivative of equation
(10.6) with respect to time, we get

For  circular  motion  (of  constant  radius),  amplitude  A  is  a  constant  and
further, for uniform circular motion, angular velocity ω is a constant. Therefore,

Using trigonometry identity,

From equation (10.6),

From  equation  (10.8),  when  the  displacement  y  =  0,  the  velocity  v  =  ωA
(maximum)  and  for  the  maximum  displacement  y  =  A,  the  velocity  v  =  0
(minimum).

As  displacement  increases  from  zero  to  maximum,  the  velocity  decreases
from maximum to zero. This is repeated.

Since  velocity  is  a  vector  quantity,  equation  (10.7)  can  also  be  deduced  by
resolving in to components.

Acceleration

The rate of change of velocity is acceleration.



From the Table 10.1 and figure 10.10, we observe that at the mean position

(y = 0), velocity of the particle is maximum but the acceleration of the particle
is zero. At the extreme position (y = ±A), the velocity of the particle is zero but the
acceleration is maximum ±Aω2 acting in the opposite direction.

E X A M P L E

Which of the following represent simple harmonic motion?

a. x = A sin ωt + B cos ωt
b. x = A sin ωt+ B cos 2ωt
c. x = A eiωt

d. x = A ln ωt

Solution

a. x = A sin ωt + B cos ωt



This  differential  equation  is  similar  to  the  differential  equation  of  SHM
(equation 10.10). Therefore, x = A sin ωt + B cos ωt represents SHM.

b. x =A sin ωt + B cos2ωt

This  differential  equation  is  not  like  the  differential  equation  of  a  SHM
(equation 10.10). Therefore, x = A sin ωt + B cos 2ωt does not represent SHM.

c. x = A eiωt

This  differential  equation  is  like  the  differential  equation  of  SHM  (equation
10.10). Therefore, x = A eiωt represents SHM.

d. x = A ln ωt



This  differential  equation  is  not  like  the  differential  equation  of  a  SHM
(equation 10.10). Therefore, x = A ln ωt does not represent SHM.

E X A M P L E

Consider a particle undergoing simple harmonic motion. The velocity of the
particle at position x1 is v1 and velocity of the particle at position x2 is v2. Show that
the ratio of time period and amplitude is

Solution

Therefore, at position x1,

Similarly, at position x2,



Time period, frequency, phase, phase difference and epoch in SHM.
Time period

The  time  period  is  defined  as  the  time  taken  by  a  particle  to  complete  one
oscillation. It is usually denoted by T. For one complete revolution, the time taken
is t = T, therefore

Then,  the  displacement  of  a  particle  executing  simple  harmonic  motion  can
be written either as sine function or cosine function.

where T represents the time period. Suppose the time t is replaced by t + T,
then the function

Thus,  the  function  repeats  after  one  time  period.  This  y(t)  is  an  example  of
periodic function.

Frequency and angular frequency

The  number  of  oscillations  produced  by  the  particle  per  second  is  called
frequency. It  is  denoted by f.  SI  unit  for frequency is  s−1 or hertz (In symbol,  Hz).
Mathematically, frequency is related to time period by

The number of cycles (or revolutions) per second is called angular frequency.
It  is  usually  denoted  by  the  Greek  small  letter  ‘omega’,  ω.  Comparing  equation
(10.11) and equation (10.12), angular frequency and frequency are related by



SI unit for angular frequency is rad s−1. (read it as radian per second)

Phase

The phase of a vibrating particle at any instant completely specifies the state
of  the  particle.  It  expresses  the  position  and direction  of  motion of  the  particle  at
that instant with respect to its mean position (Figure 10.11).

where ωt + φ0 = φ is called the phase of the vibrating particle. At time t = 0 s
(initial time), the phase φ = φ0 is called epoch (initial phase) where φ0 is called the
angle of epoch. Phase difference: Consider two particles executing simple harmonic
motions. Their equations are y1 = A sin(ωt + φ1) and y2 = A sin(ωt + φ2), then the
phase difference Δφ= (ωt + φ2) − (ωt + φ1) = φ2 −φ1.

E X A M P L E

A  nurse  measured  the  average  heart  beats  of  a  patient  and  reported  to  the
doctor in terms of time period as 0.8 s. Express the heart beat of the patient in terms
of number of beats measured per minute.

Solution

Let  the  number  of  heart  beats  measured  be  f.  Since  the  time  period  is
inversely proportional to the heart beat, then

One minute is 60 second,

E X A M P L E



Calculate the amplitude, angular frequency, frequency, time period and
initial phase for the simple harmonic oscillation given below

a. y = 0.3 sin (40πt + 1.1)
b. y = 2 cos (πt)
c. y = 3 sin (2πt − 1.5)

Solution

Simple harmonic oscillation equation is y = A sin(ωt + φ0) or y =A cos(ωt + φ0)

a. For the wave, y = 0.3 sin(40p t +1.1)
Amplitude is A = 0.3 unit
Angular frequency ω = 40p  rad s−1

Frequency
40 20

2 2
f Hzw p

p p
= = =

Time period 1 1 0.05
20

T s
f

= = =

Initial phase is φ0 = 1.1 rad

b. For the wave, y = 2 cos (p t)
Amplitude is A = 2 unit
Angular frequency ω =p  rad s−1

Frequency 0.5
2 2

f Hzw p
p p

= = =

Time period
1 1 2

0.5
T s

f
= = =

Initial phase is φ0 = 0 rad

c. For the wave, y = 3 sin(2p t + 1.5)
Amplitude is A = 3 unit
Angular frequency ω = 2p  rad s−1

Frequency
2 1

2 2
f Hzw p

p p
= = =

Time period
1 1 1

1
T s

f
= = =

Initial phase is φ0 = 1.5 rad

E X A M P L E

Show that for a simple harmonic motion, the phase difference between



a. displacement and velocity is
2
p  radian or 90°.

b. velocity and acceleration is
2
p radian or 90

c. displacement and acceleration isp radian or 180°.

Solution

a. The displacement of the particle executing simple harmonic motion y=A
sinωt
Velocity of the particle is

cos sin
2

v A t A t pw w w wæ ö= = +ç ÷
è ø

The phase difference between displacement and velocity is
2
p

b. The velocity of the particle is v = A ω cos ωt
Acceleration of the particle is

2 2sin cos
2

a A t A t p
w w w wæ ö= - = +ç ÷

è ø

The phase difference between velocity and acceleration is
2
p

c. The displacement of the particle is y = A sinωt
Acceleration of the particle is

2 2sin sin( )a A t A tw w w w p= - = +
The phase difference between displacement and acceleration is p .

ANGULAR SIMPLE HARMONIC MOTION
Time period and frequency of angular SHM

When a body is allowed to rotate freely about a given axis then the oscillation
is known as the angular oscillation. The point at which the resultant torque acting
on  the  body  is  taken  to  be  zero  is  called  mean  position.  If  the  body  is  displaced
from the mean position, then the resultant torque acts such that it is proportional to
the angular displacement and this torque has a tendency to bring the body towards
the mean position. (Note: Torque is explained in unit 5)

Letq
r

be the angular displacement of the body and the resultant torque t
r

acting on the body is



K  is  the  restoring  torsion  constant,  which  is  torque  per  unit  angular
displacement.  If  I  is  the  moment  of  inertia  of  the  body  and a

ur
 is  the  angular

acceleration then

But
2

2

d
dt

qa =
r

ur
and therefore,

This differential equation resembles simple harmonic differential equation.
So,  comparing  equation  (10.17)  with  simple  harmonic  motion  given  in

equation (10.10), we have

The frequency of the angular harmonic motion (from equation 10.13) is

The time period (from equation 10.12) is

Comparison of Simple Harmonic Motion and Angular Simple Harmonic Motion

In  linear  simple  harmonic  motion,  the  displacement  of  the  particle  is

measured in terms of linear displacement r
r

The restoring force is F k r= -
ur r

, where
k is a spring constant or force constant which is force per unit displacement. In this
case, the inertia factor is mass of the body executing simple harmonic motion.



In  angular  simple  harmonic  motion,  the  displacement  of  the  particle  is

measured  in  terms  of  angular  displacementq
r

.  Here,  the  spring  factor  stands  for
torque  constant  i.e.,  the  moment  of  the  couple  to  produce  unit  angular
displacement  or  the  restoring  torque  per  unit  angular  displacement.  In  this  case,
the inertia factor stands for moment of inertia of the body executing angular simple
harmonic oscillation.

LINEAR SIMPLE HARMONIC OSCILLATOR (LHO)
Horizontal oscillationsof a spring-mass system

Consider a system containing a block of mass m attached to a massless spring
with  stiffness  constant  or  force  constant  or  spring constant  k  placed on a  smooth
horizontal  surface  (frictionless  surface)  as  shown  in  Figure  10.13.  Let  x0 be  the
equilibrium  position  or  mean  position  of  mass  m  when  it  is  left  undisturbed.
Suppose the mass is displaced through a small displacement x towards right from
its equilibrium position and then released, it will oscillate back and forth about its
mean position x0. Let F be the restoring force (due to stretching of the spring) which
is  proportional  to  the  amount  of  displacement  of  block.  For  one  dimensional
motion, mathematically, we have



where negative sign implies that the restoring force will always act opposite
to  the  direction of  the  displacement.  This  equation is  called Hooke’s  law (refer  to
unit  7).  Notice  that,  the  restoring  force  is  linear  with  the  displacement  (i.e.,  the
exponent of force and displacement are unity). This is not always true; in case if we
apply a very large stretching force, then the amplitude of oscillations becomes very
large  (which  means,  force  is  proportional  to  displacement  containing  higher
powers of x) and therefore, the oscillation of the system is not linear and hence, it is
called  non-linear  oscillation.  We  restrict  ourselves  only  to  linear  oscillations
throughout  our  discussions,  which  means  Hooke’s  law  is  valid  (force  and
displacement have a linear relationship).

From  Newton’s  second  law,  we  can  write  the  equation  for  the  particle
executing simple harmonic motion

Comparing  the  equation  (10.21)  with  simple  harmonic  motion  equation
(10.10), we get

which means the angular frequency or natural frequency of the oscillator is

The frequency of the oscillation is

and the time period of the oscillation is



Notice  that  in  simple  harmonic  motion,  the  time  period  of  oscillation  is
independent of amplitude. This is valid only if the amplitude of oscillation is small.
The solution of the differential equation of a SHM may be written as

or

where A, ω and ϕ  are constants. General solution for differential equation 10.21 is
x(t) = A sin(ωt +φ)+ B cos(ωt +φ) where A and B are contants.

Vertical oscillations of a spring

Let us consider a massless spring with stiff ness constant or force constant k
attached to a ceiling as shown in Figure 10.15.  Let the length of the spring before
loading mass m be L. If the block of mass m is attached to the other end of spring,
then  the  spring  elongates  by  a  length  l.  Let  F1  be  the  restoring  force  due  to
stretching  of  spring.  Due  to  mass  m,  the  gravitational  force  acts  vertically
downward.  We  can  draw  free-body  diagram  for  this  system  as  shown  in  Figure
10.15. When the system is under equilibrium,

But the spring elongates by small displacement l, therefore

Substituting equation (10.28) in equation (10.27), we get



Suppose we apply a very small external force on the mass such that the mass
further  displaces  downward  by  a  displacement  y,  then  it  will  oscillate  up  and
down. Now, the restoring force due to this stretching of spring (total extension of
spring is y + l ) is

Since,  the  mass  moves  up  and  down  with  acceleration
2

2

d y
dt

 by  drawing  the  free

body diagram for this case, we get

The net force acting on the mass due to this stretching is

The  gravitational  force  opposes  the  restoring  force.  Substituting  equation
(10.29) in equation (10.32), we get

Applying Newton’s law, we get

The above equation is  in  the  form of  simple  harmonic  differential  equation.
Therefore, we get the time period as

The time period can be rewritten using equation (10.29)



The acceleration due to gravity g can be computed from the formula

E X A M P L E

A spring balance has a scale which ranges from 0 to 25 kg and the length of
the scale is 0.25m. It is taken to an unknown planet X where the acceleration due to
gravity is 11.5 m s−1. Suppose a body of mass M kg is suspended in this spring and
made to oscillate with a period of 0.50 s. Compute the gravitational force acting on
the body.

Solution

Let  us  first  calculate  the  stiff  ness  constant  of  the  spring  balance  by  using
equation (10.29),

The time period of oscillations is  given by 2 MT
k

p=  where M is the mass of

the body. Since, M is unknown, rearranging, we get

The gravitational force acting on the body is W = Mg = 7.3 × 11.5 = 83.95 N ≈
84 N

Combinations of springs

Spring  constant  or  force  constant,  also  called  as  stiffness  constant,  is  a
measure of the stiffness of the spring. Larger the value of the spring constant, stiffer
is  the  spring.  This  implies  that  we  need  to  apply  more  force  to  compress  or
elongate the spring. Similarly, smaller the value of spring constant, the spring can
be stretched (elongated) or compressed with lesser force. Springs can be connected



in two ways. Either the springs can be connected end to end, also known as series
connection, or alternatively, connected in parallel. In the following subsection, we
compute the effective spring constant when

a. Springs are connected in series
b. Springs are connected in parallel

Springs connected in series

When  two  or  more  springs  are  connected  in  series,  we  can  replace  (by
removing)  all  the  springs  in  series  with  an  equivalent  spring  (effective  spring)
whose net effect is the same as if all the springs are in series connection. Given the
value of individual spring constants k1, k2, k3,... (known quantity), we can establish
a mathematical relationship to find out an effective (or equivalent) spring constant
ks  (unknown  quantity).  For  simplicity,  let  us  consider  only  two  springs  whose
spring constant are k1 and k2 and which can be attached to a mass m as shown in
Figure  10.17.  The  results  thus  obtained  can  be  generalized  for  any  number  of
springs in series.

Let F be the applied force towards right as shown in Figure 10.18.  Since the
spring  constants  for  different  spring  are  different  and  the  connection  points
between them is not rigidly fixed, the strings can stretch in different lengths. Let x1
and x2  be  the  elongation  of  springs  from their  equilibrium position  (un-stretched
position) due to the applied force F. Then, the net displacement of the mass point is

For springs in series connection

Therefore,  substituting  equation  (10.39)  in  equation  (10.38),  the  effective
spring constant can be calculated as



Suppose we have n springs connected in series, the effective spring constant
in series is

This means that the effective spring constant reduces by the factor n. Hence,
for  springs  in  series  connection,  the  effective  spring  constant  is  lesser  than  the
individual spring constants.

From equation (10.39), we have,

k1x1 = k2x2

Then the ratio of compressed distance or elongated distance x1 and x2 is

The  elastic  potential  energy  stored  in  first  and  second  springs  are 2
1 1 1

1
2

V k x=  and

2
2 2 2

1
2

V k x= respectively. Then, their ratio is



E X A M P L E

Consider two springs whose force constants are 1 N m−1 and 2 N m−1 which
are  connected in  series.  Calculate  the  effective  spring constant  (ks )  and comment
on ks.

Solution

Therefore, the effective spring constant is lesser than both k1 and k2.

Springs connected in parallel

When  two  or  more  springs  are  connected  in  parallel,  we  can  replace  (by
removing) all these springs with an equivalent spring (effective spring) whose net
effect  is  same  as  if  all  the  springs  are  in  parallel  connection.  Given  the  values  of
individual spring constants to be k1,k2,k3, ... (known quantities), we can establish a
mathematical relationship to find out an effective (or equivalent) spring constant kp

(unknown  quantity).  For  simplicity,  let  us  consider  only  two  springs  of  spring
constants k1and k2  attached to a mass m as shown in Figure 10.19. The results can
be generalized to any number of springs in parallel

Let the force F be applied towards right as shown in Figure 10.20. In this case,
both  the  springs  elongate  or  compress  by  the  same  amount  of  displacement.
Therefore, net force for the displacement of mass m is

where kp is called effective spring constant. Let the first spring be elongated
by a  displacement  x  due  to  force  F1 and second spring be  elongated by the  same
displacement x due to force F2, then the net force



Equating equations (10.46) and (10.45), we get

Generalizing, for n springs connected in parallel,

If all spring constants are identical i.e., k1 = k2= ... = kn = k then

kp = n k

This implies that the effective spring constant increases by a factor n. Hence,
for the springs in parallel  connection,  the effective spring constant is  greater than
individual spring constant.

E X A M P L E

Consider two springs with force constants 1 N m−1 and 2 N m−1 connected in
parallel. Calculate the effective spring constant (kp) and comment on kp.

Solution

Therefore, the effective spring constant is greater than both k1 and k2.

E X A M P L E

Calculate  the  equivalent  spring  constant  for  the  following  systems  and  also
compute if all the spring constants are equal:

Solution



a. Since  k1 and  k2 are  parallel,  ku =  k1 +  k2  Similarly,  k3 and  k4  are  parallel,
therefore, kd = k3 + k4But ku and kd are in series,

therefore, u d
eq

u d

k kk
k k

=
+ If all the spring constants are equal then, k1 = k2 = k3 =

k4 = k
Which means, ku = 2k and kd = 2k

Hence,
24

4eq
kk k
k

= =

b. Since  k1 and  k2  are  parallel,  kA =  k1 +  k2  Similarly,  k4 and  k5  are  parallel,
therefore, kB = k4 + k5 But kA, k3, kB, and k6 are in series,
therefore,

If all the spring constants are equal then, k1 = k2 = k3 = k4 = k5 = k6 = k which
means, kA = 2k and kB = 2k

E X A M P L E

A mass m moves with a speed v on a horizontal smooth surface and collides
with  a  nearly  massless  spring  whose  spring  constant  is  k.  If  the  mass  stops  after
collision, compute the maximum compression of the spring.

Solution

When  the  mass  collides  with  the  spring,  from  the  law  of  conservation  of
energy  “the  loss  in  kinetic  energy  of  mass  is  gain  in  elastic  potential  energy  by
spring”.



Let x be the distance of compression of spring, then the law of conservation
of energy

Oscillations of a simple pendulum in SHM and laws of simple pendulum
Simple pendulum

A pendulum is a mechanical system which exhibits periodic motion. It has a
bob  with  mass  m  suspended  by  a  long  string  (assumed  to  be  massless  and
inextensible string) and the other end is fixed on a stand as shown in Figure 10.21
(a).  At  equilibrium,  the  pendulum  does  not  oscillate  and  hangs  vertically
downward.  Such  a  position  is  known  as  mean  position  or  equilibrium  position.
When a pendulum is displaced through a small displacement from its equilibrium
position and released, the bob of the pendulum executes to and fro motion. Let l be
the  length  of  the  pendulum  which  is  taken  as  the  distance  between  the  point  of
suspension and the  centre  of  gravity  of  the  bob.  Two forces  act  on the  bob of  the
pendulum at any displaced position, as shown in the Figure 10.21 (d),

1. The gravitational force acting on the body ( )F mg=
ur ur

 which acts vertically
downwards.

2. The  tension  in  the  stringT
ur

which  acts  along  the  string  to  the  point  of
suspension

Resolving the gravitational force into its components:

Normal component:

The component along the string but in opposition to the direction of tension,
Fas = mg cosθ.

Tangential component:

The component perpendicular to the string i.e.,  along tangential  direction of
arc of swing, Fps = mg sinθ.
Therefore, The normal component of the force is, along the string,



From the Figure 10.21, we can observe that the tangential component Wps of
the  gravitational  force  always  points  towards  the  equilibrium  position  i.e.,  the
direction in which it always points opposite to the direction of displacement of the
bob from the mean position. Hence, in this case, the tangential force is nothing but
the restoring force.  Applying Newton’s second law along tangential  direction,  we
have

where,  s  is  the position of bob which is  measured along the arc.  Expressing
arc length in terms of angular displacement i.e.,

then its acceleration,

Substituting equation (10.53) in equation (10.51), we get

Because of the presence of sin θ in the above differential equation, it is a non-
linear differential equation (Here, homogeneous second order). Assume “the small
oscillation approximation”, sin θ ≈ θ, the above differential equation becomes linear
differential equation.



This  is  the  well  known  oscillatory  diff  erential  equation.  Therefore,  the
angular frequency of this oscillator (natural frequency of this system) is

The frequency of oscillations is

and time period of oscillations is

Laws of simple pendulum

The time period of a simple pendulum

a. Depends on the following laws
Law of length

For a given value of acceleration due to gravity, the time period of a simple
pendulum  is  directly  proportional  to  the  square  root  of  length  of  the
pendulum.

Law of acceleration

For  a  fi  xed  length,  the  time  period  of  a  simple  pendulum  is  inversely
proportional to square root of acceleration due to gravity.



b. Independent of the following factors
Mass of the bob

Th  e  time  period  of  oscillation  is  independent  of  mass  of  the  simple
pendulum.  This  is  similar  to  free  fall.  Therefore,  in  a  pendulum  of  fixed
length, it does not matter whether an elephant swings or an ant swings. Both
of them will swing with the same time period.

Amplitude of the oscillations

For  a  pendulum  with  small  angle  approximation  (angular  displacement  is
very small), the time period is independent of amplitude of the oscillation.

E X A M P L E

In simple pendulum experiment,  we have used small  angle approximation .
Discuss the small angle approximation.

For θ in radian, sin θ ≈ θ for very small angles



This  means  that  “for  θ as  large  as  10  degrees,  sin  θ is  nearly  the  same  as  θ
when  θ is  expressed  in  radians”.  As  θ increases  in  value  sinθ gradually  becomes
different from θ

Pendulum length due to effect of temperature

Suppose  the  suspended  wire  is  affected  due  to  change  in  temperature.  The
rise in temperature affects length by

where  lo  is  the  original  length  of  the  wire  and  l  is  final  length  of  the  wire
when the temperature is raised. Let Δt is the change in temperature and α is the co-
efficient of linear expansion.

where ΔT is the change in time period due to the effect of temperature and T0

is the time period of the simple pendulum with original length l0.

E X A M P L E

If  the  length  of  the  simple  pendulum  is  increased  by  44%  from  its  original
length, calculate the percentage increase in time period of the pendulum.

Solution

Since



Therefore,

Therefore, Tf = 1.2 Ti = Ti + 20% Ti

Oscillation of liquid in a U-tube:

Consider  a  U-shaped  glass  tube  which  consists  of  two  open  arms  with
uniform crosssectional  area  A.  Let  us  pour  a  non-viscous  uniform incompressible
liquid of density ρ in the U-shaped tube to a height h as shown in the Figure 10.22.
If  the  liquid  and  tube  are  not  disturbed  then  the  liquid  surface  will  be  in
equilibrium  position  O.  It  means  the  pressure  as  measured  at  any  point  on  the
liquid  is  the  same  and  also  at  the  surface  on  the  arm  (edge  of  the  tube  on  either
side), which balances with the atmospheric pressure. Due to this the level of liquid
in each arm will be the same. By blowing air one can provide sufficient force in one
arm, and the liquid gets disturbed from equilibrium position O, which means, the
pressure  at  blown  arm  is  higher  than  the  other  arm.  This  creates  difference  in
pressure  which will  cause  the  liquid to  oscillate  for  a  very  short  duration of  time
about the mean or equilibrium position and finally comes to rest.

Time period of the oscillation is

ENERGY IN SIMPLE HARMONIC MOTION

a. Expression for Potential Energy

For  the  simple  harmonic  motion,  the  force  andthe  displacement  are  related
by Hooke’s law



Since force is a vector quantity, in three dimensions it has three components.
Further,  the  force  in  the  above equation is  a  conservative  force  field;  such a
force can be derived from a scalar function which has only one component. In
one dimensional case

As  we  have  discussed  in  unit  4  of  volume  I,  the  work  done  by  the
conservative force field is independent of path. The potential energy U can be
calculated from the following expression.

Comparing (10.63) and (10.64), we get

This  work  done  by  the  force  F  during  a  small  displacement  dx  stores  as
potential energy

From equation (10.22), we can substitute the value of force constant k = m ω2
in equation (10.65),

where  ω  is  the  natural  frequency  of  the  oscillating  system.  For  the  particle
executing simple harmonic motion from equation (10.6), we get

x = A sin ωt

b. Expression for Kinetic Energy
Kinetic energy

Since the particle is executing simple harmonic motion, from equation (10.6)



x = A sin ωt
Therefore, velocity is

Hence,

c. Expression for Total Energy

Total energy is the sum of kinetic energy and potential energy

Hence, cancelling x2 term,

Alternatively,  from  equation  (10.67)  and  equation  (10.72),  we  get  the  total
energy as

From trigonometry identity, (sin2 ωt + cos2 ωt) = 1

Thus the amplitude of simple harmonic oscillator, can be expressed in terms
of total energy.



E X A M P L E

Write down the kinetic energy and total energy expressions in terms of linear
momentum, For one-dimensional case.

Solution

Kinetic energy is
21

2 xKE mv=

Multiply numerator and denominator by m

where, px is the linear momentum of the particle executing simple harmonic
motion.

Total  energy  can  be  written  as  sum  of  kinetic  energy  and  potential  energy,
therefore, from equation (10.73) and also from equation (10.75), we get

E X A M P L E

Compute  the  position  of  an  oscillating  particle  when  its  kinetic  energy  and
potential energy are equal.

Solution

Since  the  kinetic  energy  and  potential  energy  of  the  oscillating  particle  are
equal,



TYPES OF OSCILLATIONS:
Free oscillations

When  the  oscillator  is  allowed  to  oscillate  by  displacing  its  position  from
equilibrium  position,  it  oscillates  with  a  frequency  which  is  equal  to  the  natural
frequency  of  the  oscillator.  Such  an  oscillation  or  vibration  is  known  as  free
oscillation or free vibration. In this case,  the amplitude, frequency and the energy
of the vibrating object remains constant.

Examples

a. Vibration of a tuning fork.
b. Vibration in a stretched string.
c. Oscillation of a simple pendulum.
d. Oscillationsof a spring-mass system.

Damped oscillations

During  the  oscillation  of  a  simple  pendulum  (in  previous  case),  we  have
assumed that the amplitude of the oscillation is constant and also the total energy
of  the  oscillator  is  constant.  But  in  reality,  in  a  medium,  due  to  the  presence  of
friction and air  drag,  the  amplitude of  oscillation decreases  as  time progresses.  It
implies  that  the  oscillation is  not  sustained and the  energy of  the  SHM decreases
gradually  indicating  the  loss  of  energy.  Th  e  energy  lost  is  absorbed  by  the
surrounding  medium.  Th  is  type  of  oscillatory  motion  is  known  as  damped
oscillation.  In  other  words,  if  an  oscillator  moves  in  a  resistive  medium,  its
amplitude goes on decreasing and the energy of  the oscillator is  used to do work
against  the  resistive  medium.  Th  e  motion  of  the  oscillator  is  said  to  be  damped
and  in  this  case,  the  resistive  force  (or  damping  force)  is  proportional  to  the
velocity of the oscillator.

Examples

a. Th  e  oscillations  of  a  pendulum  (including  air  friction)  or  pendulum
oscillating inside an oil fi lled container.

b. Electromagnetic oscillations in a tank circuit.
c. Oscillations in a dead beat and ballistic galvanometers.



Maintained oscillations

While  playing  in  swing,  the  oscillations  will  stop  aft  er  a  few  cycles,  this  is
due  to  damping.  To  avoid  damping  we  have  to  supply  a  push  to  sustain
oscillations.  By  supplying  energy  from  an  external  source,  the  amplitude  of  the
oscillation  can  be  made  constant.  Such  vibrations  are  known  as  maintained
vibrations.

Example:

The vibration of a tuning fork getting energyfrom a battery or from external
powersupply.

Forced oscillations

Any  oscillator  driven  by  an  external  periodic  agency  to  overcome  the
damping is known as forced oscillator or driven oscillator. In this type of vibration,
the body executing vibration initially vibrates with its natural frequency and due to
the presence of external periodic force,  the body later vibrates with the frequency
of the applied periodic force. Such vibrations are known as forced vibrations.

Example:
Sound boards of stringed instruments.

Resonance

It  is  a  special  case  of  forced  vibrations  where  the  frequency  of  external
periodic  force  (or  driving  force)  matches  with  the  natural  frequency  of  the
vibrating body (driven). As a result the oscillating body begins to vibrate such that
its amplitude increases at each step and ultimately it has a large amplitude. Such a
phenomenon is  known as resonance and the corresponding vibrations are known
as resonance vibrations.

Example
The breaking of glass due to sound

Soliders are not allowed to march on a bridge. This is to avoid resonant vibration of
the  bridge.  While  crossing  a  bridge,  if  the  period  of  stepping  on  the  ground  by
marching  soldiers  equals  the  natural  frequency  of  the  bridge,  it  may  result  in
resonance vibrations. This may be so large that the bridge may collapse.



11th vol II
WAVES

INTRODUCTION

In the previous chapter, we have discussed the oscillation of a particle.
Consider a medium which consists of a collection of particles. If the disturbance is
created at one end, itpropagates and reaches the other end. That is, the disturbance
produced at the first mass point is transmitted to the next neighbouring mass
point, and so on. Notice that here, only the disturbance is transmitted, not the mass
points.  Similarly,  the speech we deliver is  due to the vibration of our vocal chord
inside the throat. This leads to the vibration of the surrounding air molecules and
hence, the effect of speech (information) is transmitted from one point in space to
another point in space without the medium carrying the particles. Thus, the
disturbance which carries energy and momentum from one point in space to
another point in space without the transfer of the medium is known as a wave.

Standing near a beach, one can observe tides in the ocean reaching the
seashore with a similar wave pattern; hence they are called ocean waves. A rubber
band when plucked vibrates like a wave which is an example of a standing wave.
These are shown in Figure 11.2. Other examples of waves are light waves
(electromagnetic waves), through which we observe and enjoy the beauty of nature
and sound waves using which we hear and enjoy pleasant melodious songs. Day to
day applications of waves are numerous, as in mobile phone communication, laser
surgery, etc.

Ripples and wave formation on the water surface

Suppose we drop a stone in a trough of still water, we can see a disturbance
produced at the place where the stone strikes the water surface as shown in Figure
11.3.  We  find  that  this  disturbance  spreads  out  (diverges  out)  in  the  form  of
concentric circles of ever increasing radii (ripples) and strike the boundary of the
trough. This is because some of the kinetic energy of the stone is transmitted to the
water molecules on the surface. Actually the particles of the water (medium)
themselves do not move outward with the disturbance. This can be observed by
keeping a paper strip on the water surface. The strip moves up and down when the
disturbance  (wave)  passes  on  the  water  surface.  This  shows  that  the  water
molecules only undergo vibratory motion about their mean positions.

Formation of waves on stretched string



Let us take a long string and tie one end of the string to the wall as shown in
Figure 11.4 (a). If we give a quick jerk, a bump (like pulse) is produced in the string
as shown in Figure 11.4 (b). Such a disturbance is sudden and it lasts for a short
duration,  hence  it  is  known as  a  wave pulse.  If  jerks  are  given continuously  then
the waves produced are standing waves. Similar waves are produced by a plucked
string in a guitar.

Formation of waves in a tuning fork

When we strike a tuning fork on a rubber pad, the prongs of the tuning fork
vibrate about their mean positions. The prong vibrating about a mean position
means moving outward and inward, as indicated in the Figure 11.5. When a prong
moves outward, it pushes the layer of air in its neighbourhood which means there
is  more  accumulation of  air  molecules  in  this  region.  Hence,  the  density  and also
the  pressure  increase.  These  regions  are  known  as  compressed  regions  or
compressions. This compressed air layer moves forward and compresses the next
neighbouring layer in a similar manner. Thus a wave of compression advances or
passes  through  air.  When  the  prong  moves  inwards,  the  particles  of  the  medium
are  moved  to  the  right.  In  this  region  both  density  and  pressure  are  low.  It  is
known as a rarefaction or elongation.

Characteristics of wave motion

· For the propagation of the waves, the medium must possess both inertia and
elasticity, which decide the velocity of the wave in that medium.

· In  a  given  medium,  the  velocity  of  a  wave  is  a  constant  whereas  the
constituent particles in that medium move with different velocities at
different positions. Velocity is maximum at their mean position and zero at
extreme positions.

· Waves undergo reflections, refraction, interference, diffraction and
polarization.

Point to ponder
1. The medium possesses both inertia and elasticity for propagation of waves.
2. Light is an electromagnetic wave. what is the medium for its transmission?

Mechanical wave motion and its types

Wave motion can be classified into two types

a. Mechanical wave – Waves which require a medium for propagation are
known as mechanical waves.
Examples: sound waves, ripples formed on the surface of water, etc.



b. Non mechanical wave –  Waves  which  do  not  require  any  medium  for
propagation are known as non-mechanical waves.
Example: light

Further, waves can be classified into two types

a. Transverse waves
b. Longitudinal waves

Transverse wave motion

In  transverse  wave  motion,  the  constituents  of  the  medium  oscillate  or
vibrate about their mean positions in a direction perpendicular to the direction of
propagation (direction of energy transfer) of waves.

Example: light (electromagnetic waves)

Longitudinal wave motion

In  longitudinal  wave  motion,  the  constituent  of  the  medium  oscillate  or
vibrate about their mean positions in a direction parallel to the direction of
propagation (direction of energy transfer) of waves as shown in Figure 11.7.

Example: Sound waves travelling in air.

Discuss with your Teacher
o Tsunami (pronounced soo-nah-mee in Japanese) means Harbour waves. A

tsunami is a series of huge and giant waves which come with great speed and
huge force. What happened on 26th December2004 in southern part of India?
- Discuss

o Gravitational waves - LIGO (Laser lnterferometer Gravitational wave
Observatory) experiment Nobel Prize winners in Physics 2017

i. Prof. Rainer Weiss
ii. Prof. Barry C. Barish

iii. Prof. Kip S. Thorne
“For decisive contributions to the LIGO detector and observation of
gravitational forces”

Comparison of transverse and longitudinal waves
S.No Transverse waves Longitudinal waves
1. The direction of vibration of particles

of the medium is perpendicular to the
direction of propagation of waves.

The direction of vibration of
particles of
the medium is parallel to the



direction of
propagation of waves.

2. The  disturbances  are  in  the  form  of
crests
and troughs.

The disturbances are in the form of
compressions and rarefactions

3. Transverse waves are possible in
elastic
medium.

Longitudinal waves are possible in
all
types of media (solid, liquid and
gas).

NOTE:
1. Absence of medium is also known as vacuum. Only electromagnetic waves can
travel through vacuum.
2. Rayleigh waves are considered to be mixture of transverse and longitudinal.

TERMS AND DEFINITIONS USED IN WAVE MOTION

Suppose we have two waves as shown in Figure 11.8. Are these two waves
identical?.  No.  Though,  the  two  waves  are  both  sinusoidal,  there  are  many
difference between them. Therefore, we have to define some basic terminologies to
distinguish one wave from another.

Consider a wave produced by a stretched string as shown in Figure 11.9.

If  we  are  interested  in  counting  the  number  of  waves  created,  let  us  put  a
reference level (mean position) as shown in Figure 11.9. Here the mean position is
the horizontal line shown. The highest point in the shaded portion is called crest.
With  respect  to  the  reference  level,  the  lowest  point  on  the  un-shaded  portion  is
called  trough.  This  wave  contains  repetition  of  a  section  O  to  B  and  hence  we
define the length of the smallest section without repetition as one wavelength as
shown  in  Figure  11.10.  In  Figure  11.10  the  length  OB  or  length  BD  is  one  wave
lengh. A Greek letter lambda λ is used to denote one wavelength.

For transverse waves (as shown in Figure 11.11), the distance between two
neighbouring crests or troughs is known as the wavelength. For longitudinal
waves,  (as  shown  in  Figure  11.12)  the  distance  between  two  neighbouring
compressions or rarefactions is known as the wavelength. The SI unit of
wavelength is meter.

E X A M P L E

Which of the following has longer wavelength?



In  order  to  understand  frequency  and  time  period,  let  us  consider  waves
(made of three wavelengths) as shown in Figure 11.13 (a). At time t = 0 s, the wave
reaches  the  point  A  from  left.  After  time  t  =  1  s  (shown  in  figure  11.13(b)),  the
number of waves which have crossed the point A is two. Therefore, the frequency
is defined as “the number of waves crossing a point per second” It is measured in
hertz whose symbol is Hz. In this example,

f = 2 Hz

wave consisting of three wavelengths passing a point A at time (a) t = 0 s and
(b) after time t = 1 sin

If two waves take one second (time) to cross the point A then the time taken
by one wave to cross the point A is half a second. This defines the time period T as

1 0.5
2

T s= =

From equation (11.1) and equation (11.2), frequency and time period are
inversely related i.e.

1T
f

=

Time period is defined as the time taken by one wave to cross a point.in

E X A M P L E

Three waves are shown in the figure below

Write down

(a) the frequency in ascending order
(b) the wavelength in ascending order

Solution

fc< fa< fb

λb< λa< λc

From the example 11.2, we observe that the frequency is inversely related to

the wavelength,
1f a
l

Then, fλ is equal to what?



A  simple  dimensional  argument  will  help  us  to  determine  this  unknown
physical quantity. Dimension of wavelength is, [λ] = L

Frequency
1f

Time period
= which implies that the dimension of frequency is,

Therefore,
Velocity, λf =v

where v is known as the wave velocity or phase velocity. This is the velocity
with which the wave propagates. Wave velocity is the distance travelled by a wave
in one second.

Note:

The  number  of  cycles  (or  revolutions)  per  unit  time  is  called  angular  frequency.

Angular frequency,
2 2 f
T
p

w p= = (unit is radians/second)

The  number  of  cycles  per  unit  distance  or  number  of  waves  per  unit  distance  is

called wave number. wave number,
2k p
l

= (unit is radians/ meter In two, three or

higher dimensional case, the wave number is the magnitude of a vector called \

wave vector. The points in space of wave vectors are called reciprocal vectors, k
r

Example

The  average  range  of  frequencies  at  which  human  beings  can  hear  sound
waves varies from 20 Hz to 20 kHz. Calculate the wavelength of the sound wave in
these limits. (Assume the speed of sound to be 340 m s-1.

Solution



Therefore, the audible wavelength region is from 0.017 m to 17 m when the velocity
of sound in that region is 340 m s-1.

Example

A  man  saw  a  toy  duck  on  a  wave  in  an  ocean.  He  noticed  that  the  duck
moved up and down 15 times per minute. He roughly measured the wavelength of
the  ocean wave as  1.2  m.  Calculate  the  time taken by  the  toy  duck for  going one
time up and down and also the velocity of the ocean wave.

Solution

Given that the number of times the toy duck moves up and down is 15 times
per minute. This information gives us frequency (the number of times the toy duck
moves up and down)

But one minute is 60 second, therefore, expressing time in terms of second

The  time  taken  by  the  toy  duck  for  going  one  time  up  and  down  is  time
period which is inverse of frequency

The velocity of ocean wave is



Amplitude of a wave:

The waves shown in thesame wavelength, same frequency andsame time
period and also move with samevelocity. The only difference between twowaves is
the height of either crest or trough.This means, the height of the crest or troughalso
signifies a wave character. So we definea quantity called an amplitude of the wave,
as the maximum displacement of the medium with respect to a reference axis (for
example in this case x-axis). Here, it is denoted by A.

Example

Consider  a  string  whose  one  end  is  attached  to  a  wall.  Then  compute  the
following in both situations given in figure (assume waves crosses the distance in
one second)

(a) Wavelength, (b) Frequency and (c) Velocity

Solution
First Class Second Class

(a) Wavelength
λ = 6 m λ = 2 m

(b)Frequency
f = 2 Hz f = 6 Hz

(c) Velocity
v = 6 × 2 = 12 m s-1 v = 2 × 6 = 12 m

s-1

This means that the speed of the wave along a string is a constant. Higher the
frequency, shorter the wavelength and vice versa, and their product is velocity
which remain the same.

Velocity of Waves in different Media

Suppose a hammer is stroked on long rails at a distance and when a person
keeps his ear near the rails at the other end he/she will hear two sounds, at
different  instants.  The  sound  that  is  heard  through  the  rails  (solid  medium)   is
faster than the sound we hear through the air (gaseous medium). This implies the
velocity of sound is different in different media.

In this section, we shall derive the velocity of waves in two different cases:
1. The velocity of a transverse waves along a stretched string.
2. The velocity of a longitudinal waves in an elastic medium.

Velocity of transverse waves in a stretched string



Let us compute the velocity of transverse travelling waves on a string. When
a jerk is given at one end (left end) of the rope, the wave pulses move towards right
end  with  a  velocity  v.  This  means  that  the  pulses  move  with  a  velocity  v  with
respect to an observer who is at rest frame. Suppose an observer also moves with
same velocity v in the direction of motion of the wave pulse, then that observer will
notice that the wave pulse is stationary and the rope is moving with pulse with the
same velocity v.

Consider  an  elemental  segment  in  the  string  as  shown  in  the  Figure.  Let  A
andB be two points on the string at an instant of time. Let dl and dm be the length
and mass of the elemental string, respectively. By definition, linear mass density, μ
is

The  elemental  string  AB  has  a  curvature  which  looks  like  an  arc  of  a  circle
with  centre  at  O,  radius  R  and  the  arc  subtending  an  angle  θ at  the  origin  O  as
shown in  Figure.  The angle  θ can be  written  in  terms of  arc  length and radius  as

The centripetal acceleration supplied by the tension in the string is

Then,  centripetal  force  can  be  obtained  when  mass  of  the  string  (dm)  is
included in equation.

The  centripetal  force  experienced  by  elemental  string  can  be  calculated  by
substituting equation



The tension T acts along the tangent of the elemental segment of the string at A and
B. Since the arc length is very small, variation in the tension force can be ignored.

We  can  resolve  T  into  horizontal  component cos
2

T qæ ö
ç ÷
è ø

and  vertical  component

sin
2

T qæ ö
ç ÷
è ø

.  The  horizontal  components  at  A  and  B  are  equal  in  magnitude  but

opposite  in  direction;  therefore,  they  cancel  each  other.  Since  the  elemental  arc
length AB is taken to be very small, the vertical components at A and B appears to
acts  vertical  towards  the  centre  of  the  arc  and hence,  they add up.  The net  radial
force Fr is

Since the amplitude of the wave is very small when it is compared with the length

of the string, the sine of small angle is approximated as sin .
2 2
q qæ ö »ç ÷

è ø
 Hence, equation

can be written as

But dl
R

q = therefore substituting in equation (11.11), we get

Applying  Newton’s  second  law  to  the  elemental  string  in  the  radial  direction,
under  equilibrium,  the  radial  component  of  the  force  is  equal  to  the  centripetal

force. Hence equating equation (11.9) and equation (11.12), we have 2dl dlT v
R R

m=

Tv
m

= measured in m s-1

Observations:
• The velocity of the string is
a. directly proportional to the square root of the tension force
b. inversely proportional to the square root of linear mass density
c. independent of shape of the waves.

Example

Calculate  the  velocity  of  the  travelling  pulse  as  shown  in  the  figure  below.
The linear mass density of pulse is 0.25 kg m-1. Further, compute the time taken by
the travelling pulse to cover a distance of 30 cm on the string.



Solution

The tension in the string is T = m g = 1.2 × 9.8 = 11.76 N
The mass per unit length is μ = 0.25 kg m-1
Therefore, velocity of the wave pulse is

The time taken by the pulse to cover the distance of 30 cm is

ms = milli second

Velocity of longitudinal waves in an elastic medium

Consider  an  elastic  medium  (here  we  assume  air)  having  a  fixed  mass
contained in a long tube (cylinder) whose cross sectional area is A and maintained
under  a  pressure  P.  One  can  generate  longitudinal  waves  in  the  fluid  either  by
displacing the fluid using a piston or by keeping a vibrating tuning fork at one end
of  the  tube.  Let  us  assume  that  the  direction  of  propagation  of  waves  coincides
with  theaxis  of  the  cylinder.  Let  ρ  be  the  density  of  the  fluid  which  is  initially  at
rest. At t = 0, the piston at left end of the tube is set in motion toward the right with
a speed u.

Let u be thevelocity of the piston and v be the velocity of the elastic wave. In
time  interval  Δt,  the  distance  moved  by  the  piston  Δd  =  u  Δt.  Now,  the  distance
moved by the elastic disturbance is Δx = vΔt. Let Δm be the mass of the air that has
attained a velocity v in a time Δt . Therefore,

Then, the momentum imparted due to motion of piston with velocity u is

But the change in momentum is impulse. The net impulse is



When the sound wave passes through air, the small volume element (ΔV) of
theair undergoes regular compressions and rarefactions. So, the change in pressure
can also be written as

where,  V  is  original  volume and B  is  known as  bulk  modulus  of  the  elastic
medium.
But V = A Δx = A v Δt and
ΔV = A Δd =A u Δt
Therefore,

In  general,  the  velocity  of  a  longitudinal  wave  in  elastic  medium  is Ev
r

=

where E is the modulus of elasticity of the medium.

Cases: For a solid:

(i) one dimension rod (1D)

where  Y  is  the  Young’s  modulus  of  the  material  of  the  rod  and  ρ is  the
density of the rod. The 1D rod will have only Young’s modulus.



(ii) Three dimension rod (3D) The speed of longitudinal wave in a solid is

where η is the modulus of rigidity, K is the bulk modulus and ρ is the density
of the rod.

Cases: For liquids:

where, K is the bulk modulus and ρ is the density of the rod.

E X A M P L E

Calculate the speed of sound in a steel rod whose Young’s modulus Y = 2 × 1011 N
m-2 and ρ = 7800 kg m-3.

Solution

Therefore, longitudinal waves travel faster in a solid than in a liquid or a gas.
Now you may understand why a shepherd checks before crossing railway track by
keeping his ears on the rails to safeguard his cattle.

E X A M P L E

An increase in pressure of 100 kPa causes a certain volume of water to decrease by
0.005% of its original volume.
(a) Calculate the bulk modulus of water?.
(b) Compute the speed of sound (compressional waves) in water?.

Solutions

a) Bulk modules



Mega Pascal

The  velocities  of  both  transverse  waves  and  longitudinal  waves  depend  on
elastic property (like string tension T or bulk modulus B) and inertial property
(like density or mass per

Speed of Sound in Various media
S.No Medium Speed in ms -1

1 Rubber 1600
2 Gold 3240
3 Brass 4700
4 Copper 5010
5 Iron 5950
6 Aluminium 6420

Liquids at 250C
1 Kerosene 1324
2 Mercury 1450
3 Water 1493
4 Sea water 1533

Gas (at 00C)
1 Oxygen 317
2 Air 337
3 Helium 972
4 Hydrogen 1286

Gas (at 20°C)
1 Air 343



PROPAGATION OF SOUND WAVES

We  know  that  sound  waves  are  longitudinal  waves,  and  when  they
propagate compressions and rarefactions are formed. In the following section,  we
compute  the  speed  of  sound  in  air  by  Newton’s  method  and  also  discuss  the
Laplace correction and the factors affecting sound in air.

Newton’s formula for speed of sound waves in air

Sir Isaac Newton assumed that when sound propagates in air, the formation
of  compression  and  rarefaction  takes  placein  a  very  slow  manner  so  that  the
process  is  isothermal  in  nature.  That  is,  the  heat  produced  during  compression
(pressure  increases,  volume decreases),  and heat  lost  during rarefaction (pressure
decreases, volume increases) occur over a period of time such that the temperature
of  the  medium remains  constant.  Therefore,  by treating the  air  molecules  to  form
an ideal gas, the changes in pressure and volume obey Boyle’s law, Mathematically

PV  =  Constant  (11.20)

Differentiating equation (11.20), we get

where,  BT  is  an  isothermal  bulk  modulus  of  air.  Substituting  equation  (11.21)  in
equation (11.16), the speed of sound in air is

Since  P  is  the  pressure  of  air  whose  value  at  NTP  (Normal  Temperature  and
Pressure) is 76 cm of mercury, we have

P = (0.76 × 13.6 ×103 × 9.8) N m-2

ρ = 1.293 kg m-3. here ρ is density of air

Then the speed of sound in air at Normal Temperature and Pressure (NTP) is



= 279.80 m s-1 ≈ 280 ms-1 (theoretical value)

But the speed of sound in air at 0°C is experimentally observed as 332 m s-1 which
is  close  upto  16%  more  than  theoretical  value  (Percentage  error  is
(332 280) 100% 15.6%)

332
-

´ + . This error is not small.

Laplace’s correction

In  1816,  Laplace  satisfactorily  corrected  this  discrepancy  by  assuming  that
when the sound propagates through a medium, the particles oscillate very rapidly
such that the compression and rarefaction occur very fast.  Hence the exchange of
heat produced due to compression and cooling effect due to rarefaction do not take
place,  because,  air  (medium) is  a  bad conductor  of  heat.  Since,  temperature  is  no
longer considered as a constant here, sound propagation is an adiabatic process. By
adiabatic  considerations,  the  gas  obeys  Poisson’s  law (not  Boyle’s  law as  Newton
assumed), which is

where, P

V

C
C

g = ,  which  is  the  ratio  between  specific  heat  at  constant  pressure  and

specific heat at constant volume.

Differentiating equation (11.23) on both the sides, we get
Vγ dP + P (γVγ-1 dV) = 0

or, A
dpP V B
dV

g = - =

where, BA  is the adiabatic bulk modulus of air. Now, substituting equation (11.24)
in equation (11.16), the speed of sound in air is

A
A T

B Pv vg g
r r

= = =

Since air contains mainly, nitrogen, oxygen, hydrogen etc, (diatomic gas), we take



γ = 1.47. Hence, speed of sound in air is ( )( )1 11.4 280 331.30Av ms ms- -= =  which is very
much closer to experimental data.

Factors affecting speed of sound in gases

Let us consider an ideal gas whose equation of state is

PV = n R T
where, P is pressure, V is volume, T is temperature, n is number of mole and R is
universal gas constant. For a given mass of a molecule, equation (11.26) can be
written as

PV
T

= constant

For a fixed mass m, density of the gas inversely varies with volume. i.e.,
1 ,
V

ra mV
r

=

Substituting equation (11.28) in equation (11.27), we get

P cT
r

=

where c is constant.

The speed of sound in air given in equation (11.25) can be written as

Pv cTg g
r

= =

From the above relation we observe the following

(a) Effect of pressure:

For a fixed temperature, when the pressure varies, correspondingly density

also varies such that the ratio
P
r
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 becomes constant. This means that the speed of

sound is independent of pressure for a fixed temperature. If the temperature
remains same at the top and the bottom of a mountain then the speed of sound will



remain same at these two points. But, in practice, the temperatures are not same at
top and bottom of  a  mountain;  hence,  the  speed of  sound is  different  at  different
points.

(b) Effect of temperature:

Since, ,v Ta  the  speed  of  sound  varies  directly  to  the  square  root  of
temperature in kelvin.

Let v0 be the speed of sound at temperature at 0° C or 273 K and v be the speed of
sound at any arbitrary temperature T (in kelvin), then

0

0 0

273
273 273

1 1
273 546

T tv
v

t tv v v

+= =

æ ö= + = +ç ÷
è ø

%

(using binomial expansion)

Since v0 = 331m s-1 at 00C, v at any temperature in t0C is

v = (331 + 0.60t) m s-1

Thus the speed of sound in air increases by 0.61 m s-1 per degree celcius rise
in temperature. Note that when the temperature is increased, the molecules will
vibrate faster due to gain in thermal energy and hence, speed of sound increases.

(c) Effect of density:

Let us consider two gases with different densities having same temperature
and pressure. Then the speed of sound in the two gases are

1
1

1

Pv g
r

=

and



2
2

2

Pv g
r

=

Taking ratio of equation (11.31) and equation (11.32), we get

1

1 21

2 12 2

2

1
P

v
v P

g
g rr
g rg

r

= =

For gases having same value of γ,

21

12

v
v

r
r

=

(e) Effect of wind:

The speed of sound is also affected by blowing of wind. In the direction along
the wind blowing, the speed of sound increases whereas in the direction opposite
to wind blowing, the speed of sound decreases.

Example

The  ratio  of  the  densities  of  oxygen  andnitrogen  is  16:14.  Calculate  the
temperaturewhen the speed of sound in nitrogen gasat 17°C is equal to the speed
of sound inoxygen gas.

Solution
From equation (11.25), we have

Pv g
r

=

But, M
V

r =

Therefore,
PVv
M

g=

Using equation (11.26)



RTv
M

g=

Where, R is the universal gas constant and M is the molecular mass of the gas. The
speed of sound in nitrogen gas at 17°C is

( )

( )

273 17

290

N
N

N

R K K
v

M

R K
M

g

g

+
=

=

Similarly, the speed of sound in oxygen gas at t in K is

( )
0

0

273R K t
v

M
g +

=

Given that the value of γ is same for both the gases, the two speeds must be equal.
Hence, equating equation (1) and (2), we get

( ) ( )
0

273 290
o N

N

v v

R t R
M M

g g

=

+
=

Squaring on both sides and cancelling γ R term and rearranging, we get

0 273
290N

M t
M

+=

Since the densities of oxygen and nitrogen is 16:14,

0 16
14N

r
r

=



Substituting equation (5) in equation (3), we get

REFLECTION OF SOUND WAVES

When  sound  wave  passes  from  one  medium  to  another  medium,  the
following things can happen

(a)  Reflection  of  sound: If  the  medium  is  highly  dense  (highly  rigid),  the  sound
can be reflected completely (bounced back) to the original medium.

(b)  Refraction of  sound:  When the  sound waves  propagate  from one  medium to
another medium such that there can be some energy loss due to absorption by the
second medium.

In  this  section,  we  will  consider  only  the  reflection  of  sound  waves  in  a  medium
when it experiences a harder surface. Similar to light, sound can also obey the laws
of reflection, which states that

(i) The angle of incidence of sound is equal to the angle of reflection.

(ii) When the sound wave is reflected by a surface then the incident wave, reflected
wave and the normal at the point of incidence all lie in the same plane.

Similar to reflection of light from a mirror, sound also reflects from a harder
flat surface, This is called as specular reflection.

Specular  reflection  is  observed  only  when  the  wavelength  of  the  source  is
smaller  than  dimensions  of  the  reflecting  surface,  as  well  as  smaller  than  surface
irregularities.

Reflection of sound through the plane surface



When the sound waves hit  the plane wall,  they bounce off  in a manner similar to
that of light. Suppose a loudspeaker is kept at an angle with respect to a wall (plane
surface), then the waves coming from the source (assumed to be a point source) can
be  treated  as  spherical  wave  fronts  (say,  compressions  moving  like  a  spherical
wave front). Therefore, the reflected wave front on the plane surface is also
spherical,  such  that  its  centre  of  curvature  (which  lies  on  the  other  side  of  plane
surface) can be treated as the image of the sound source (virtual or imaginary loud
speaker) which can be assumed to be at a position behind the plane surface.

Reflection of sound through the curved surface

The behaviour of sound is different when it is reflected from different
surfaces-convex or concave or plane. The sound reflected from a convex surface is
spread out and so it  is  easily attenuated and weakened. Whereas,  if  it  is  reflected
from the concave surface it will converge at a point and this can be easilyamplified.
The parabolic reflector (curved reflector) which is used to focus the sound precisely
to a point is used in designing the parabolic mics which are known as high
directional microphones.

We know that any surface (smooth or rough) can absorb sound. For example,
the sound produced in a big hall or auditorium or theatre is absorbed by the walls,
ceilings, floor, seats etc. To avoid such losses, a curved sound board (concave
board) is kept in front of the speaker, so that the board reflects the sound waves of
the  speaker  towards  the  audience.  This  method  will  minimize  the  spreading  of
sound waves in all possible direction in that hall and also enhances the uniform
distribution  of  sound  throughout  the  hall.  That  is  why  a  person  sitting  at  any
position in that hall can hear the sound without any disturbance.

Applications of reflection of sound waves

(a) Stethoscope: It works on the principle of multiple reflections.

It consists of three main parts:
(i) Chest piece
(ii) Ear piece
(iii) Rubber tube

(i) Chest piece: It  consists  of  a  small  disc-shaped resonator  (diaphragm) which is
very sensitive to sound and amplifies the sound it detects.

(ii) Ear piece: It is made up of metal tubes which are used to hear sounds detected
by the chest piece.



(iii) Rubber tube: This  tube  connects  both  chest  piece  and ear  piece.  It  is  used to
transmit the sound signal detected by the diaphragm, to the ear piece. The sound of
heart  beats  (or  lungs)  or  any sound produced by internal  organs  can be  detected,
and it reaches the ear piece through this tube by multiple reflections.

(b) Echo: An  echo  is  a  repetition  of  sound  produced  by  the  reflection  of  sound
waves from a wall, mountain or other obstructing surfaces. The speed of sound in
air at 20°C is 344 m s-1. If we shout at a wall which is at 344 m away, then the sound
will take 1 second to reach the wall. After reflection, the sound will take one more
second to reach us. Therefore, we hear the echo after two seconds.
Scientists have estimated that we can hear two sounds properly if the time gap or

time interval between each sound is
1

10
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of a second (persistence of hearing)

i.e., 0.1 s. Then,
Distance travelled 2velocity=

time taken
d
t

=

2d = 344 × 0.1 = 34.4 m
d = 17.2 m

The minimum distance from a sound reflecting wall to hear an echo at 20°C is 17.2
meter.

(c) SONAR: SOund  NAvigation  and  Ranging.  Sonar  systems  make  use  of
reflections  of  sound waves  in  water  to  locate  the  position or  motion of  an  object.
Similarly,  dolphins  and  bats  use  the  sonar  principle  to  find  their  way  in  the
darkness.

(d) Reverberation: In  a  closed  room  the  sound  is  repeatedly  reflected  from  the
walls  and  it  is  even  heard  long  after  the  sound  source  ceases  to  function.  The
residual sound remaining in an enclosure and the phenomenon of multiple
reflections of sound is called reverberation. The duration for which the sound
persists is called reverberation time. It should be noted that the reverberation time
greatly affects the quality of sound heard in a hall. Therefore, halls are constructed
with some optimum reverberation time.

Example

Suppose a man stands at a distance from a cliff and claps his hands. He receives an
echo from the cliff after 4 second. Calculate the distance between the man and the
cliff. Assume the speed of sound to be 343 m s-1.



Solution

The time taken by the sound to come back as echo is 2t = 4 ⇒ t = 2 s
∴The distance is d = vt =(343 m s-1)(2 s) = 686 m.

Note: Classification of sound waves: Sound waves can be classified in three groups
according to their range of frequencies:

(1) Infrasonic waves:
Sound waves having frequencies below 20 Hz are called infrasonic waves. These
waves are produced during earthquakes. Human beings cannot hear these
frequencies. Snakes can hear these frequencies.

(2) Audible waves:
Sound waves having frequencies between 20 Hz to 20,000 Hz (20kHz) are called
audible waves. Human beings can hear these frequencies.

(3) Ultrasonic waves:
Sound waves having frequencies greater than 20 kHz are known as ultrasonic
waves. Human beings cannot hear these frequencies. Bats can produce and hear
these frequencies.

(1.) Supersonic speed:
An  object  moving  with  a  speed  greater  than  the  speed  of  sound  is  said  to  move
with a supersonic speed.

(2.) Mach number:
It is the ratio of the velocity of source to the velocity of sound.

velocity of sourceMach number=
velocity of sound

PROGRESSIVE WAVES (OR) TRAVELLING WAVES

If  a  wave  that  propagates  in  a  medium  is  continuous  then  it  is  known  as
progressive wave or travelling wave.

Characteristics of progressive waves

1. Particles in the medium vibrate about their mean positions with the same
amplitude.
2. The phase of every particle ranges from 0 to 2π.
3. No particle remains at rest permanently. During wave propagation, particles
come to the rest position only twice at the extreme points.



4.  Transverse  progressive  waves  are  characterized by crests  and troughs  whereas
longitudinal  progressive  waves  are  characterized  by  compressions  and
rarefactions.
5.  When the particles pass through the mean position they always move with the
same maximum velocity.
6.  The  displacement,  velocity  and  acceleration  of  particles  separated  from  each
other by nλ are the same, where n is an integer, and λ is the wavelength.

Equation of a plane progressive wave

Suppose we give a jerk on a stretched string at time t = 0 s. Let us assume that the
wave pulse created during this disturbance moves along positive x direction with
constant speed v (a). We can represent the shape of the wave pulse, mathematically
as y = y(x, 0) = f(x) at time t = 0 s. Assume that the shape of the wave pulse remains
the same during the propagation. After some time t, the pulse moving towards the
right and any point on it can be represented by x' (read it as x prime) (b). Then,

y(x, t) = f(x´) = f(x − vt)

Similarly, if the wave pulse moves towards left with constant speed v, then y = f(x
+  vt).  Both  waves  y  =  f(x  +  vt)  and  y  =  f(x  − vt)  will  satisfy  the  following  one
dimensional differential equation known as the wave equation

where the symbol ∂ represent partial derivative (read y
x

¶
¶

 as partial y by partial

x).  Not  all  the  solutions  satisfying  this  differential  equation  can  represent  waves,
because any physical acceptable wave must take finite values for all values of x and
t. But if the function represents a wave then it must satisfy the differential equation.
Since,  in  one  dimension  (one  independent  variable),  the  partial  derivative  with
respect to x is the same as total derivative in coordinate x, we write

2 2

2 2 2
1d y d y

dx v dt
=

This  can  be  extended  to  more  than  one  dimension  (two,  three,  etc.).  Here,  for
simplicity, we focus only on the one dimensional wave equation.

Example
Sketch y = x −a for different values of a.



Solution

This implies, when increasing the value of a, the line shifts towards right side. For a
= vt, y = x − vt satisfies the differential equation. Though this function satisfies the
differential  equation,  it  is  not  finite  for  all  values  of  x  and  t.  Hence,  it  does  not
represent a wave.

Example

How  does  the  wave  y  =  sin(x  − a)  for  a  =  0, 3, ,
4 2 2

a a ap p p= = = and  a  =  π look

like? Sketch this wave.

Solution

From  the  above  picture  we  observe  that  y  =  sin  (x−a)  for  a  =  0,
3, ,

4 2 2
a a ap p p= = = and  a  =  π,  the  function  y  =  sin  (x−a)  shifts  towards  right.

Further, we can take a = vt and
4

v p= , and sketching for different times t = 0s, t =

1s,  t  =  2s  etc.,  we once  again  observe  that  y  =  sin(x−vt)  moves  towards  the  right.
Hence, y = sin(x−vt) is a travelling (or progressive) wave moving towards the right.
If y = sin(x+vt) then the travelling (or progressive) wave moves towards the left.
Thus, any arbitrary function of type y = f(x−vt) characterising the wave must move
towards right and similarly, any arbitrary function of type y = f(x+vt)
characterizing the wave must move towards left.

Example

Check  the  dimensional  of  the  wave  y  =  sin(x−vt).  If  it  is  dimensionally  wrong,
write the above equation in the correct form.

Solution

Dimensionally it is not correct. we know that y = sin(x−vt) must be a dimensionless
quantity but x−vt has dimension. The correct equation is y = sin (k x−ωt), where k
and ω have the dimensions of inverse of length and inverse of time respectively.
The sine functions and cosine functions are periodic functions with period 2π.

Therefore, the correct expression is
2 2siny x t

T
p p
l
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 where  λ and  T  are

wavelength and time period, respectively. In general, y(x,t)=A sin(k x−ωt).



Graphical representation of the wave

Let us graphically represent the two forms of the wave variation
(a) Space (or Spatial) variation graph
(b) Time (or Temporal) variation graph

(a) Space variation graph

By keeping the time fixed, the change in displacement with respect to x is plotted.
Let us consider a sinusoidal graph, y = A sin(kx), where k is a constant. Since the
wavelength λ denotes the distance between any two points in the same state of
motion, the displacement y is the same at both the ends y = x and y = x + λ, i.e.,

y = A sin(kx) = A sin(k(x + λ))
= A sin(kx + k λ)

The sine function is a periodic function with period 2π. Hence,

y = A sin(kx + 2π) = A sin(kx)

Comparing equation, we get. kx + k λ = kx + 2π

That implies

12k radmp
l

-=

where k is called wave number. This measures how many wavelengths are present
in 2π radians.

The spatial periodicity of the wave is 2
k
pl =  in m,

Then,
At t = 0 s y(x, 0) = y(x + λ, 0)
and
At any time t, y(x, t) = y(x + λ, t)

Example

The  wavelength  of  two  sine  waves  are  λ1  =  1m  and  λ2  =  6m.  Calculate  the
corresponding wave numbers.



Solution
1

1

1
1

2 6.28

2 1.05
6

k radm
k

k radm

p

p

-

-

= =

= =

(b) Time variation graph

By keeping the position fixed, the change in displacement with respect to time is
plotted.  Let  us  consider  a  sinusoidal  graph,  y  =A  sin(ωt),  where  ω is  angular
frequency of the wave which measures how quickly wave oscillates in time or
number of cycles per second.

The temporal periodicity or time period is
2 2T

T
p pw

w
= Þ =

The angular frequency is related to frequency f by the expression ω = 2 πf, where
the  frequency  f  is  defined  as  the  number  of  oscillations  made  by  the  medium
particle per second. Since inverse of frequency is time period, we have,

1T
f

=  in seconds

This is the time taken by a medium particle to complete one oscillation. Hence, we
can  define  the  speed  of  a  wave  (wave  speed,  v)  as  the  distance  traversed  by  the
wave per second

v f
T
l l= = in ms-1

which is the same relation as we obtained in equation (11.4).

Particle velocity and wave velocity

In a plane progressive harmonic wave, the constituent particles in the
medium oscillate simple harmonically about their equilibrium positions. When a
particle  is  in  motion,  the  rate  of  change  of  displacement  at  any  instant  of  time  is



defined as velocity of the particle at that instant of time. This is known as particle
velocity.

1
P

dyv ms
dt

-=

But y(x, t)= A sin(k x - ω t)

Therefore, dy
dt

= − ω A cos(k x− ω t)

Similarly, we can define velocity (here speed) for the travelling wave (or
progressive wave). In order to determine the velocity of a progressive wave, let us
consider  a  progressive  wave  moving  towards  right.  This  can  be  mathematically
represented as a sinusoidal wave. Let P be any point on the phase of the wave and
yP be its  displacement with respect to the mean position.  The displacement of the
wave at an instant t is

y = y(x,t) = A sin(k x− ω t)

At the next instant of time t  ʹ= t + Δt the position of the point P is x  ʹ= x + Δx.
Hence, the displacement of the wave at this instant is

y = y(xʹ, tʹ) = y(x + Δx, t + Δt )
= A sin[k (x + Δx)- ω (t + Δt)]

Since  the  shape  of  the  wave  remains  the  same,  this  means  that  the  phase  of  the
wave  remains  constant  (i.e.,  the  y-  displacement  of  the  point  is  a  constant).
Therefore, equating equation (11.42) and equation (11.44), we get

y(x',t') = y(x,t), which implies A sin[k (x + Δx)− ω (t + Δt)]= A sin(k x− ω t) Or

k (x + Δx)− ω (t + Δt)= k x− ω t = constant

On simplification of equation (11.45), we get

p
xv v
t k

w= = =�

�

where vp is called wave velocity or phase velocity.

By expressing the angular frequency and wave number in terms of frequency and
wave length, we obtain
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Example

A mobile phone tower transmits a wave signal of frequency 900MHz. Calculate the
length of the waves transmitted from the mobile phone tower.
Solution

Frequency, f = 900MHz = 900 ×106 Hz
The speed of wave is c = 3 × 108m s−1

8

6
3 10 0.33

900 10
v m
f

l ´= = =
´

SUPERPOSITION PRINCIPLE

When  a  jerk  is  given  to  a  stretched  string  which  is  tied  at  one  end,  a  wave
pulse is produced and the pulse travels along the string. Suppose two persons
holding the stretched string on either side give a jerk simultaneously, then these
two wave pulses move towards each other, meet at some point and move away
from each other with their original identity. Their behaviour is very different only
at the crossing/meeting points; this behaviour depends on whether the two pulses
have the same or different shape. When the pulses have the same shape, at the
crossing, the total displacement is the algebraic sum of their individual
displacements and hence its net amplitude is higher than the amplitudes of the
individual pulses. Whereas, if the two pulses have same amplitude but shapes are
180° out of phase at the crossing point, the net amplitude vanishes at that point and
the pulses will recover their identities after crossing. Only waves can possess such
a peculiar property and it is called superposition of waves. This means that the
principle of superposition explains the net behaviour of the waves when they
overlap.  Generalizing  to  any  number  of  waves  i.e,  if  two  are  more  waves  in  a
medium move simultaneously, when they overlap, their total displacement is the
vector  sum  of  the  individual  displacements.  We  know  that  the  waves  satisfy  the
wave equation which is a linear second order homogeneous partial differential
equation in both space coordinates and time. Hence, their linear combination (often



called as linear superposition of waves) will also satisfy the same differential
equation.

To understand mathematically, let us consider two functions which characterize
the displacement of the waves, for example,

y1 = A1 sin(kx − ωt)
and

y2 = A2 cos(kx − ωt)

Since, both y1 and y2 satisfy the wave equation (solutions of wave equation) then
their algebraic sum

y = y1 + y2

also satisfies the wave equation. This means, the displacements are additive.
Suppose we multiply y1 and y2 with some constant then their amplitude is scaled
by that constant.

Further, if C1 and C2 are used to multiply the displacements y1 and y2, respectively,
then, their net displacement y is

y = C1 y1 + C2 y2

This  can  be  generalized  to  any  number  of  waves.  In  the  case  of  n  such  waves  in
more than one dimension the displacements are written using vector notation.
Here, the net displacement ys  is

1

n
i i

i
y C y

=
= å

r r

The principle of superposition can explain the following :

(a) Space (or spatial) Interference (also known as Interference)

(b) Time (or Temporal) Interference (also known as Beats)

(c) Concept of stationary waves

Waves that obey principle of superposition are called linear waves
(amplitude is much smaller than their wavelengths). In general, if the amplitude of
the wave is not small then they are called non-linear waves. These violate the linear
superposition principle, e.g. laser. In this chapter, we will focus our attention only
on linear waves.



We will discuss the following in different subsections:

Interference of waves

Interference  is  a  phenomenon  in  which  two  waves  superimpose  to  form  a
resultant wave of greater, lower or the same amplitude.

Consider two harmonic waves having identical frequencies, constant phase
difference φ and same wave form (can be treated as coherent source),  but having
amplitudes A1 and A2, then

y1 = A1 sin(kx − ωt)
y2 = A2 sin(kx − ωt+φ)

Suppose they move simultaneously in a particular direction, then interference
occurs (i.e., overlap of these two waves). Mathematically

y = y1 + y2

Therefore, substituting equation (11.47) and equation (11.48) in equation (11.49), we
get y = A1 sin(kx − ωt) + A2 sin(kx − ωt + φ)

Using trigonometric identity sin (α+β) = (sin α cosβ + cosα sinβ ), we get
y = A1 sin(kx − ωt)+A2 [sin(kx − ωt) cosφ + cos(kx − ωt) sinφ]

y = sin(kx − ωt)(A1 +A2 cosφ) +
A2 sinφ cos(kx − ωt)

Let us re-define

A cosθ =(A1 + A2 cosφ)
and A sinθ = A2 sinφ

then equation (11.50) can be rewritten as y = A sin(kx−ωt) cosθ + A cos(kx−ωt) sinθ

y = A (sin(kx−ωt) cosθ + sinθ cos(kx−ωt))
y = A sin(kx−ωt + θ) (11.53)

By squaring and adding equation (11.51)
and equation (11.52),  we get

A2 = A12 + A22 + 2A1 A2 cosφ (11.54)



Since, intensity is square of the amplitude (I = A2), we have

1 2 1 22 cosI I I I I j= + +

This means the resultant intensity at any point depends on the phase difference at
that point.

(a) For constructive interference:

When crests of one wave overlap with crests of another wave, their
amplitudes will add up and we get constructive interference. The resultant wave
has a larger amplitude than the individual waves.

The constructive interference at a point occurs if there is maximum intensity
at that point, which means that

cosφ = + 1 ⇒φ = 0, 2π,4π,… = 2nπ, where n = 0,1,2,...

This is the phase difference in which two waves overlap to give constructive
interference.

Therefore, for this resultant wave,

( ) ( )
2 2

max 1 2 1 2imumI I I A A= + = +

Hence, the resultant amplitude A = A1 + A2

(b) For destructive interference:

When the trough of one wave overlaps with the crest of another wave, their
amplitudes “cancel” each other and we get destructive interference as shown in
Figure 11.29 (b). The resultant amplitude is nearly zero. The destructive
interference occurs if there is minimum intensity at that point, which means cosφ =
− 1 ⇒φ = π,3π,5π,… = (2 n-1) π, where n = 0,1,2,…. i.e. This is the phase difference in
which two waves overlap to give destructive interference. Therefore,

( ) ( )
2 2

max 1 2 1 2imumI I I A A= + = +

Hence, the resultant amplitude

A=|A1−A2|



Let us consider a simple instrument to demonstrate the interference of sound
waves as shown in Figure 11.30.

Figure 11.30 Simple instrument to
demonstrate interference of sound waves

A  sound  wave  from  a  loudspeaker  S  is  sent  through  the  tube  P.  This  looks
like  a   T-shaped  junction.  In  this  case,  half  of  the  sound  energy  is  sent  in  one
direction and the remaining half is sent in the opposite direction. Therefore, the
sound  waves  that  reach  the  receiver  R  can  travel  along  either  of  two  paths.  The
distance covered by the sound wave along any path from the speaker to receiver is
called the path length . From the Figure 11.30, we notice that the lower path length
is  fixed but  the  upper  path  length can be  varied by sliding the  upper  tube  i.e.,  is
varied. The difference in path length is known as path difference,

Δr = |r2 − r1|

Suppose the path difference is  allowed to be either zero or some integer (or
integral) multiple of wavelength λ. Mathematically, we have

Δr = nλ where, n = 0, 1, 2, 3,....

Then the two waves arriving from the paths r1 and r2 reach the receiver at any
instant are in phase (the phase difference is 0° or 2π) and interfere constructively as
shown in Figure 11.31.

Therefore, in this case, maximum sound intensity is detected by the receiver.
If the path difference is some half-odd-integer (or half-integral) multiple of
wavelength λ, mathematically,

2
r n l

D =

where, n = 1,3,... (n is odd) then the two waves arriving from the paths r1 and
r2 and reaching the receiver at any instant are out of phase (phase difference of π or
180°). They interfere destructively as shown in Figure 11.32. They will cancel each
other.

Therefore,  the  amplitude  is  minimum  or  zero  amplitude  which  means  no
sound.  No  sound  intensity  is  detected  by  the  receiver  in  this  case.  The  relation
between path difference and phase difference is phase difference = 2p

l
 (path

difference) (11.56)



i.e., 2 rp
j

l
D = D  or

2
r l

j
p

D = D

Example

Consider  two  sources  A  and  B  as  shown  in  the  figure  below.  Let  the  two
sources emit simple harmonic waves of same frequency but of different
amplitudes,  and  both  are  in  phase  (same  phase).  Let  O  be  any  point  equidistant
from A and B as shown in the figure. Calculate the intensity at points O, Y and X.
(X and Y are not equidistant from A & B)

Solution

The distance between OA and OB are the same and hence, the waves starting
from A and B reach O after covering equal distances (equal path lengths). Thus, the
path difference between two waves at O is zero.

OA − OB = 0

Since the waves are in the same phase, at the point O, the phase difference
between  two  waves  is  also  zero.  Thus,  the  resultant  intensity  at  the  point  O  is
maximum. Consider a point Y, such that the path difference between two waves is
λ. Then the phase difference at Y is

2 2 2rp p
j l p

l l
D = ´ D = ´ =

Therefore,  at  the  point  Y,  the  two waves  from A and B are  in  phase,  hence,
the intensity will be maximum.
Consider a point X, and let the path difference the between two waves be

2
l .

Then the phase difference at X is
2

2
p l

j p
l

D = =

Therefore, at the point X, the waves meet and are in out of phase, Hence, due
to destructive interference, the intensity will be minimum.

Example

Two  speakers  C  and  E  are  placed  5  m  apart  and  are  driven  by  the  same
source. Let a man stand at A which is 10 m away from the mid point O of C and E.
The man walks towards the point O which is  at  1 m (parallel  to OC) as shown in
the figure. He receives the first minimum in sound intensity at B. Then calculate the
frequency of the source. (Assume speed of sound = 343 m s-1)



Solution

The first minimum occurs when the two waves reaching the point B are 180°
(out of phase). The path difference

2
x l

D = .

In order to calculate the path difference, we have to find the path lengths x1

and x2. In a right triangle BDC,
DB = 10m and OC = 1

2
(5) = 2.5m

CD = OC −1 = (2.5 m)−1 m = 1.5 m
( ) ( )2 2

1 10 1.5 100 2.25

102.25 10.1

x

m

= + = +

= =

In a right triangle EFB,

DB = 10m and OE = 1
2

(5) = 2.5m = FA

FB = FA + AB = (2.5 m) + 1 m = 3.5 m
( ) ( )2 2

2 10 3.5 100 12.25

112.25 10.6

x

m

= + = +

= =

The path difference Δ x = x2 − x1 = 10.6 m−10.1 m = 0.5 m. Required that this path
difference

0.5 1.0
2

x ml
lD = = Þ =

To obtain the frequency of source, we use

343 343
1

0.3

vv f f Hz

kHz

l
l

= Þ = = =

=

If the speakers were connected such that already the path difference is
2
l . Now, the

path difference combines with a path difference of
2
l . This gives a total path

difference  of  λ which  means,  the  waves  are  in  phase  and  there  is  a  maximum
intensity at point B.

Formation of beats



When two or more waves superimpose each other with slightly different
frequencies, then a sound of periodically varying amplitude at a point is observed.
This phenomenon is known as beats. The number of amplitude maxima per second
is called beat frequency. If we have two sources, then their difference in frequency
gives the beat frequency.

Number of beats per second
n = | f1 - f2| per second

Additional information (Not for examination): Mathematical treatment of beats

For  mathematical  treatment,  let  us  consider  two  sound  waves  having  same
amplitude and slightly different frequencies f1 and f2, superimposed on each other.

Since the sound wave (pressure wave) is a longitudinal wave, let us consider
y1 = A sin(ω1t) and y2 = A sin(ω2t) to be displacements of the two waves at a point x
= 0 with same amplitude (region having high pressures) and different angular
frequencies ω1 and  ω2, respectively. Then when they are allowed to superimpose
we get the net displacement

y = y1 + y2

y = A sin(ω1 t) + A sin(ω2 t)
But

ω1 = 2πf1 and ω2 = 2πf2

Then
y = A sin(2πf1t) + A sin(2πf2t)

Using trigonometry formula

1 2 1 2

sin sin 2cos sin
2 2

2 cos 2 sin 2
2 2

C D C DC D

f f f fy A t tp p

- +æ ö æ ö+ = ç ÷ ç ÷
è ø è ø

æ - ö æ + öæ ö æ ö= ç ÷ ç ÷ç ÷ ç ÷
è ø è øè ø è ø

Let, 1 22 cos 2
2p

f fy A tp
æ - öæ ö= ç ÷ç ÷è øè ø

 (11.57)

and if f1 is slightly higher value than f2 then,

1 2 1 2

2 2
f f f f- +æ ö æ ö

ç ÷ ç ÷è ø è ø
�  means yp in equation (11.57) varies very slowly when compared

to 1 2

2
f f+æ ö

ç ÷è ø
. Therefore y = yP sin(2πfavgt) (11.58)



This represents a simple harmonic wave of frequency which is an arithmetic

average of frequencies of the individual waves, 1 2

2avg
f ff +æ ö= ç ÷è ø

 and  amplitude  yp

varies with time t.

Case (A):

The  resultant  amplitude  is  maximum  when  yp is maximum. Since
1 2cos 2 ,

2p
f fy ta p

æ - öæ ö
ç ÷ç ÷è øè ø

this means maximum amplitude occurs only when cosine takes

±1,
1 2

1 2

cos 2 1
2

2 ,
2

f f t

f f t n

p

p p

æ - öæ ö = ±ç ÷ç ÷
è øè ø

-æ öÞ =ç ÷
è ø

or,
( )1 2

nt
f f

=
-

 n = 0,1,2,3, ....

Hence, the time interval between two successive maxima is

( )2 1 3 2 1 2
1 2 1 2

1... lt t t t n f f
f f t t

- = - = = = - =
- -

Therefore,  the  number  of  beats  produced  per  second  is  equal  to  the  reciprocal  of
the time interval between two consecutive maxima i.e., |f1 - f2|.

Case (B):

The resultant amplitude is minimum i.e., it is equal to zero when yp is

minimum. Since 1 2cos 2
2p

f fy ta p
æ - öæ ö

ç ÷ç ÷è øè ø
, this means, minimum occurs only when

cosine takes 0,

( )

( ) ( )
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, where f1 ≠ f2 n = 0,1,2,3,.....



Hence, the time interval between two successive minima is

( )2 1 3 1 2
1 2 1 2

1 1... ;t t t n f f
f f t t

- = = = = =
- -

Therefore,  the  number  of  beats  produced  per  second  is  equal  to  the  reciprocal  of
the time interval between two consecutive minima i.e., |f1 - f2|.

Example

Consider  two  sound  waves  with  wavelengths  5  m  and  6  m.  If  these  two  waves
propagate  in  a  gas  with  velocity  330  ms-1.  Calculate  the  number  of  beats  per
second.

Solution
Given λ1 = 5m and λ2 = 6m
Velocity of sound waves in a gas is v = 330 ms-1
The relation between wavelength and velocity is vv f fl

l
= Þ =

The frequency corresponding to wavelength 1 1
330 66

1 5
vis f Hzl
l

= = =

The frequency corresponding to wavelength

2 2
330 55

2 6
vis f Hzl

l
= = =

The number of beats per second is
| f1 − f2| = |66 − 55| = 11 beats per sec

Example
Two  vibrating  tuning  forks  produce  waves  whose  equation  is  given  by  y1 =  5
sin(240π t) and y2 = 4 sin(244πt). Compute the number of beats per second.

Solution
Given y1 = 5 sin(240π t) and y2 = 4 sin(244πt)
Comparing with y = A sin(2π f1t), we get

2πf1 = 240π ⇒ f1 = 120Hz
2πf2 = 244π ⇒ f2 = 122Hz

The number of beats produced is | f1 − f2| = |120 − 122| = |− 2|=2 beats per sec

Standing Waves

Explanation of stationary waves

When the wave hits the rigid boundary it bounces back to the original
medium and can interfere with the original waves. A pattern is formed, which are
known as standing waves or stationary waves. Consider two harmonic progressive



waves  (formed  by  strings)  that  have  the  same  amplitude  and  same  velocity  but
move in opposite directions. Then the displacement of the first wave (incident
wave) is

y1 = A sin(kx − ωt) (11.59)
(waves move toward right)

and the displacement of the second wave (reflected wave) is

y2 = A sin(kx + ωt) (11.60)
(waves move toward left)

both will interfere with each other by the principle of superposition, the net
displacement is

= y1 + y2 (11.61)

Substituting equation (11.59) and equation (11.60) in equation (11.61), we get

y = A sin(kx − ωt)+A sin(kx + ωt) (11.62)

Using trigonometric identity, we rewrite equation (11.62) as

y (x, t) = 2A cos(ωt) sin(kx) (11.63)

This represents a stationary wave or standing wave, which means that this wave
does not move either forward or backward, whereas progressive or travelling
waves will move forward or backward. Further, the displacement of the particle in
equation (11.63) can be written in more compact form,

y(x,t) = Aʹ cos(ωt)

where, A  ʹ= 2Asin(kx), implying that the particular element of the string executes
simple harmonic motion with amplitude equals to A .ʹ  The  maximum  of  this
amplitude occurs at positions for which

( ) 3 5sin 1 , , , ...
2 2 2

kx kx mp p p
p= Þ = =

where  m  takes  half  integer  or  half  integral  values.  The  position  of  maximum
amplitude is known as antinode. Expressing wave number in terms of wavelength,
we can represent the anti-nodal positions as



2 1
2 2m

mx l+æ ö= ç ÷
è ø

, where, m = 0,1,2... (11.64)

For m = 0 we have maximum at 0 2
x l

=

For m = 1 we have maximum at 1
3
4

x l
=

For m = 2 we have maximum at 2
5
4

x l
=  and so on.

The distance between two successive antinodes can be computed by
( )

1

2 1 12 1
2 2 2 2 2m m

mmx x l l l
-

+ +æ ö+æ ö- = - =ç ÷ç ÷è ø è ø
Similarly, the minimum of the amplitude A' also occurs at some points in the space,
and these points can be determined by setting

sin(kx)= 0 ⇒ k x = 0,π,2π,3π,… = n π
where n takes integer or integral values. Note that the elements at these points do
not  vibrate  (not  move),  and the  points  are  called nodes.  The nthnodal positions is
given by,

2nx n l
= where, n = 0,1,2,... (11.65)

For n = 0 we have minimum at
x0 = 0

For n = 1 we have minimum at

1 2
x l

=

For n = 2 we have maximum at
x2 = λ

and so on.

The distance between any two successive nodes can be calculated as

( )1 1
2 2 2n nx x n nl l l

-- = - - =

Example
Compute the distance between anti-node and neighbouring node.

Solution
For nth mode, the distance between antinode and neighbouring node is



2 1
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nx nl l l+æ öD = - =ç ÷
è ø

Characteristics of stationary waves

(1) Stationary waves are characterised by the confinement of a wave disturbance
between two rigid boundaries. This means, the wave does not move forward or
backward in a medium (does not advance), it remains steady at its place. Therefore,
they are called “stationary waves or standing waves”.

(2) Certain points in the region in which the wave exists have maximum amplitude,
called as anti-nodes and at certain points the amplitude is minimum or zero, called
as nodes.
(3) The distance between two consecutive nodes (or) anti-nodes is

2
l .

(4) The distance between a node and its neighbouring anti-node is
4
l .

(5) The transfer of energy along the standing wave is zero.

Comparison between progressive and stationary waves
S.No Progressive waves Stationary waves
1. Crests and troughs are formed in

transverse progressive waves, and
compression and rarefaction are
formed in longitudinal progressive
waves. These waves move forward or
backward in  a  medium i.e.,  they will
advance in a medium with a definite
velocity.

Crests and troughs are formed in
transverse stationary waves, and
compression and rarefaction are
formed in longitudinal stationary
waves. These waves neither move
forward nor backward in a medium
i.e.,  they  will  not  advance  in  a
medium.

2. All the particles in the medium
vibrate such that the amplitude of the
vibration for all particles is same.

Except at nodes, all other particles of
the medium vibrate such that
amplitude of vibration is different
for different particles. The
amplitude is minimum or zero at
nodes and maximum at antinodes.

3. These wave carry energy while
propagating.

These waves do not transport
energy.

Stationary waves in sonometer



Sono means sound related, and sonometer implies sound-related
measurements. It is a device for demonstrating the relationship between the
frequency of the sound produced in the transverse standing wave in a string, and
the tension, length and mass per unit length of the string. Therefore, using this
device, we can determine the following quantities:

(a) the frequency of the tuning fork or frequency of alternating current
(b) the tension in the string
(c) the unknown hanging mass

Construction:

The sonometer  is  made up of  a  hollow box which is  one  meter  long with  a
uniform metallic  thin string attached to it.  One end of the string is  connected to a
hook and the other end is connected to a weight hanger through a pulley. Since
only one string is used, it is also known as monochord. The weights are added to
the free end of the wire to increase the tension of the wire. Two adjustable wooden
knives are put over the board, and their positions are adjusted to change the
vibrating length of the stretched wire.

Working :

A transverse stationary or standing wave is produced and hence, at the knife
edges P and Q, nodes are formed. In between the knife edges, anti-nodes are
formed.

If the length of the vibrating element is l then
2

2
l ll

l= Þ =

Let f be the frequency of the vibrating element, T the tension of in the string and μ
the mass per unit length of the string. Then using equation (11.13), we get

1
21

v Tf
l m

= = in Hertz (11.66)

Let ρ be the density of the material of the string and d be the diameter of the string.
Then the mass per unit length μ,

μ = Area × density = πr2ρ =
2

4
dpr

Frequency 2

1
2

4

v Tf
dl p rl

= =

1 Tf
ld pr

=



Example

Let f be the fundamental frequency of the string. If the string is divided into three
segments l1, l2 and l3 such that the fundamental frequencies of each segments be f1,
f2 and f3, respectively. Show that

1 2 3

1 1 1 1
f f f f

= + +

Solution

For a fixed tension T and mass density μ, frequency is inversely proportional to the
string length i.e.

1
2 2
v vf f l

l l f
a Þ = Þ =

For the first length segment

1 1
1 12 2

v vf l
l f

= Þ =

For the second length segment

2 2
2 22 2

v vf l
l f

= Þ =

Therefore, the total length
l=l1 +l2+l3

Fundamental frequency and overtones

Let  us  now  keep  the  rigid  boundaries  at  x  =  0  and  x  =  L  and  produce  a
standing waves by wiggling the string (as in plucking strings in a guitar). Standing
waves with a specific wavelength are produced. Since, the amplitude must vanish
at  the  boundaries,  therefore,  the  displacement  at  the  boundary  must  satisfy  the
following conditions y(x = 0, t) = 0 and y(x = L, t) = 0. Since the nodes formed are at

a distance
2

nl apart, we have
2

nn Llæ ö =ç ÷
è ø

, where n is an integer, L is the length between

the  two  boundaries  and  λn  is  the  specific  wavelength  that  satisfy  the  specified
boundary conditions. Hence,

2
n

L
n

l æ ö= ç ÷
è ø

Therefore,  not  all  wavelengths  are  allowed.  The (allowed)  wavelengths  should fit
with  the  specified boundary conditions,  i.e.,  for  n  =  1,  the  first  mode of  vibration
has specific wavelength



For n = 3, the third mode of vibration has specific wavelength

and so on.

The  frequency  of  each  mode  of  vibration  (called  natural  frequency)  can  be
calculated.
We have,

The lowest natural frequency is called the fundamental frequency.

The second natural frequency is called the first over tone.

The third natural frequency is called the second over tone.

and so on.

Therefore,  the  nth  natural  frequency  can  be  computed  as  integral  (or  integer  )
multiple of fundamental frequency, i.e.,

fn = nf1, where n is an integer. If natural frequencies are written as integral multiple
of  fundamental  frequencies,  then  the  frequencies  are  called  harmonics.  Thus,  the
first  harmonic  is  f1 =  f1  (the  fundamental  frequency  is  called  first  harmonic),  the
second harmonic is f2 = 2f1 , the third harmonic is f3 = 3f1 etc.

Example



Consider  a  string  in  a  guitar  whose  length  is  80  cm  and  a  mass  of  0.32  g  with
tension 80 N is plucked. Compute the first four lowest frequencies produced when
it is plucked.

Solution
The velocity of the wave

The length of the string, L = 80 cm=0.8 m The mass of the string, m = 0.32 g =0.32 ×
10-3kg

Therefore, the linear mass density,
3

3 10.32 10 0.4 10
0.8

kgmm - -´
= = ´

The tension in the string, T = 80 N

The wavelength corresponding to the fundamental frequency f1 is λ1 = 2L = 2 ×
0.8 = 1.6 m
The fundamental frequency f1 corresponding to the wavelength λ1

Similarly,  the  frequency  corresponding  to  the  second  harmonics,  third  harmonics
and fourth harmonics are

f2 = 2f1 = 559 Hz
f3 = 3f1 = 838.5 Hz
f4 = 4f1 = 1118 Hz

Laws of transverse vibrations in stretched strings

There  are  three  laws  of  transverse  vibrations  of  stretched  strings  which  are
given as follows:

(i) The law of length :

For a given wire with tension T (which is  fixed) and mass per unit  length μ
(fixed) the frequency varies inversely with the vibrating length. Therefore,



⇒l×f = C, where C is a constant

(ii) The law of tension:

For  a  given vibrating length l  (fixed)  and mass  per  unit  length μ (fixed)  the
frequency varies directly with the square root of the tension T,

f Ta
f TaÞ .where A is a constant

(iii) The law of mass:

For  a  given  vibrating  length  l  (fixed)  and  tension  T  (fixed)  the  frequency
varies inversely with the square root of the mass per unit length μ,

1f
u

a

Bf
m

Þ = , where B is a constant.

INTENSITY AND LOUDNESS

Consider  a  source  and  two  observers  (listeners).  The  source  emits  sound
waves  which  carry  energy.  The  sound  energy  emitted  by  the  source  is  same
regardless of whoever measures it, i.e., it is independent of any observer standing
in that region. But the sound received by the two observers may be different; this is
due to some factors like sensitivity of  ears,  etc.  To quantify such thing,  we define
two different quantities known as intensity and loudness of sound.

Intensity of sound

When  a  sound  wave  is  emitted  by  a  source,  the  energy  is  carried  to  all
possible surrounding points. The average sound energy emitted or transmitted per
unit time or per second is called sound power. Therefore, the intensity of sound is
defined  as  “the  sound  power  transmitted  per  unit  area  taken  normal  to  the
propagation of the sound wave”.

For  a  particular  source  (fixed  source),  the  sound  intensity  is  inversely
proportional to the square of the distance from the source.



This is known as inverse square law of sound intensity.

Example
A baby cries on seeing a dog and the cry is detected at a distance of 3.0 m such that
the  intensity  of  sound at  this  distance  is  10-2 W m-2.  Calculate  the  intensity  of  the
baby’s cry at a distance 6.0 m.

Solution

I1 is the intensity of sound detected at a distance 3.0 m and it is given as 10-2 W m-2.
Let I2 be the intensity of sound detected at a distance 6.0 m. Then, r1 = 3.0 m, r2 = 6.0
m

and since 2

1I
r

a

the  power  output  does  not  depend  on  the  observer  and  depends  on  the  baby.
Therefore,

Loudness of sound
Two  sounds  with  same  intensities  need  not  have  the  same  loudness.  For

example, the sound heard during the explosion of balloons in a silent closed room
is very loud when compared to the same explosion happening in a noisy market.
Though the intensity of the sound is the same, the loudness is not. If the intensity of
sound  is  increased  then  loudness  also  increases.  But  additionally,  not  only  does
intensity  matter,  the  internal  and subjective  experience  of  “how loud a  sound is”
i.e.,  the  sensitivity  of  the  listener  also  matters  here.  This  is  often  called  loudness.
That  is,  loudness  depends  on both  intensity  of  sound wave and sensitivity  of  the
ear (It is purely observer dependent quantity which varies from person to person)
whereas the intensity of sound does not depend on the observer.  The loudness of
sound is  defined as  “the  degree  of  sensation of  sound produced in  the  ear  or  the
perception of sound by the listener”.

Intensity and loudness of sound

Our ear can detect the sound with intensity level ranges from 10-2 Wm-2 to 20
W m-2.



According  to  Weber-Fechner’s  law,  “loudness  (L)  is  proportional  to  the
logarithm  of  the  actual  intensity  (I)  measured  with  an  accurate  non-human
instrument”. This means that

L ∝ ln I
L = k ln I

where k is a constant, which depends on the unit of measurement. The difference
between  two  loudnesses,  L1  and  L0  measures  the  relative  loudness  between  two
precisely  measured  intensities  and  is  called  as  sound  intensity  level.
Mathematically, sound intensity level is

1
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If k = 1, then sound intensity level is measured in bel, in honour of Alexander

Graham Bell. Therefore,
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However,  this  is  practically  a  bigger  unit,  so  we  use  a  convenient  smaller

unit, called decibel. Thus, decibel 1
10

=  bel. Therefore, by multiplying and dividing

by 10, we get

For practical purposes, we use logarithm to base 10 instead of natural logarithm,

Example

The sound level from a musical instrument playing is 50 dB. If three identical
musical  instruments  are  played  together  then  compute  the  total  intensity.  The
intensity of the sound from each instrument is 10-12 W m-2

Solution
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Since three musical instruments are played, therefore, Itotal = 3I1 = 3 × 10-7 Wm-2.

VIBRATIONS OF AIR COLUMN

Musical instruments like flute, clarinet, nathaswaram,  etc are known as wind
instruments. They work on the principle of vibrations of air columns. The simplest
form of a wind instrument is  the organ pipe.  It  is  made up of a wooden or metal
pipe  which  produces  the  musical  sound.  For  example,  flute,  clarinet  and
nathaswaram  are  organ  pipe  instruments.  Organ  pipe  instruments  are  classified
into two types:

(a) Closed organ pipes:

It is a pipe with one end closedand the other end open. If one end of a pipeis
closed,  the  wave  reflected  at  this  closedend  is  180°  out  of  phase  with  the
incomingwave.  Thus  there  is  no  displacement  of  the  particles  at  the  closed  end.
Therefore,  nodes are formed at the closed end and anti-nodes are formed at open
end.

Let  us  consider  the  simplest  mode  of  vibration  of  the  air  column  called  the
fundamental mode. Anti-node is  formed at the open end and node at closed end.
From  the  Figure,  let  L  be  the  length  of  the  tube  and  the  wavelength  of  the  wave
produced. For the fundamental mode of vibration, we have,

The frequency of the note emitted is

which is called the fundamental note.



The frequencies  higher  than fundamental  frequency can be  produced by blowing
air strongly at open end. Such frequencies are called overtones.

The  Figure  shows  the  second  mode  of  vibration  having  two  nodes  and  two
antinodes, for which we have, from example.

second mode of vibration
having two nodes and two anti-nodes
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The frequency for this,
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is  called  first  over  tone,  since  here,  the  frequency  is  three  times  the  fundamental
frequency it is called third harmonic.

The Figure shows third mode of vibration having three nodes and three anti-nodes.

Third mode of vibration
having three nodes and three anti-nodes

we have,
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is called second over tone, and since n = 5 here, this is called fifth harmonic. Hence,
the closed organ pipe has only odd harmonics and frequency of the nth harmonic is
fn = (2n+1)f1. Therefore, the frequencies of harmonics are in the ratio

f1 : f2 : f3 : f4 :…= 1 : 3 : 5 : 7 : …

(b) Open organ pipes:

It  is  a  pipe  with  both  the  ends  open.  At  both  open  ends,  anti-nodes  are
formed.  Let  us  consider  the  simplest  mode  of  vibration  of  the  air  column  called
fundamental mode. Since anti-nodes are formed at the open end, a node is formed
at the mid-point of the pipe.

Antinodes are formed at
the open end and a node is formed at

the middle of the pipe.

From Figure, if L be the length of the tube, the wavelength of the wave produced is
given by

The frequency of the note emitted is



which is called the fundamental note.

The  frequencies  higher  than  fundamental  frequency  can  be  produced  by
blowing air strongly at one of the open ends. Such frequencies are called overtones.

Second mode of
vibration in open pipes having two

nodes and three anti-nodes

The  Figure  shows  the  second  mode  of  vibration  in  open  pipes.  It  has  two  nodes
and three anti-nodes, and therefore,

L =λ2 or λ2 = L
The frequency

is called first over tone. Since n = 2 here, it is called the second harmonic.

Third mode of vibration
having three nodes and four anti-nodes



The Figure above shows the third mode of vibration having three nodes and
four anti-nodes

The frequency

is called second over tone. Since n = 3 here, it is called the third harmonic.

Hence, the open organ pipe has all the harmonics and frequency of nth harmonic is
fn = nf1. Therefore, the frequencies of harmonics are in the ratio

f1 : f2 : f3 : f4 :…= 1 : 2 : 3 : 4 : …

Example

If a flute sounds a note with 450Hz, what are the frequencies of the second, third,
and  fourth  harmonics  of  this  pitch?.  If  the  clarinet  sounds  with  a  same  note  as
450Hz, then what are the frequencies of the lowest three harmonics produced ?.

Solution

For a flute which is an open pipe, we have
Second harmonics f2 = 2 f1 = 900 Hz
Third harmonics f3 = 3 f1 = 1350 Hz
Fourth harmonics f4 = 4 f1 = 1800 Hz

For a clarinet which is a closed pipe, we have
Second harmonics f2 = 3 f1 = 1350 Hz
Third harmonics f3 = 5 f1 = 2250 Hz
Fourth harmonics f4 = 7 f1 = 3150 Hz

Example

If the third harmonics of a closed organ pipe is equal to the fundamental frequency
of an open organ pipe, compute the length of the open organ pipe if the length of
the closed organ pipe is 30 cm.

Solution



Let  l2 be  the  length  of  the  open  organ  pipe,  with  l1  =30  cm  the  length  of  the
closedorgan pipe.It is given that the third harmonic of closed organ pipe is equal to
the fundamental frequency of open organ pipe.
The third harmonic of a closed organ pipe is

The fundamental frequency of open organ pipe is

Therefore,

Resonance air column apparatus

The  resonance  air  column  apparatus  is  one  of  the  simplest  techniques  to
measure the speed of sound in air at room temperature. It consists of a cylindrical
glass  tube  of  one  meter  length  whose  one  end  A  is  open  and  another  end  B  is
connected to the water reservoir R through a rubber tube as shown in Figure. This
cylindrical glass tube is mounted on a vertical stand with a scale attached to it. The
tube is partially filled with water and the water level can be adjusted by raising or
lowering the water in the reservoir R. The surface of the water will act as a closed
end  and  other  as  the  open  end.  Therefore,  it  behaves  like  a  closed  organ  pipe,
forming  nodes  at  the  surface  of  water  and  antinodes  at  the  closed  end.  When  a
vibrating tuning fork is brought near the open end of the tube, longitudinal waves
are  formed  inside  the  air  column.  These  waves  move  downward  as  shown  in
Figure,  and  reach  the  surfaces  of  water  and  get  reflected  and  produce  standing
waves.  The length of the air  column is varied by changing the water level  until  a
loud sound is produced in the air column. At this particular length the frequency of
waves  in  the  air  column resonates  with  the  frequency of  the  tuning fork  (natural
frequency  of  the  tuning  fork).  At  resonance,  the  frequency  of  sound  waves
produced is  equal  to  the  frequency of  the  tuning fork.  This  will  occur  only  when

the  length  of  air  column  is  proportional  to 1
4
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of  the  wavelength  of  the  sound

waves produced.

Let the first resonance occur at length L1, then



But since the antinodes are not exactly formed at the open end, we have to include
a  correction,  called  end  correction  e,  by  assuming  that  the  antinode  is  formed  at
some  small  distance  above  the  open  end.  Including  this  end  correction,  the  first
resonance is

Now the length of the air column is increased to get the second resonance. Let L2 be
the length at which the second resonance occurs. Again taking end correction into
account, we have

In order to avoid end correction, let us take the difference of equation we get

The speed of the sound in air at room temperature can be computed by using
the formula

v = f λ = 2f ΔL

Further, to compute the end correction, we use equations, we get
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Example

A frequency generator  with  fixed frequency of  343  Hz is  allowed to  vibrate
above a 1.0 m high tube. A pump is switched on to fill the water slowly in the tube.
In order to get resonance, what must be the minimum height of the water?. (speed
of sound in air is 343 m s−1)

Solution
The wavelength, c

f
l =

1343 1.0
343

ms m
Hz

l = =



Let the length of the resonant columns be L1,  L2 and L3. The first resonance occurs
at length L1

1
1 0.25

4 4
L ml

= = =

The second resonance occurs at length L2

2
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The third resonance occurs at length
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and so on.
Since total length of the tube is 1.0 m the third and other higher resonances do not
occur. Therefore, the minimum height of water Hmin for resonance is,

Hmin = 1.0 m − 0.75 m = 0.25 m

Example

A student performed an experiment to determine the speed of sound in air using
the resonance column method. The length of the air column that resonates in the
fundamental mode with a tuning fork is 0.2 m. If the length is varied such that the
same tuning fork resonates with the first overtone at 0.7 m. Calculate the end
correction.

Solution

End correction
( )2 1 0.7 3 0.23 0.05
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Example

Consider  a  tuning  fork  which  is  used  to  produce  resonance  in  an  air  column.  A
resonance  air  column  is  a  glass  tube  whose  length  can  be  adjusted  by  a  variable
piston. At room temperature, the two successive resonances observed are at 20 cm
and 85 cm of the column length. If the frequency of the length is 256 Hz, compute
the velocity of the sound in air at room temperature.

Solution

Given two successive length (resonance) to be L1 = 20 cm and L2 = 85 cm
The frequency is f = 256 Hz

v = f λ = 2f ΔL = 2f (L2 − L1)
= 2 × 256 × (85 − 20) × 10 −2 m s−1



v = 332.8 cm−1

DOPPLER EFFECT

Often we have noticed that the siren sound coming from a police vehicle or
ambulance increases when it comes closer to us and decreases when it moves away
from us. When we stand near any passing train the train whistle initially increases
and then it  will  decrease.  This  is  known as  Doppler  Effect,  named after  Christian
Doppler (1803 – 1853). Suppose a source produces sound with some frequency, we
call  it  the  as  source  frequency  fs.  If  the  source  and  an  observer  are  at  a  fixed
distance then the observer observes the sound with frequency f0. This is the same as
the  sound  frequency  produced  by  the  source  fs,  i.e.,  f0 =  fs.  Hence,  there  is  no
difference in frequency, implying no Doppler effect is observed.

Both source and observer are
stationary. No Doppler effect is observed.

What happens if  either source or an observer or both move?.  Certainly,  fo ≠
fs. That is, when the source and the observer are in relative motion with respect to
each  other  and  to  the  medium  in  which  sound  propagates,  the  frequency  of  the
sound  wave  observed  is  different  from  the  frequency  of  the  source.  This
phenomenon is  called Doppler Effect.  The frequency perceived by the observer is
known  as  apparent  frequency.  We  can  consider  the  following  situations  for  the
study of Doppler effect in sound waves

(a) Source and Observer: We can consider either the source or observer in motion
or both are in motion. Further we can treat the motion to be along the line joining
the source and the observer, or inclined at an angle θ to this line.

(b) Medium:  We can treat the medium to be stationary or the direction of motion
of the medium is along or opposite to the direction of propagation of sound.

(c) Speed of Sound: We can also consider the case where speed of the source or an
observer is greater or lesser than the speed of sound.

In  the  following  section,  we  make  the  following  assumptions:  the  medium  is
stationary, and motion is along the line joining the source and the observer, and the



speeds of the source and the observer are both less than the speed of sound in that
medium.

We consider three cases:
(i) Source in motion and Observer is at rest.
(a) Source moves towards observer
(b) Source moves away from the observer

(ii) Observer in motion and Source is at rest.
(a) Observer moves towards Source
(b) Observer receding away from the Source

(iii) Both are in motion
(a) Source and Observer approach each other
(b) Source and Observer recede from each other
(c) Source chases Observer
(d) Observer chases Source

Stationary observer and stationary source means the observer and source are both
at rest with respect to medium respectively

Source in motion and the observer at rest

(a)  Source moves towards the observer Suppose a source S moves to the right (as
shown  in  Figure)  with  a  velocity  vs  and  let  the  frequency  of  the  sound  waves
produced by the source be fs. We assume the velocity of sound in a medium is v.
The compression (sound wave front) produced by the source S at three successive
instants of time are shown in the Figure. When S is at position x1 the compression
is at C1. When S is at position x2, the compression is at C2 and similarly for x3 and
C3.  Assume  that  if  C1 reaches the observer’s position A then at that instant C2

reaches the point B and C3 reaches the point C as shown in the Figure 11.46.  It  is
obvious to see that the distance between compressions C2 and  C3 is shorter than
distance between C1 and C2. This means the wavelength decreases when the source
S  moves  towards  the  observer  O  (since  sound  travels  longitudinally  and
wavelength is the distance between two consecutive compressions). But frequency
is inversely related to wavelength and therefore, frequency increases.

Source S moves towards an
Observer O (right) with velocity

Let λ be the wavelength of the source S as measured by the observer when S is at
position x1 and  λ  ʹ be wavelength of the source observed by the observer when S



moves to position x2. Then the change in wavelength is Δλ = λ− λʹ = vst, where t is
the time taken by the source to travel between x1 and x2. Therefore,

On substituting equation (11.84) in equation (11.83), we get

Since frequency is inversely proportional to wavelength, we have

Since, 1,sv
v
�  we use the binomial expansion and retaining only first order in sv

v
, we

get

(b) Source moves away from the observer:

Since the velocity here of the source is opposite in direction when compared
to  case  (a),  therefore,  changing the  sign of  the  velocity  of  the  source  in  the  above
case i.e, by substituting (vs→ −vs ) in equation (11.83), we get

Using binomial expansion again, we get,

Observer in motion and source at rest

(a) Observer moves towards Source

Observer moves towards Source

Let us assume that the observer O moves towards the source S with velocity vo. The
source  S  is  at  rest  and the  velocity  of  sound waves  (with  respect  to  the  medium)



produced by the source is v. From the Figure, we observe that both vo and v are in
opposite direction. Then, their relative velocity is vr = v + v0. The wavelength of the
sound  wave  is v

f
l = ,  which  means  the  frequency  observed  by  the  observer  O  is

1
rvf

l
= . Then

(b) Observer recedes away from the Source

If  the  observer  O  is  moving  away  (receding  away)  from  the  source  S,  then
velocity v0 and v moves in the same direction. Therefore, their relative velocity is vr

= v − v0. Hence, the frequency observed by the observer O is

Both are in motion
(a) Source and observer approach each other

Source and Observer approach towards each other.
Let vs and v0 be the respective velocities of source and observer approaching each
other.  In order to calculate the apparent frequency observed by the observer,  as a
simple  calculation,  let  us  have  a  dummy  (behaving  as  observer  or  source)  in
between  the  source  and  observer.  Since  the  dummy  is  at  rest,  the  dummy
(observer) observes the apparent frequency due to approaching source as given in
equation as

At  that  instant  of  time,  the  true  observer  approaches  the  dummy  from  the  other
side. Since the source (true source) comes in a direction opposite to true observer,
the  dummy  (source)  is  treated  as  stationary  source  for  the  true  observer  at  that
instant.  Hence,  apparent  frequency  when  the  true  observer  approaches  the
stationary source (dummy source), from equation is



Since this is true for any arbitrary time, therefore, comparing equation (11.91) and
equation (11.92), we get

Hence, the apparent frequency as seen by the observer is

 (b) Source and observer recede from each other

Source and Observer resides from each other
Here,  we can derive  the  result  as  in  the  previous  case.  Instead of  a  detailed

calculation, by inspection from Figure, we notice that the velocity of the source and
the  observer  each  point  in  opposite  directions  with  respect  to  the  case  in  (a)  and
hence,  we  substitute  (vs → −vs)  and  (v0 → −v0)  in  equation,  and  therefore,  the
apparent frequency observed by the observer when the source and observer recede
from each other is

(c) Source chases the observer

Source chases observer

Only  the  observer’s  velocity  is  oppositely  directed  when  compared  to  case  (a).
Therefore, substituting (v0 → −v0) in equation, we get



(d) Observer chases the source

Observer chases Source

Only  the  source  velocity  is  oppositely  directed  when  compared  to  case  (a).
Therefore, substituting vs → −vs in equation, we get

Discuss with your teacher
“Doppler effect in light”
“Doppler  effect  in  sound  is  asymmetrical  where  as  Doppler  effect  in  light  is
symmetrical”

Applications of Doppler effect

Doppler effect has many applications. Specifically Doppler effect in light has
many applications in astronomy. As an example, while observing the spectra from
distant  objects  like  stars  or  galaxies,  it  is  possible  to  determine  the  velocities  at
which distant objects like stars or galaxies move towards or away from Earth. If the
spectral lines of the star are found to shift towards red end of the spectrum (called
as red shift) then the star is receding away from the Earth. Similarly, if the spectral
lines of the star are found to shift towards the blue end of the spectrum (called as
blue  shift)  then  the  star  is  approaching  Earth.  Let  Δλ  be  the  Doppler  shift.  Then

v
c

l lD =  where  v  is  the  velocity  of  the  star.  It  may  be  noted  that  Doppler  shift

measures only the radial component (along the line of sight) of the relative velocity
v.

Example

A sound of frequency 1500 Hz is emitted by a source which moves away from an
observer and moves towards a cliff at a speed of 6 ms-1.
(a) Calculate the frequency of the sound which is coming directly from the source.



(b)  Compute  the  frequency  of  sound  heard  by  the  observer  reflected  off  the  cliff.
Assume the speed of sound in air is 330 m s-1

Solution
(a)  Source  is  moving away and observer  is  stationary,  therefore,  the  frequency of
sound heard directly from source is

(b) Sound is reflected from the cliff and reaches observer, therefore,

Example

An  observer  observes  two  moving  trains,  one  reaching  the  station  and  other
leaving  the  station  with  equal  speeds  of  8  m  s−1.  If  each  train  sounds  its  whistles
with frequency 240 Hz, then calculate the number of beats heard by the observer.

Solution:

Observer is stationary
(i) Source (train) is moving towards an observer:
Apparent frequency due to train arriving station is

(ii) Source (train) is moving away form an observer:
Apparent frequency due to train leaving station is

So the number of beats = | fin -fout| = (246-234) = 12




