

Building block of the Universe:

The basic constituent of the universe is luminous matter i.e., galaxies which are really the collection of billions of stars. The universe contains everything that exists including the Earth, planets, stars, space, and galaxies. This includes all matter, energy and even time.

The observable universe is around 93 billion light years (1 light year $=$ the distance that light travels in one year, which is $9.4607 \times 1012 \mathrm{~km}$) across.

All the atoms together only make up around four percent of the universe. The majority of the universe consists of something scientists call dark matter and dark energy.

It is still expanding today. Over the next three minutes, the temperature dropped below 1 billion degrees Celsius. After 300000 years, the Universe had cooled to about 3000 degrees. Atomic nuclei could finally capture electrons to form atoms. At that stage of the evolution of the Universe, it was filled with clouds of hydrogen and helium gas. Giant clouds of hydrogen and helium were gradually drawn to the places where dark matter was most dense, forming the first galaxies, stars, and everything else seen today.

Galaxies:

A galaxy is a massive collection of gas, dust, and billions of stars and their solar systems. Scientists believe that there are one hundred billion (1011) galaxies in the observable universe.

Immediately after the Big Bang, clouds of gases began to compress under gravity to form the building blocks of galaxies.

Milky Way:

The Milky Way is the galaxy in which our solar system is located. The Milky Way includes stars smaller than our Sun as well as many other stars that are thousands of times bigger than the Sun.

The galaxy that is closest to our Milky Way is Andromeda. In Indian mythology, this patch called as Akasha Ganga.

Tucked inside the very center of the galaxy is a monstrous black hole, billions of times as massive as the sun. Although, black holes cannot be directly viewed, scientists can see their gravitational effects as they change and distort the paths of the material around it.

Constellation:

A constellation is a recognizable pattern of stars in the night sky when viewed from the Earth. International Astronomical Union has classified 88 constellations to cover the entire celestial sphere.

Ursa Major (Saptha Rishi Mandalam) is a large constellation and it covers a large part of the sky. The most striking feature of this constellation is a group of seven bright stars known as big dipper (seven Sages in Indian astronomy).

Different constellations become visible in the sky at different times in the year. This happens due to the revolution of the Earth around the Sun. Unlike galaxy, constellations are mere optical appearance and not real objects.

People in different cultures and countries adopted their own sets of constellation outlines. There are 88 formally accepted constellations. Aries, Gemini, Leo, Orion, Scorpius and Cassiopeia are some of the constellations.

Stars :

Stars are the fundamental building blocks of galaxies. Stars produce heat, light, ultraviolet rays, x-rays, and other forms of radiation. They are largely composed of gas and plasma (a superheated state of matter). Stars are built by hydrogen gases. Hydrogen atoms fuse together to form helium atoms and in the process they produce large amount of heat.

Stars also appear to be in different colours depending on their temperature. Hot stars are white or blue, whereas cooler stars are orange or red in colour. They also occur in many sizes.

The Solar System:

It consists of large number of bodies such as planets, comets, asteroids and meteors. The gravitational force of attraction between the Sun and these objects keep them revolving around it.

The Sun is a medium sized star, a very fiery spinning ball of hot gases. Three quarters of the Sun has hydrogen gas and one quarter has helium gas. It is over a million times as big as the Earth. Sun is believed to be more than 4.6 billion years old.

Planets:

A planet revolves around the Sun along a definite curved path which is called an orbit. It is elliptical. The time taken by a planet to complete one revolution is called its period of revolution. Besides revolving around the Sun, a planet also rotates on its own axis like a top. The time taken by a planet to complete one rotation is called its period of rotation. The period of rotation of the Earth is 23 hours and 56 minutes and so the length of a day on Earth is taken as 24 hours.

The four planets grouped together in the inner solar system are Mercury, Venus, Earth and Mars. They are called inner planets. They have a surface of solid rock crust and so are called terrestrial or rocky planets. Their insides, surfaces and atmospheres are formed in a similar way and form similar pattern.

The four large planets Jupiter, Saturn, Uranus and Neptune spread out in the outer solar system and slowly orbit the Sun are called outer planets. They are made of hydrogen, helium and other gases in huge amounts and have very dense atmosphere. They are known as gas giants and are called gaseous planets.

Mercury: Mercury is a rocky planet nearest to the Sun. It is very hot during day but very cold at night. Mercury can be easily observed thorough telescope than naked eye since it is very faint and small. It always appears in the eastern horizon or western horizon of the sky.

Venus: Venus is a special planet from the Sun, almost the same size as the Earth. It is the hottest planet in our solar system. After our moon, it is the brightest heavenly body in our night sky. This planet spins in the opposite direction to all other planets. So, unlike Earth, the Sun rises in the west and sets in the east here. Venus can be seen clearly through naked eye. It always appears in the horizon of eastern or western sky.

The Earth: The Earth where we live is the only planet in the solar system which supports life. Due to its right distance from the Sun it has the right temperature, the presence of water and suitable atmosphere and a blanket of ozone. All these have made continuation of life possible on the Earth. From space, the Earth appears bluish green due to the reflection of light from water and land mass on its surface.

Mars: The first planet outside the orbit of the Earth is Mars. It appears slightly reddish and therefore it is also called the red planet. It has two small natural satellites (Deimos and Phobos).

Jupiter: Jupiter is called as Giant planet. It is the largest of all planets (about 11 times larger and 318 times heavier than Earth). It has 3 rings and 65 moons. Its moon Ganymede is the largest moon of our solar system.

Saturn: Known for its bright shiny rings, Saturn appears yellowish in colour. It is the second biggest and a giant gas planet in the outer solar system. At least 60 moons are present - the largest being Titan. Titan is the only moon in the solar system with clouds. Having least density of all (30 times less than Earth), this planet is so light.

Uranus: Uranus is a cold gas giant and it can be seen only with the help of large telescope. It has a greatly tilted axis of rotation. As a result, in its orbital motion it appears to roll on its side. Due to its peculiar tilt, it has the longest summers and winters each lasting 42 years

Neptune: It appears as Greenish star. It is the eighth planet from the Sun and is the windiest planet. Every 248 years, Pluto crosses its orbit. This situation continues for 20 years. It has 13 moons - Triton being the largest. Triton is the only moon in the solar system that moves in the opposite direction to the direction in which its planet spins.

Asteroids: There is a large gap in between the orbits of Mars and Jupiter. This gap is occupied by a broad belt containing about half a million pieces of rocks that were left over when the planets were formed and now revolve around the

Sun. These are called asteroids. The biggest asteroid is Ceres - 946 km across. Every 50 million years, the Earth is hit by an asteroid nearing 10 km across. Asteroids can only be seen through large telescope.

Comets: are lumps of dust and ice that revolve around the Sun in highly elliptical orbits. Their period of revolution is very long. When approaching the Sun, a comet vaporizes and forms a head and tail. Some of the biggest comets ever seen had tails 160 million (16 crores) km long. This is more than the distance between the Earth and the Sun. Many comets are known to appear periodically. One such comet is Halley's Comet, which appears after nearly every 76 years. It was last seen in 1986. It will next be seen in 2062.
Meteors and Meteorites: Meteors are small piece of rocks scattered throughout the solar system. Traveling with high speed, these small pieces come closer to the Earth's atmosphere and are attracted by the gravitational force of Earth. Most of them are burnt up by the heat generated due to friction in the Earth's atmosphere. They are called meteors. Some of the bigger meteors may not be burnt completely and they fall on the surface of Earth. These are called meteorites.

SATELLITES:

Satellites A body moving in an orbit around a planet is called satellite. In order to distinguish them from the man made satellites (called as artificial satellites), they are called as natural satellites or moons. Satellite of the Earth is called Moon (other satellites are written as moon). We can see the Earth's satellite Moon, because it reflects the light of the Sun. Satellite moves around the planets due to gravity, and the centripetal force. Among the planets in the solar system all the planets have moons except Mercury and Venus.

Orbital Velocity:

We saw that there are natural satellites moving around the planets. There will be gravitational force between the planet and satellites. At this altitude, the friction due to air is negligible. The satellite is carried by a rocket to the desired height and released horizontally with a high velocity, so that it remains moving in a nearly circular orbit.

The horizontal velocity that has to be imparted to a satellite at the determined height so that it makes a circular orbit around the planet is called orbital velocity.

Orbital velocity can be calculated using the following formula.
$V=\sqrt{\frac{G M}{(R+h)}}$
where, $\mathrm{G}=$ Gravitational constant $\left(6.673 \times 10^{-11} \mathrm{Nm} 2 \mathrm{~kg}-2\right)$
$\mathrm{M}=$ Mass of the Earth $\left(5.972 \times 10^{24} \mathrm{~kg}\right)$
$\mathrm{R}=$ Radius of the Earth (6371 km)
$h=$ Height of the satellite from the surface of the Earth.
Time taken by a satellite to complete one revolution round the Earth is called time period.

