APPC? LD

 WALK-IN-TEST II

 WALK-IN-TEST II

 PAPER I - UNIT- III: GENERAL APTITUDE \& MENTAL ABILITY

 PAPER I - UNIT- III: GENERAL APTITUDE \& MENTAL ABILITY}

Time: 30 min
Total marks: 50

SECTION A

$2 \times 10=20$

Answer not exceeding 150 words each

1. Answer the following questions

பின்வரும் வினாக்களுக்கு விடையளி
a. Find the difference between C.I. and S.I. on ₹ 5000 for 1 year at 2% p.a. if the interest is compounded half yearly.
₹ 5000 இக்கு 2% ஆண்டு வட்டியலல், அறையாண்டுக்கொரு முறை வட்டிக் கணக்கிடப்பட்டால் ஓர் ஆண்டுக்குக் கிடைக்கும் தனிவட்டிக்கும் கூட்டுவட்டிக்கும் இடையேயுள்ள வித்தியாசத்தைக் காண்க

Explanation

Principal (P) = ₹ 5000
Time period (n) = 1 yr .
Rate of interest (r) $=2 \%$ p.a
For half yearly r = 1\%
Difference between CI \& SI is given by the formula

$$
\begin{aligned}
& C I-S I=P\left(\frac{r}{100}\right)^{2 n} \text { [for half yearly compounding] } \\
& C I-S I=P\left(\frac{1}{100}\right)^{2 \times 1} \\
& =5000 \times \frac{1}{100} \times \frac{1}{100}=R s .0 .50
\end{aligned}
$$

b. In a Laboratory, the count of bacteria in a certain experiment was increasing at the rate of 2.5% per hour. Find the bacteria at the end of 2 hours if the count was initially $5,06,000$ ஒரு ஆய்வகத்தில், ஒா் ஆராய்ச்சியில் ஒரு வகை பாக்டியாா்களின் எண்ணிக்கை ஒரு மணிக்கு 2.5% வீதம் அதிகாக்கின்றது. தொடக்கத்தில் 5,06,000 பாக்டிியாக்கள் இருந்தால், 2 மணி நேரத்திற்கு பிறகு அதன் எண்ணிக்கை என்ன?

Explanation

$\mathrm{P}=$ Original count of bacteria $=506000$,
Rate of increase $=\mathrm{R}=2.5 \%$ per hour,
Time $=2$ hours
Bacteria count after 2 hours $=\mathrm{A}$
$A=P\left(1+\frac{R}{100}\right)^{T}$
$=506000 \times\left(1+\frac{2.5}{100}\right)^{2}$
$=506000 \times \frac{102.5}{100} \times \frac{102.5}{100}$
$=531616.25=531616$ (approx)
2. Three men A, B and C can complete a job in 8,12 and 16 days respectively. A and B work together for 3 days; then B leaves and C joins. In how many days, can A and C finish the work?
A, B, C என்ற மூவா் ஒரு வேலையை முறையே 8, 12, 16 நாட்களில் முடிப்பார்கள். A, B இருவரும் சோ்ந்து அவ்வேலையை 3 நாட்களுக்கு செய்தன். பின்ன் B விலகுகின்றாா், C சேருகின்றாா் எனில், A, C ஆகிய இருவரும் சோ்ந்து அவ்வேலையை எத்தனை நாட்களில் முடிப்பாா்கள்?

Explanation

Three men A, B and C can complete a job in 8,12 and 16 days respectively.
$(A+B+C)$'s one day work $=\frac{1}{8}+\frac{1}{12}+\frac{1}{16}$
$=\frac{(6+4+3)}{48}$
$=\frac{13}{48}$
$(A+B)$'s one day work $=\frac{1}{8}+\frac{1}{12}$
$=\frac{(3+2)}{24}$
$=\frac{5}{24}$
$(\mathrm{A}+\mathrm{B})$ three days work $=\frac{(5 \times 3)}{24}$
$=\frac{15}{24}$
Remaining work $=1-\frac{15}{24}=\frac{(24-15)}{24}$
$=\frac{9}{24}$

$$
(\mathrm{A}+\mathrm{C}) \text { 's one day work }=\frac{1}{8}+\frac{1}{16}
$$

$$
=\frac{(2+1)}{16}=\frac{3}{16}
$$

$$
\frac{3}{16} \text { work completed in } 1 \text { day }
$$

$$
\frac{9}{24} \text { work completed in } \frac{16}{3} \times \frac{9}{24}=2 \text { days }
$$

SECTION - B

$2 \times 15=30$

Answer not exceeding 250 words each

3. In a class of 50 students, 28 opted for NCC, 30 opted for NSS and 18 opted both NCC and

NSS. One of the students is selected at random. Find the probability that
(i) The student opted for NCC or NSS
(ii) The student opted for NCC but not NSS.
(iii) The student opted for NSS but not NCC.
(iv) The student opted for exactly one of them.
(v) The student has opted neither NCC nor NSS

50 மாணவர்கள் உள்ள ஒரு வகுப்பல், 28 பேர் NCC யிலும், 30 பேர் NSS லும் மற்றும் 18 பேர் NCC மற்றும் NSS லும் சோ்கிறாா்கள். ஒரு மாணவா் சமவாய்ப்பு முறையில் தேர்ந்ததடுக்கப்படுகிறாா். அவா
i. NCC அல்லது NSS இல்
ii. NCC uில் இருந்து, ஆனால் NSSஇல் இல்லாமல்
iii. NSS இல் இருந்து, ஆனால் NCC யில் இல்லாமல்
iv. ஒன்றே ஒன்றில் மட்டும் சே்ந்து
v. NCC அல்லது NSS இரண்டிலும் சேராமல் இருப்பதற்கான நிகழ்தகவுகளைக் காண்க

Explanation

Total number of students $n(S)=50$.
Let A and B be the events of students opted for NCC and NSS respectively.

$$
\begin{aligned}
P(A) & =\frac{n(A)}{n(S)}=\frac{28}{50} \\
P(B) & =\frac{n(B)}{n(S)}=\frac{30}{50} \\
P(A \cap B) & =\frac{n(A \cap B)}{n(S)}=\frac{18}{50}
\end{aligned}
$$

(i) We know that $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$$
\begin{aligned}
& P(A \cup B)=\frac{28}{50}+\frac{30}{50}-\frac{18}{50} \\
& =\frac{40}{50}=\frac{4}{5}
\end{aligned}
$$

(ii) Probability of the students opted for NCC but not NSS

$$
P(A \cap \bar{B})=P(A)-P(A \cap B)=\frac{28}{50}-\frac{18}{50}=\frac{1}{5}
$$

(iii) Probability of the students opted for NSS but not NCC.

$$
P(\bar{A} \cap B)=P(B)-P(A \cap B)=\frac{30}{50}-\frac{18}{50}=\frac{6}{25}
$$

(iv) Probability of the students opted for exactly one of them

$$
\begin{aligned}
& =P[(A \cap \bar{B}) \cup(\bar{A} \cap B)] \quad(\text { since }(A \cap \bar{B}),(\bar{A} \cap B) \text { are mutually exclusive events }) \\
& =P(A \cap \bar{B})+(\bar{A} \cap B)=\frac{1}{5}+\frac{6}{25}=\frac{11}{25}
\end{aligned}
$$

(v) P (not A and not B)

$$
\begin{aligned}
& =\mathrm{P}\left(\mathrm{~A}^{\prime} \text { and } \mathrm{B}^{\prime}\right)=\mathrm{P}\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime}\right) \\
& =\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})^{\prime} \quad\left[\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=(\mathrm{A} \cup B)^{\prime} \quad(\text { by De Morgan's law })\right] \\
& =1-\mathrm{P}(\mathrm{~A} \cup B) \\
& =1-\mathrm{P}(\mathrm{AorB}) \\
& =1-\frac{4}{5}=\frac{1}{5}
\end{aligned}
$$

4. Answer the following questions
a. A garden roller whose length is 3 m long and whose diameter is 2.8 m is rolled to level a garden. How much area will it cover in 8 revolutions?
நீளம் 3 மீ மற்றும் விட்டம் 2.8 மீ உடைய ஒரு சமன்படுத்தும் உருளையைக் கொண்டு ஒரு தோட்டம் சமன்படுத்தப்படுகிறது. 8 சுற்றுகளில் எவ்வளவு பரப்பை உருளை சமன் செய்யும்?

Explanation

Given that, diameter $d=2.8 \mathrm{~m}$ and height $=3 \mathrm{~m}$
Radius $r=1.4 \mathrm{~m}$
Area covered in one revolution = curved surface area of the cylinder
$=2 \pi r h$ sq.units
$=2 \times \frac{22}{7} \times 1.4 \times 3=26.4$
Area covered in 1 revolution $=26.4 \mathrm{~m}^{2}$
Area covered in 8 revolutions $=8 \times 26.4=211.2$
Therefore, area covered is $211.2 \mathrm{~m}^{2}$
b. A solid wooden toy is in the form of a cone surmounted on a hemisphere. If the radii of the hemisphere and the base of the cone are 3.5 cm each and the total height of the toy is 17.5 cm , then find the volume of wood used in the toy. (Take $\pi=\frac{22}{7}$)

ஒரு திண்ம மரப்பொம்மையானது அரைக்கோளத்தின் மேல் கூம்பு இணைந்த வடிவில் உள்ளது. அரைக்கோளம் மற்றும் கூம்பு ஆகியவற்றின் ஆரம் 3.5 செ.மீ. மேலும் பொம்மையின் மொத்த உயரம் 17.5 செ.மீ எனில் அப்பொம்மை தயாாிக்கப் பயன்படுத்தப்பட்ட மரத்தின் கன அளவைக் காண்க. $\left(\pi=\frac{22}{7}\right)$

Explanation

Hemispherical portion:
Radius, $r=3.5 \mathrm{~cm}$

Conical portion:
Radius, $r=3.5 \mathrm{~cm}$
Height, $h=17.5-3.5=14 \mathrm{~cm}$

Volume of the wood $=$ Volume of the hemisphere + Volume of the cone

$$
\begin{aligned}
& =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h \\
& =\frac{\pi r^{2}}{3}(2 r+h) \\
& =\frac{22}{7} \times \frac{3.5 \times 3.5}{3} \times(2 \times 3.5+14)=269.5
\end{aligned}
$$

Hence, the volume of the wood used in the toy $=269.5 \mathrm{cu} . \mathrm{cm}$.
c. The length and breadth of a room are 8 m and 5 m respectively. A red colour border of uniform width of 0.5 m has been painted all around on its inside. Find the area of the border.
8 மீ நீளமும், 5 மீ அகலமும் கொண்ட ஒரு அறையில் உட்புறமாக சீரான சிவப்பு வண்ணப் பாதை 0.5 மீ அகலத்தில் பூசப்படுகிறது. சிவப்பு வண்ணப் பாதையின் பரப்பளவு காண்க

Explanation

